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Advanced metabolic-dysfunction-associated steatotic liver disease (MASLD) fibrosis (F3-4) predicts 
liver-related outcomes. Serum and elastography-based non-invasive tests (NIT) cannot yet reliably 
predict MASLD outcomes. The role of B-mode ultrasound (US) for outcome prediction is not yet 
known. We aimed to evaluate machine learning (ML) algorithms based on simple NIT and US for 
prediction of adverse liver-related outcomes in MASLD. Retrospective cohort study of adult MASLD 
patients biopsied between 2010–2021 at one of two Canadian tertiary care centers. Random forest 
was used to create predictive models for outcomes—hepatic decompensation, liver-related outcomes 
(decompensation, hepatocellular carcinoma (HCC), liver transplant, and liver-related mortality), HCC, 
liver-related mortality, F3-4, and fibrotic metabolic dysfunction-associated steatohepatitis (MASH). 
Diagnostic performance was assessed using area under the curve (AUC). 457 MASLD patients were 
included with 44.9% F3-4, diabetes prevalence 31.6%, 53.8% male, mean age 49.2 and BMI 32.8 kg/
m2. 6.3% had an adverse liver-related outcome over mean 43 months follow-up. AUC for ML predictive 
models were—hepatic decompensation 0.90(0.79–0.98), liver-related outcomes 0.87(0.76–0.96), HCC 
0.72(0.29–0.96), liver-related mortality 0.79(0.31–0.98), F3-4 0.83(0.76–0.87), and fibrotic MASH 
0.74(0.65–0.85). Biochemical and clinical variables had greatest feature importance overall, compared 
to US parameters. FIB-4 and AST:ALT ratio were highest ranked biochemical variables, while age was 
the highest ranked clinical variable. ML models based on clinical, biochemical, and US-based variables 
accurately predict adverse MASLD outcomes in this multi-centre cohort. Overall, biochemical variables 
had greatest feature importance. US-based features were not substantial predictors of outcomes in 
this study.
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Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver 
disease (NAFLD) is now a global health epidemic and leading cause of liver-related mortality1–3. The presence 
of advanced MASLD fibrosis (F3-4) predicts worse liver-related outcomes4–8. Liver biopsy remains the reference 
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standard to diagnose metabolic dysfunction-associated steatohepatitis (MASH) and stage MASLD fibrosis, 
however, is limited by its invasive nature, sampling heterogeneity, and poor suitability as a screening tool2,9. 
Markov models for MASLD burden of disease from several countries project a marked increase in liver-related 
outcomes over the next decade10,11. Identifying patients at risk of disease progression prior to developing 
symptoms is crucial. Research efforts have focussed on the development of non-invasive methods to predict 
F3-4. Diagnostic algorithms based on simple serum-based tests such as the NAFLD-fibrosis score (NFS), FIB-
4, aspartate aminotransferase (AST) to platelet ratio index (APRI), patented blood tests, and point-of-care 
imaging-based tests, such as vibration-controlled transient elastography (VCTE™, EchoSens, Paris, France)) 
have been developed to further improve diagnostic accuracy12. However, a recent meta-analysis of 9 studies with 
simple blood tests and histologic scores for predicting clinical outcomes in MASLD indicated only NFS > 0.676 
was associated with all-cause mortality, but not liver-related outcomes13.

With increasing prevalence of F3-4, it is important to identify simple, cost-effective testing strategies to 
allow for risk stratification in an integrated healthcare model with non-specialist providers. B-mode ultrasound 
(US) is routinely performed on patients investigated for liver disease. In patients with metabolic risk factors for 
MASLD, US is recommended for initial assessment of steatosis12,14,15, although limitations exist for detecting 
mild steatosis compared to more advanced techniques including VCTE controlled attenuation parameter and 
magnetic resonance imaging proton density fat fraction14,16,17. US can also detect signs of advanced liver disease 
(nodularity, coarse echotexture, ascites) and portal hypertension18–20. Surface nodularity was shown to predict 
F3-4 and F4 in a MASLD-predominant population of patients with liver disease of mixed etiologies21. Its low 
cost and wide availability make it an ideal screening test18. Despite this, B-mode US has yet to be studied for 
prediction of liver-related outcomes in MASLD.

Artificial intelligence encompasses multiple techniques, including machine learning (ML), neural networks, 
deep learning, and natural language processing22. ML has been applied to develop diagnostic and risk-prediction 
models for chronic liver disease severity 22–24. ML methods using non-invasive serum markers have been 
developed to identify MASH and fibrosis stage in chronic liver disease,22,25–28. Use of ML to predict steatosis using 
US is an area of interest29. Han et al. describe use of a neural network technique to analyze raw radiofrequency 
data available from US analysis in MASLD patients to quantify hepatic steatosis; previous methods using 
B-mode data were limited to qualitative analysis30. ML has also been applied to MASLD histopathology allowing 
for quantitative assessment to monitor disease progression31,32.

In this study, we aimed to investigate the role of ML algorithms, using simple serum-based non-invasive 
tests (NIT), including FIB-4, NFS and APRI, combined with B-mode US, for non-invasive prediction of (1) 
all liver-related outcomes (hepatic decompensation, hepatocellular carcinoma (HCC), liver transplant, and/or 
liver-related death), (2) hepatic decompensation, (3) HCC, (4) liver-related mortality, and (5) advanced MASLD, 
including F3/4 fibrosis and “fibrotic” MASH.

Methods
Study design and population
This was a retrospective, observational cohort study of biopsy-proven MASLD patients from two Canadian 
tertiary-care centres (University Health Network, Toronto; McGill University Health Centre, Montreal) between 
January 1, 2010–July 1, 2021. Inclusion criteria were: (1) age ≥ 18 at time of biopsy, (2) histologic diagnosis of 
MASLD, and (3) ≥ 2 months of follow-up. Exclusion criteria were: (1) alternate causes of chronic liver disease or 
steatosis (viral hepatitis, significant alcohol use (women – > 14 units/week, men – > 21 units/week) (1 unit = 12 oz 
(oz) 5% beer, 1.5 oz 40% liquor, 5 oz glass of 12% wine), steatogenic medications), (2) non-HCC malignancy 
within the past 5 years, (3) immunosuppression within the past 3 years, (4) Human Immunodeficiency Virus, (5) 
inadequate liver biopsy (< 10 mm or based on pathologist assessment), and (6) hepatic decompensation (ascites, 
jaundice, hepatic encephalopathy, variceal bleed) or HCC at time zero. Anthropometric data, bloodwork, and 
B-mode US data were included if available within ± 6 months of liver biopsy. A six month interval was selected 
as minimal histologic changes in MASLD are expected during this timeframe, and to allow for inclusion of a 
greater proportion of imaging data for our study cohort.

Clinical and imaging data acquisition
Patient level data were collected from our electronic medical record. Baseline clinical parameters included age, 
gender, comorbidities, and anthropometrics (height, weight, body mass index (BMI)). Laboratory data included 
complete blood count, electrolytes, creatinine, liver enzymes AST, alanine aminotransferase (ALT), alkaline 
phosphatase, and liver function tests (bilirubin, International Normalized Ratio, albumin).

B-mode US reports were collected for each subject. Two investigators (MF, MS) reviewed and recorded 
variables of interest including degree of hepatic steatosis, liver/spleen size, liver nodularity, and features of portal 
hypertension.

The following outcomes were determined for all patients: (1) hepatic decompensation, (2) HCC, (3) liver 
transplant, (4) liver-related mortality (5) F3-4 fibrosis and (6) fibrotic MASH (NAFLD Activity Score (NAS) ≥ 4 
and F2-4). Hepatic decompensation was defined as the presence of any of the following: ascites, jaundice, hepatic 
encephalopathy, or variceal bleeding. All outcomes were determined by review of the electronic medical record 
(HK, CB, MS), based on physician documentation and/or endoscopy records. Date of final follow-up, and time 
elapsed from biopsy to each outcome/decompensating event was recorded for all patients. Liver transplant and 
death were considered terminal outcomes for analysis.

Non-invasive prediction of advanced (F3-4) fibrosis
Anthropometric and biochemical data were used to calculate scores for serum-based NIT for MASLD-fibrosis, 
including NFS, FIB-4, BARD, APRI and AST/ALT ratio. All NIT were calculated using published formulae33–36.
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Histologic analysis
Liver biopsies were assessed by experienced tertiary Hepatology referral center histopathologists at each 
institution. As such, agreement on histologic scoring systems or consensus on discordant results was not feasible 
for this retrospective study. Biopsy report summaries were then verified (HK, MS) to ensure alternate causes of 
chronic liver disease were excluded. MASH and fibrosis were scored using the NASH Clinical Research Network 
(NASH-CRN) Scoring System37. ‘Advanced fibrosis’ was defined as a CRN score of 3–4 (bridging fibrosis or 
cirrhosis).

Statistical analysis
Statistical analysis was performed using MedCalc (MedCalc Software Version 19.0.7, Ostend, Belgium). 
Continuous variables were expressed as mean and standard deviation (SD). Ordinal variables were expressed 
as median and interquartile range (IQR). Quantitative data was assessed using Student’s T test. Chi-squared 
test was used to compare frequency data. Ordinal data was compared using the Mann–Whitney U test. Area 
under the receiver operating curve (AUROC), as described by DeLong et al.38, was used to determine diagnostic 
performance of individual NIT. A p value < 0.05 was considered significant.

ML analysis
Analyses were performed using ‘Random Forest’ (RF) technique39. Repeated randomized stratified k-fold cross-
validation was used to perform 10 runs of fivefold cross-validation (i.e. stratified into 80% training, 20% testing 
per fold). Categorical features were hot encoded. Missing variables were recorded as additional categories for 
categorical variables, and -1.0 for numerical features. Each outcome variable was separately analyzed. Patients 
with target variable = NA were excluded. Allowable predictors for each outcome were predetermined. For each 
experiment a Random Forest model was fit to the training dataset and evaluated on the independent testing 
set. Model performance was assessed by AUROC, calculated on each testing set. Average area under the curve 
(AUC) and 95% confidence intervals (CI) are calculated across the 500 runs using the percentile method. 
Feature importance, representing the contribution of a given variable (‘feature’) to the model, was estimated 
using Shapley feature importance with concatenation across the 5 folds and averaging across the 10 repeats (i.e. 
the average feature importance per patient across all 10 repeats)40. Sensitivity and specificity were determined 
according to the point closest to (0,1) on the AUC curve.

Results
Baseline demographics
Following assessment of study eligibility, 457 patients with biopsy-proven MASLD were included in this 
study (Supplementary Fig. 1). Overall, 53.8% of patients were male, with mean age (± SD) at time of biopsy 
49.2 ± 12.9 years, mean BMI 32.8 ± 7.0 kg/m2, 31.6% had diabetes, and biopsy prevalence of F3-4 fibrosis was 
44.9%. Rate of fibrotic MASH was 51.0%. Patients with F3-4 fibrosis (45%) were generally older, female, with 
higher BMI, and higher rates of metabolic comorbidities. Rates of smoking did not differ significantly between 
groups. Patients were well-compensated at time of biopsy, and all NIT differed significantly between F0-2 vs. 
F3-4 (Table 1). Median duration of follow-up for this study was 71 months (2–170 months).

Baseline demographics for individual cohorts is available in Supplementary Table 1.

Ultrasound features
Overall, the mean liver span was 16.2 ± 2.7 cm, with 86.0% of patients having features of fatty infiltration on US. 
Compared to F0-2, patients with F3-4 also had higher rates of hepatic nodular contour, lobar redistribution, and 
greater average spleen size (Table 1).

Liver-related outcomes
Overall, 6.3% (29/457) patients experienced ‘liver-related outcomes’, defined as development of hepatic 
decompensation, HCC, transplant, or liver-related death. Patient timeline for occurrence of outcomes was 
within 10 years. The first-occurring liver-related event was HCC (n = 9), ascites (n = 15), encephalopathy (n = 4), 
jaundice (n = 1), variceal bleeding (n = 3), and other/unspecified (n = 1). A total of one transplant occurred 
during the study period. The median time to development of a ‘liver-related outcome’ was 38  months (IQR 
17.9–60.4  months). Hepatic decompensation occurred in 4.8% (22/457) within 114  months (median (IQR) 
40 (22.9–55.8) months). HCC occurred in 2.0% (9/457) of patients during the study period within 91 months 
(median 22 (11.4–84.7) months). Liver-related mortality occurred in 1.1% (5/457) within 117 months (median 
74 (35.0–79.0) months. Liver-related outcomes occurred more frequently among patients with F3-4 on baseline 
liver biopsy vs F0-2 (11.2% vs 2.4%; p = 0.0001). There were no differences in incidence of HCC between F0-2 
(n = 3) and F3-4 (n = 6) (1.3% vs 2.9%; p = 0.19) (Supplementary Table 2).

Machine learning models
ML models were generated for prediction of liver-related outcomes, hepatic decompensation, HCC, liver-
related mortality, F3-4 fibrosis, and fibrotic MASH. Each model was created using a set of pre-selected allowable 
predictive variables. These included variables listed in Table 1. A complete list of included predictive variables 
for each model is included in Supplementary Table 3. Variables were further subdivided based on description 
as ‘clinical’, ‘biochemical’ or ‘radiographic’ predictors, to determine the impact of each variable sub-class on the 
model accuracy, with importance reported as the summed importance across all features in each sub-class.

	1.	 Liver-Related Outcomes
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The AUC for prediction of liver-related outcomes (hepatic decompensation, HCC, liver transplant, and/or liver-
related death) using the ML model was 0.87 (95% CI 0.76–0.96), sensitivity 0.77, specificity 0.78 (Supplementary 
Table 4). Feature importance and directional association for each allowable predictive variable is shown in 
Fig. 1a and b. The top five features with respect to contribution to AUC were AST:ALT ratio, FIB-4, age, platelet 
count, and APRI. Overall, biochemical variables had the greatest feature importance, as compared to clinical and 
imaging-based variables (Supplementary Fig. 2a).

When histologic F3-4 was included as a variable, AUC for prediction of liver-related outcomes was unchanged 
(0.86 (95% CI 0.70–0.97)). Sensitivity was 0.82 and specificity 0.75. The top five predictive features were also 
unchanged. Biochemical variables remained most important contributors to overall AUC, followed by clinical 
and imaging-based variables. Biopsy F3-4 had lower feature importance than spleen length and simple NITs for 
liver-related outcomes (Supplementary Fig. 2b, c).

	2.	 Hepatic Decompensation

The AUC for prediction of hepatic decompensation was 0.90 (95% CI 0.79–0.98), sensitivity 0.88, specificity 0.78 
(Supplementary Table 5). Feature importance and directional association for each allowable predictive variable 
is shown in Fig.  2a and b. Top five performing features were FIB-4, AST:ALT ratio, APRI, age, and platelet 
count, respectively. Overall, biochemical features were most important to overall AUC, compared to clinical and 
imaging-based features (Supplementary Fig. 3a).

When histologic F3-4 was included as a variable, AUC for prediction of F3-4 was unchanged (0.90 (95% 
CI 0.81–0.98). Sensitivity and specificity were unchanged, 0.88 and 0.78 respectively. Top performing features 
were also unchanged. Biochemical variables again outperformed clinical and imaging-based variables. 
(Supplementary Fig. 3b, c).

	3.	 HCC

The AUC for prediction of HCC using the ML model was 0.72 (95% CI 0.29–0.96), sensitivity 0.69, specificity 
0.71 (Supplementary Table 6). Feature importance and directional association for each allowable predictive 

Patient characteristic Combined (n = 457) F0-2 (n = 252) F3-4 (n = 205) p

Fibrosis stage F0-2—55.1% (252)
F3-4—44.9% (205)

F0—31.0% (n = 78)
F1—36.1% (n = 91)
F2—32.9% (n = 83)

F3—49.8% (n = 102)
F4—50.2% (n = 103) –

% Males (n) 53.8% (246) 63.1% (159) 42.4% (87) * < 0.0001

Age (mean ± SD) [years] 49.2 ± 12.9 45.9 ± 12.7 53.2 ± 12.1 * < 0.0001

% Hypertension (n) 32.7% (147/450) 24.4% (60/246) 42.6% (87/204) * < 0.0001

% Diabetes (n) 31.6% (142/449) 19.6% (48/245) 46.1% (94/204) * < 0.0001

% Smoking (reported)
(n = 314) 25.4% (105/414) 27.8% (61/220) 22.7% (44/194) 0.2348

BMI (mean ± SD) [kg/m2] 32.8 ± 7.0 (271) 31.4 ± 6.2 (137) 34.2 ± 7.4 (134) *0.0008

AST (mean ± SD) [U/L] 60.2 ± 55.0 (395) 50.6 ± 48.6 (222) 72.6 ± 60.2 (173) *0.0001

ALT (mean ± SD) [U/L] 86.2 ± 74.1 (404) 81.5 ± 66.7 (227) 92.2 ± 82.4 (177) 0.1500

NAS (median, IQR) 4 (3–5) (453) 4 (2–5) (249) 4 (4–5) (204) * < 0.0001

MELD (median, IQR) 7 (6–8) (371) 6 (6–7) (210) 7 (7–8) (161) * < 0.0001

NaMELD (median, IQR) 8 (7–10) (275) 8(6–9) (164) 9 (7–10) (111) *0.0230

NFS (n = 163) -1.41 ± 2.13 (231) -2.26 ± 1.63 (124) -0.42 ± 2.22 (107) * < 0.0001

FIB-4 (n = 303) 1.81 ± 1.75 (390) 1.26 ± 1.41 (220) 2.52 ± 1.89 (170) * < 0.0001

BARD (median, IQR) (n = 182) 2 (1–3) (260) 1 (1–2) (136) 2.5 (1–4) (124) * < 0.0001

APRI (n = 303) 0.77 ± 0.76 (392) 0.59 ± 0.67 (222) 1.01 ± 0.80 (170) * < 0.0001

AST/ALT ratio (n = 305) 0.80 ± 0.42 (393) 0.71 ± 0.40 (220) 0.92 ± 0.41 (173) * < 0.0001

Liver Span (mean ± SD) [cm] (n = 148) 16.2 ± 2.7 (149) 15.9 ± 2.5 (74) 16.6 ± 2.9 (75) 0.1169

% Fatty Liver (n = 161) 86.0% (221/257) 88.4% (122/138) 83.2% (99/119) 0.2320

% Hepatic Nodularity Contour (n = 161) 21.2% (46/217) 7.1% (8/112) 36.2% (38/105) * < 0.0001

% Hepatic Vein Nodularity (n = 161) 8.2% (13/158) 4.9% (4/82) 11.8% (9/76) 0.1158

% Lobar Redistribution (n = 161) 8.2% (13/158) 2.4% (2/82) 14.5% (11/76) *0.0058

% Patent Para-Umbilical Vein (n = 161) 1.3% (2/158) 0% (0/82) 2.5% (2/76) 0.1510

Spleen Length (mean ± SD) [cm] (n = 153) 12.0 ± 2.7 (220) 11.2 ± 2.1 (111) 12.7 ± 3.1 (109) * < 0.0001

Table 1.  Baseline clinical characteristics, combined cohort. n, number of patients; *– p < 0.05; p calculated 
using Mann–Whitney test. BMI, body mass index; AST, aspartate aminotransferase; ALT, alanine 
aminotransferase; NAS, NAFLD Activity Score; MELD, Model for End-Stage Liver Disease; NaMELD, MELD 
sodium score; NFS, NAFLD Fibrosis Score; APRI, AST to Platelet Ratio Index; US, ultrasound; SD, standard 
deviation; IQR, interquartile range; US, ultrasound.
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Fig. 1.  ML feature importance for outcome ‘liver-related outcomes’. (a) Shows the relative feature importance 
of allowable predictive variables included in the machine learning model for prediction of outcome ‘Liver-
Related Outcomes’, a composite outcome including hepatic decompensation, hepatocellular carcinoma, liver 
transplant, and liver-related mortality; Categorical variables for directional change to high probability and high 
feature value include smoking (yes); (b) Illustrates directional change from left-to-right for a high probability 
of event, and blue-to-red representing transition from low to high feature value.
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Fig. 2.  ML feature importance for outcome ‘hepatic decompensation’. (a) Shows the relative feature 
importance of allowable predictive variables included in the machine learning model for prediction of outcome 
‘Hepatic Decompensation, a composite outcome including ascites, jaundice, hepatic encephalopathy, and 
variceal bleeding. Categorical variables for directional change to high probability and high feature value 
include Smoking (yes), Sex (male), and presence of Lobar Redistribution (yes), Hypertension (HTN), and 
Diabetes mellitus (DM); (b) Illustrates directional change from left-to-right for a high probability of event, and 
blue-to-red representing transition from low to high feature value.
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variable is shown in Fig. 3a and b. Age, BMI, APRI, ALT, and platelet count were the top five predictive features, 
respectively. Overall, biochemical and clinical variables had the greatest feature importance for prediction of 
HCC, as compared to imaging-based variable. (Supplementary Fig. 4a).

As expected, based on the incidence of HCC relative to F0-2, when histologic F3-4 was included as a variable, 
AUC for prediction of HCC was essentially unchanged (0.74 (95% CI 0.42–0.95)). Top four performing features 
were unchanged, and AST:ALT ratio overtook PLT count. Sensitivity was improved at 0.78, with specificity 0.65. 
Overall, biochemical and clinical variables had greatest feature importance for prediction of HCC as compared 
to imaging-based variables. (Supplementary Fig. 4b, c).

	4.	 Liver-Related Mortality

For prediction of liver-related mortality, AUC using the ML model was 0.79 (95% CI 0.31–0.98), sensitivity 
0.75, specificity 0.80 (Supplementary Table 7). Feature importance and directional association for each allowable 
predictive variable is shown in Fig. 4a and b. The top five features contributing to AUC were ALT, platelets, 
AST:ALT ratio, AST and NFS, respectively. For grouped variables, biochemical variables outperformed imaging-
based and clinical variables. (Supplementary Fig. 5a).

When histologic F3-4 was included as a variable, AUC for prediction of liver-related mortality was marginally 
increased (0.82 (95% CI 0.32–0.99)). Sensitivity improved to 0.81, and specificity was essentially stable at 
0.81. F3-4 as a variable became an important feature. With respect to individual feature importance, top five 
features included ALT, platelet count, F3-4, AST:ALT ratio, and AST. There was no difference in grouped feature 
importance. Biochemical variables outperformed clinical and imaging-based variables Supplementary Figs. 5b, 
c).

	5.	 Advanced Fibrosis

For prediction of advanced F3-4 fibrosis, AUC from the ML model was 0.83 (95% CI 0.76–0.87), sensitivity 
0.79, specificity 0.70 (Supplementary Table 8). Feature importance and directional association for each allowable 
predictive variable is shown in Fig. 5a and b. FIB-4 had the greatest contribution towards overall AUC, followed 
by age, AST:ALT ratio, APRI and AST. Overall, biochemical features had the greatest contribution to AUC, 
followed by clinical, then imaging-based features. (Supplementary Fig. 6).

	6.	 Fibrotic MASH

AUC for prediction of Fibrotic MASH histology using the ML model was 0.74 (95% CI 0.65–0.85), sensitivity 
0.71, specificity 0.66 (Supplementary Table 9). Feature importance and directional association is shown in Fig. 5c 
and d. AST had the greatest feature contribution, followed by age, BMI, sex, and diabetes. Overall, clinical and 
biochemical features contributed most to overall AUC, followed by imaging-based features (Supplementary 
Fig. 7).

Simple biochemical markers for prediction of liver-related outcomes
Performance of individual NIT as compared to ML algorithms for prediction of outcomes are summarized in 
Table 2 and Supplementary Tables 4–9.

For prediction of liver-related outcomes, AUROC ranged from 0.75 (APRI) to 0.88 (NFS). For prediction 
of hepatic decompensation, AUROC ranged from 0.77 (BARD) to 0.93 (NFS). For HCC, AUROC were lower, 
ranging from 0.61 (APRI) to 0.80 (BARD). For liver-related mortality, AUROC ranged from 0.66 (APRI) to 0.97 
(NFS). For prediction of F3-4, FIB-4 > 1.32 had the highest AUROC of 0.78. For prediction of fibrotic MASH, 
APRI > 0.46 performed best (AUROC 0.71).

Biopsy F3-4 and clinical outcomes
AUROC was determined for each clinical outcome based on histologic F3-4 alone. AUROC for prediction of 
liver-related outcomes was 0.68 (95% CI 0.64–0.73), hepatic decompensation 0.69 (0.65–0.74), HCC 0.61 (0.57–
0.66), and liver-related mortality 0.78 (0.74–0.82). ML algorithms had higher AUROC for all clinical outcomes 
except for liver-related mortality. Table 2.

Discussion
Our study demonstrates the utility of ML for prediction of liver-related outcomes in a cohort of biopsy-proven 
MASLD patients, using B-mode US parameters and clinical data. ML models combining simple, readily available 
clinical, biochemical, and US-based variables predicted liver-related outcomes and hepatic decompensation 
with good accuracy, matching individual NIT, with AUC approaching 0.9. ML algorithms improved accuracy 
for prediction of liver-related outcomes such as hepatic decompensation and HCC as compared to histologic 
F3-4. Compared to simple NIT, ML algorithms had lower diagnostic performance for less frequently occurring 
outcomes such as HCC and liver-related mortality; however, accuracy was improved for prediction of F3-4 and 
fibrotic MASH.

Our ML models identified biochemical variables as having greatest feature importance for both liver-related 
outcomes and hepatic decompensation. FIB-4 had greatest feature importance for prediction of F3-4, in keeping 
with its validated use for prediction of advanced fibrosis. Of all clinical variables, age had greatest feature 
contribution to AUC for each ML outcome. Imaging based features had the lowest contribution to AUC for 
predicting outcomes. Of all imaging-based variables, spleen length performed best for prediction of liver-related 
outcomes, including for outcomes of hepatic decompensation, HCC and liver-related mortality, along with F3-4 
on biopsy. Fibrotic MASH, uniquely, had significant feature importance contribution from clinical variables 
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Fig. 3.  ML Feature Importance for Outcome ‘Hepatocellular Carcinoma’. (a) Shows the relative feature 
importance of allowable predictive variables included in the machine learning model for prediction of outcome 
‘Hepatocellular Carcinoma’; Categorical variables for directional change to high probability and high feature 
value include Smoking (yes), Sex (male), and presence of Hypertension (HTN), and Diabetes mellitus (DM); 
(b) Illustrates directional change from left-to-right for a high probability of event, and blue-to-red representing 
transition from low to high feature value.
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Fig. 4.  ML feature importance for Outcome ‘Liver-Related Mortality’ (a) shows the relative feature importance 
of allowable predictive variables included in the machine learning model for prediction of outcome ‘Liver-
Related Mortality’; Categorical variables for directional change to high probability and high feature value 
include Sex (male), smoking (yes) and presence of Nodular Contour, Patent Para-umbilical vein, Hepatic Vein 
Nodularity, Lobar Redistribution; (b) illustrates directional change from left-to-right for a high probability of 
event, and blue-to-red representing transition from low to high feature value.
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Fig. 5.  ML Feature Importance for Outcomes ‘F3-4’ and ‘Fibrotic MASH’. Relative feature importance of 
allowable predictive variables included in the machine learning model for prediction of outcome ‘F3-4’ (A) and 
‘Fibrotic MASH’ (NAS ≥ 4 and F2-4) (C). Categorical variables for directional change to high probability and 
high feature value include Sex (male), smoking (yes) and presence of Hypertension (HTN), Diabetes mellitus 
(DM), Nodular Contour, Patent Para-umbilical vein, Hepatic Vein Nodularity, and Lobar Redistribution; 
Corresponding directional change from left-to-right for a high probability of event, and blue-to-red 
representing transition from low to high feature value are shown in (B) and (D) respectively. MASH, Metabolic 
dysfunction-associated steatohepatitis; NAS, NAFLD activity score.
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including age, BMI, sex, and diabetes status, providing validation of known important clinical risk factors for 
MASH.

As a feature, histologic F3-4 did not change the AUC for any outcome, although it became a top predictive 
feature when included as a variable in the ML model to predict liver-related mortality, in keeping with its known 
association with this outcome4,6–8.

Individual simple NIT accurately predicted adverse liver related outcomes in our cohort. FIB-4, NFS, and 
AST:ALT ratio predicted liver-related outcomes and hepatic decompensation with AUC 0.84–0.93. NIT, apart 
from BARD, did not perform as well for prediction of HCC. Overall rates of HCC were low and occurred 
with similar frequency between F0-2 and F3-4 groups, which may have accounted for reduced performance. 
Interestingly, all 9 HCC patients in our cohort had BARD score > 2. The BARD score contains four of the top 
five performing features identified using our ML algorithm, including age, BMI, ALT, and AST:ALT ratio, 
likely accounting for its performance. Except for APRI, other simple NIT could accurately predict liver-related 
mortality, with AUC > 0.9 and 0.95 for AST:ALT ratio and NFS, respectively. Interestingly, ML algorithms 
had higher AUC as compared to individual NIT for prediction of both F3-4 and fibrotic MASH, likely due to 
inclusion of unweighted variables such as age, BMI, and diabetes status, which are important clinical predictors 
of advanced fibrosis, and as also identified by ML feature importance analysis. Additional performance 
characteristics of our ML algorithms, including sensitivity, specificity, positive/negative likelihood ratios, were 
generally comparable to individual NIT.

Prior studies of serum-based NIT, including NFS, FIB-4, and APRI have shown mixed results in prediction 
of both liver-related outcomes and mortality5,13,41–54. In a post-hoc analysis of outcomes data from four 
multicenter clinical trials of Simtuzumab and Selonsertib51, higher baseline NIT scores were associated with 
poorer outcomes, with Enhanced Liver Fibrosis Test (ELF) (Siemens Healthineers, Erlangen, Germany), NFS 
and FIB-4 performing best. This study, however, was limited to F3-4 disease, with a highly selected clinical trial 
cohort with F3-4 and only had a median follow-up of 16 months.

A retrospective multicenter cohort study with 594 patients with baseline liver biopsy and F3-4 prevalence 
30.3%, noted a composite of end-stage liver disease related complications (ascites, spontaneous bacterial 
peritonitis, hepatorenal syndrome, varices, variceal bleeding, liver failure, encephalopathy) and HCC in 42 
patients after a median of 2.2 years. Both FIB-4 and VCTE predicted the composite outcome of liver-related 
events (Harrell’s C index 0.775–0.88). Despite a smaller patient cohort, our study had a longer median follow-
up time with standard defined hepatic decompensation and comparable outcome rates. Although VCTE was 
included, additional NIT and simple clinical and imaging-based variables were not assessed.

A multicenter study of 1773 patients from the NASH Clinical Research Network followed for 4  years 
indicated MASLD F3-4 was associated with increased risk of liver-related complications and death but included 
19 patients with history of hepatic decompensation5. Our cohort included patients of similar median age and 
BMI, higher F3-4 prevalence without prior history of liver-decompensation and followed for a longer period. As 
such, we noted higher rates liver-related mortality (1.1%), HCC (2%), and higher proportion (11.2% versus 6.6% 
for NASH CRN) of F3-4 patients with subsequent decompensation. Higher event rates allowed us to examine 
ML models for liver-related outcomes.

Liver stiffness measure determined by VCTE has been shown to predict mortality and liver-related outcomes 
in MASLD4,54,55. VCTE is not routinely available in primary care clinical practice and is often associated 
with additional out-of-pocket cost to the patient. Although US-based variables generally had lower feature-
importance as compared to NIT and clinical variables, this study is one of the first to use readily available US 
findings in a predictive model for MASLD outcomes. Standard B-mode US is routinely obtained in most patients 
with elevated liver tests and suspected chronic liver disease, providing an initial diagnosis of fatty liver disease. 
Several US parameters such as surface nodularity, portal vein flow, or spleen size may indicate advanced chronic 
liver disease, but have not been previously evaluated in comparison to other NIT for the diagnosis of outcomes 
in advanced MASLD fibrosis. US-based parameters such as spleen diameter-to-platelet ratio, in combination 
with LSM by VCTE, has been successfully used in hepatitis B virus-related cirrhosis to predict high risk varices, 
variceal bleeding, and hepatic decompensation, suggesting they may still have a role for risk stratification in 
MASLD56–59.

NIT

Outcomes

Liver-related outcomes Hepatic decompensation HCC Liver-related mortality F3-4 Fibrotic MASH

FIB-4 0.84 (0.80–0.88) 0.88 (0.85–0.91) 0.69 (0.64–0.74) 0.88 (0.84–0.91) 0.78 (0.74–0.82) 0.68 (0.63–0.73)

NFS 0.88 (0.83–0.92) 0.93 (0.88–0.96) 0.70 (0.64–0.76) 0.97 (0.94–0.99) 0.76 (0.70–0.81) 0.62 (0.55–0.68)

APRI 0.75 (0.71–0.79) 0.80 (0.76–0.84) 0.61 (0.56–0.65) 0.66 (0.61–0.71) 0.74 (0.70–0.79) 0.71 (0.66–0.75)

AST:ALT 0.84 (0.79–0.87) 0.85 (0.81–0.88) 0.75 (0.70–0.79) 0.91 (0.88–0.94) 0.71 (0.66–0.75) 0.60 (0.55–0.65)

BARD 0.78 (0.73–0.83) 0.77 (0.71–0.82) 0.80 (0.75–0.85) 0.82 (0.77–0.86) 0.71 (0.65–0.76) 0.57 (50–0.63)

Biopsy F3-4 0.68 (0.64–0.73) 0.69 (0.65–0.74) 0.61 (0.57–0.66) 0.78 (0.74–0.82) – –

ML Algorithm Combined Cohort 0.87 (0.76–0.96) 0.90 (0.79–0.98) 0.72 (0.29–0.96) 0.79 (0.31–0.98) 0.83 (0.76–0.87) 0.74 (0.65–0.85)

Table 2.  AUROC for Non-Invasive Tests for Prediction of Outcomes and F3-4 Fibrosis. NIT, non-invasive 
serum-based tests; HCC, hepatocellular carcinoma; NFS, NAFLD Fibrosis Score; APRI, AST to Platelet Ratio 
Index; AST:ALT, AST to ALT ratio.
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ML techniques are now being increasingly investigated for their predictive capabilities in hepatology and 
MASLD22–32,60,61. Chang et al. demonstrated the utility of RF using simple clinical and biochemical markers 
for prediction of MASLD fibrosis and fibrotic MASH in a multicentre population of 1370 biopsy-proven 
MASLD patients60. In this study, RF had greater AUC compared to logistic regression, artificial neural network 
techniques, and other standard non-invasive techniques. Our study, however, represents the first to demonstrate 
the role of ML for the prediction of adverse liver-related outcomes in MASLD, as well as the first to assess the 
role of B-mode US for this purpose.

Our study does have several strengths. We included a large population of over 450 patients with biopsy-
proven MASLD from two tertiary Canadian centers. This is one of the first studies to assess readily available 
US-based variables for prediction of liver-related outcomes in MASLD. Our study also used novel ML based 
tools for creation of predictive models. ML algorithms allow for inclusion and assessment of multiple predictive 
variables simultaneously. RF in particular are known as non-parametric models in that they do not assume 
any particular distribution or prior relationship (e.g. linearity) on the variables enabling the discovery of more 
nuanced relationships than support vector machines or linear classifiers. ML models permit direct selection of 
allowable predictors, without subjective preselection, aiding to minimize bias26.

Our study does have limitations. Data were collected retrospectively to maximize the number of identified 
outcomes. Outcome studies of MASLD patients often require long follow-up periods to obtain enough 
outcomes, due to the natural history of the disease, long asymptomatic period, and low rates of outcomes 
amongst patients without advanced fibrosis2. Biopsies were performed ‘for cause’ and were not per protocol. US 
were performed at a tertiary centre and read by radiologists with expertise in hepatobiliary imaging, potentially 
limiting extrapolation to US reported in the community. Mortality may be incompletely captured due to inability 
to link to a local death register. There were relatively few outcomes over a median of 38 months, and we were 
unable to perform time-to-event analysis to interrogate several covariates of interest. As such, we were not able 
to develop a time-dependent prognostic model for clinical use. Our study aimed to capture the full range of 
the disease progression in the context of real-world clinical data, where outcomes can vary considerably over 
time. Despite the absence of fixed time windows, the observed time intervals in our study does provide valuable 
insight into the progression of liver-related events in this cohort. The time from biopsy-to-event was used for 
analysis, and even though we did not define a specific pre-determined time window for the outcomes, we believe 
this approach is more reflective of the real-world progression of MASLD. The minimum follow-up duration in 
our study was 2 months, and some patients may have been right-censored as they did not experience an event 
within that period. However, the RF algorithm, through repeated randomized cross-validation (as used in our 
study), can naturally accommodate censored data without requiring exclusion of these patients based on their 
follow-up duration. The VCTE was not included in this study as many patients did not have available LSM 
performed within 6 months of liver biopsy. Our study does have a high rate of F3-4 which limits application of 
results to lower prevalence cohorts, and we did not further assess sequential NIT or other proprietary NIT for 
liver-related outcomes.

Although ML algorithms used established cross-validation methods, it will be important to validate these 
results in external cohorts, including those with lower prevalence of F3-4, with a goal of determining a simple 
clinical algorithm based on top feature importance variables to predict adverse liver-related outcomes in 
MASLD patients. Identification of predictive variables for adverse liver-related outcomes will help avoid need 
for liver biopsy and better risk stratify patients at time of referral to a specialist/hepatologist. Patients at high 
risk for decompensation and HCC can be identified early in their disease course, and appropriately referred to 
specialist care for close monitoring. Unfortunately the number of clinical outcomes in our retrospective study 
was relatively small (n = 29 liver-related outcomes). We selected binary outcomes, as time-to-event modeling 
typically requires an order of magnitude higher number of events, and thus much larger datasets followed 
prospectively for several years, in order to observe the number of outcomes required to effectively train ML 
models. Use of ML-techniques to predict outcomes in a time-dependent manner, as opposed to binary risk 
prediction, along with incorporating time-varying covariates, and nested k-fold cross-validation to further 
enhance the robustness of the model evaluation process, will be important for developing MASLD clinical risk 
predictors in the future62. Increased availability of VCTE and other US-based elastography as a point-of-care 
test will enable development of models using this variable for prediction of outcomes14,17,63. MRE, alone or 
in combination with NIT, has also been shown to accurately predict adverse liver-related outcomes, including 
decompensation and death in MASLD patients63–65. Perhaps future inclusion of MRE in predictive models may 
improve their accuracy for prediction of liver-related outcomes and further help to identify high-risk patients, 
but cost and access will remain a limitation.

In conclusion, ML algorithms based on a combination of simple NIT, clinical, and standard B-mode US-
based variables accurately predicted adverse liver-related outcomes and hepatic decompensation in this tertiary 
center cohort of patients with biopsy-proven MASLD. FIB-4 and AST:ALT ratio were the highest ranked NIT 
based on feature-importance, while age was the most important clinical variable. US-based parameters were not 
substantial predictors of clinical outcomes in this study. External validation of these results will be important in 
MASLD cohorts with lower prevalence of F3-4.

Data availability
There are no sponsors that played a role in the study design, data collection or analysis, interpretation of data, in 
the writing of the report, or in the decision to submit the manuscript for publication. All data, analytic methods 
and study materials will be made available to other researchers upon request (contact corresponding author 
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Received: 12 January 2024; Accepted: 26 June 2025

Scientific Reports |        (2025) 15:24579 12| https://doi.org/10.1038/s41598-025-09288-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


References
	 1.	 Younossi, Z. et al. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. 

Hepatol. 15(1), 11–20. https://doi.org/10.1038/nrgastro.2017.109 (2018).
	 2.	 Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American 

Association for the Study of Liver Diseases. Hepatology 67(1), 328–357. https://doi.org/10.1002/hep.29367 (2018).
	 3.	 Paik, J. M., Golabi, P., Younossi, Y., Mishra, A. & Younossi, Z. M. Changes in the global burden of chronic liver diseases from 2012 

to 2017: The growing impact of NAFLD. Hepatology 72(5), 1605–1616. https://doi.org/10.1002/hep.31173 (2020).
	 4.	 Ekstedt, M. et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. 

Hepatology 61(5), 1547–1554. https://doi.org/10.1002/hep.27368 (2015).
	 5.	 Sanyal, A. J. et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N. Engl. J. Med. 385(17), 1559–1569. 

https://doi.org/10.1056/nejmoa2029349 (2021).
	 6.	 Taylor, R. S. et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: A systematic 

review and meta-analysis. Gastroenterology 158(6), 1611-1625.e12. https://doi.org/10.1053/j.gastro.2020.01.043 (2020).
	 7.	 Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic 

fatty liver disease. Gastroenterology 149(2), 389-397.e10. https://doi.org/10.1053/j.gastro.2015.04.043 (2015).
	 8.	 Hagström, H. et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-

proven NAFLD. J. Hepatol. 67(6), 1265–1273. https://doi.org/10.1016/j.jhep.2017.07.027 (2017).
	 9.	 Bedossa, P. & Patel, K. Biopsy and Noninvasive methods to assess progression of nonalcoholic fatty liver disease. Gastroenterology 

150(8), 1811-1822.e4. https://doi.org/10.1053/j.gastro.2016.03.008 (2016).
	10.	 Estes, C., Razavi, H., Loomba, R., Younossi, Z. & Sanyal, A. J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates 

an exponential increase in burden of disease. Hepatology 67(1), 123–133. https://doi.org/10.1002/hep.29466 (2018).
	11.	 Swain, M. G. et al. Burden of nonalcoholic fatty liver disease in Canada, 2019–2030: A modelling study. CMAJ Open 8(2), E429–

E436. https://doi.org/10.9778/cmajo.20190212 (2020).
	12.	 Berzigotti, A. et al. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and 

prognosis—2021 update. J. Hepatol. 75(3), 659–689. https://doi.org/10.1016/j.jhep.2021.05.025 (2021).
	13.	 Liu, C. H. et al. Simple non-invasive scoring systems and histologic scores in predicting mortality in NAFLD patients. A systematic 

review and meta-analysis. J. Gastroenterol. Hepatol. https://doi.org/10.1111/jgh.15431 (2021).
	14.	 Grat, K., Grat, M. & Rowiński, O. Usefulness of different imaging modalities in evaluation of patients with non-alcoholic fatty liver 

disease. Biomedicines 8(9), 298. https://doi.org/10.3390/biomedicines8090298 (2020).
	15.	 Petzold, G. et al. Diagnostic accuracy of B-Mode ultrasound and Hepatorenal Index for graduation of hepatic steatosis in patients 

with chronic liver disease. PLoS ONE 15(5), 1–13. https://doi.org/10.1371/journal.pone.0231044 (2020).
	16.	 Hernaez, R. et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: A meta-analysis. Hepatology 

54(3), 1082–1090. https://doi.org/10.1002/hep.24452 (2011).
	17.	 Park, C. C. et al. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement 

of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology 152(3), 598-607.e2. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​
.​1​0​5​3​/​j​.​g​a​s​t​r​o​.​2​0​1​6​.​1​0​.​0​2​6​​​​ (2017).

	18.	 Sharma, S., Khalili, K. & Nguyen, G. C. Non-invasive diagnosis of advanced fibrosis and cirrhosis. World J. Gastroenterol. 20(45), 
16820–16830. https://doi.org/10.3748/wjg.v20.i45.16820 (2014).

	19.	 Maruyama, H. & Yokosuka, O. Ultrasonography for noninvasive assessment of portal hypertension. Gut Liver 11(4), 464–473. 
https://doi.org/10.5009/gnl16078 (2017).

	20.	 Kelly, E. M. M. et al. An assessment of the clinical accuracy of ultrasound in diagnosing cirrhosis in the absence of portal 
hypertension. Gastroenterol. Hepatol. (N Y). 14(6), 367–373 (2018).

	21.	 Moini, M. et al. Combination of FIB-4 with ultrasound surface nodularity or elastography as predictors of histologic advanced liver 
fibrosis in chronic liver disease. Sci. Rep. 11(1), 19275. https://doi.org/10.1038/s41598-021-98776-1 (2021).

	22.	 Ahn, J. C., Connell, A., Simonetto, D. A., Hughes, C. & Shah, V. H. The application of artificial intelligence for the diagnosis and 
treatment of liver diseases. Hepatology 73, 2546. https://doi.org/10.1002/hep.31603 (2020).

	23.	 Konerman, M. A., Beste, L. A., Van, T et al. ML_CHC_PLoS_2019.pdf. PLoS One. 14 (1), 1–14. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​2​8​1​/​z​e​n​o​d​o​.​1​
4​9​0​2​4​2​.​F​u​n​d​i​n​g​​​​ (2019).

	24.	 Patel, K. et al. Multiplex protein analysis to determine fibrosis stage and progression in patients with chronic hepatitis C. Clin. 
Gastroenterol. Hepatol. 12(12), 2113-2120.e3. https://doi.org/10.1016/j.cgh.2014.04.037 (2014).

	25.	 Canbay, A. et al. Non-invasive assessment of NAFLD as systemic disease—A machine learning perspective. PLoS ONE 14(3), 1–15. 
https://doi.org/10.1371/journal.pone.0214436 (2019).

	26.	 Yip, T. C. F. et al. Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (NAFLD) in 
the general population. Aliment Pharmacol. Ther. 46(4), 447–456. https://doi.org/10.1111/apt.14172 (2017).

	27.	 Wu, C. C. et al. Prediction of fatty liver disease using machine learning algorithms. Comput. Methods Programs Biomed. 170, 
23–29. https://doi.org/10.1016/j.cmpb.2018.12.032 (2019).

	28.	 Perakakis, N. et al. Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised 
learning: A proof of concept study. Metabolism 101, 154005. https://doi.org/10.1016/j.metabol.2019.154005 (2019).

	29.	 Lockhart, M. E. & Smith, A. D. Fatty liver disease: Artificial intelligence takes on the challenge. Radiology 295(2), 351–352. ​h​t​t​p​s​:​/​
/​d​o​i​.​o​r​g​/​1​0​.​1​1​4​8​/​r​a​d​i​o​l​.​2​0​2​0​2​0​0​0​5​8​​​​ (2020).

	30.	 Han, A. et al. Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat with radiofrequency 
ultrasound data using one-dimensional convolutional neural networks. Radiology 295(2), 342–350. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​4​8​/​r​a​d​i​o​l​
.​2​0​2​0​1​9​1​1​6​0​​​​ (2020).

	31.	 Taylor-Weiner, A. et al. A machine learning approach enables quantitative measurement of liver histology and disease monitoring 
in NASH. Hepatology 74(1), 133–147. https://doi.org/10.1002/hep.31750 (2021).

	32.	 Forlano, R. et al. High-throughput, machine learning-based quantification of steatosis, inflammation, ballooning, and fibrosis in 
biopsies from patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 18(9), 2081-2090.e9. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​
0​1​6​/​j​.​c​g​h​.​2​0​1​9​.​1​2​.​0​2​5​​​​ (2020).

	33.	 Angulo, P. et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 
45(4), 846–854. https://doi.org/10.1002/hep.21496 (2007).

	34.	 Sterling, R. K. et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV 
coinfection. Hepatology 43(6), 1317–1325. https://doi.org/10.1002/hep.21178 (2006).

	35.	 Harrison, S. A., Oliver, D., Arnold, H. L., Gogia, S. & Neuschwander-Tetri, B. A. Development and validation of a simple NAFLD 
clinical scoring system for identifying patients without advanced disease. Gut 57(10), 1441–1447. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​3​6​/​g​u​t​.​2​0​0​
7​.​1​4​6​0​1​9​​​​ (2008).

	36.	 Wai, C. T. et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. 
Hepatology 38(2), 518–526. https://doi.org/10.1053/jhep.2003.50346 (2003).

	37.	 Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6), 
1313–1321. https://doi.org/10.1002/hep.20701 (2005).

Scientific Reports |        (2025) 15:24579 13| https://doi.org/10.1038/s41598-025-09288-1

www.nature.com/scientificreports/

https://doi.org/10.1038/nrgastro.2017.109
https://doi.org/10.1002/hep.29367
https://doi.org/10.1002/hep.31173
https://doi.org/10.1002/hep.27368
https://doi.org/10.1056/nejmoa2029349
https://doi.org/10.1053/j.gastro.2020.01.043
https://doi.org/10.1053/j.gastro.2015.04.043
https://doi.org/10.1016/j.jhep.2017.07.027
https://doi.org/10.1053/j.gastro.2016.03.008
https://doi.org/10.1002/hep.29466
https://doi.org/10.9778/cmajo.20190212
https://doi.org/10.1016/j.jhep.2021.05.025
https://doi.org/10.1111/jgh.15431
https://doi.org/10.3390/biomedicines8090298
https://doi.org/10.1371/journal.pone.0231044
https://doi.org/10.1002/hep.24452
https://doi.org/10.1053/j.gastro.2016.10.026
https://doi.org/10.1053/j.gastro.2016.10.026
https://doi.org/10.3748/wjg.v20.i45.16820
https://doi.org/10.5009/gnl16078
https://doi.org/10.1038/s41598-021-98776-1
https://doi.org/10.1002/hep.31603
https://doi.org/10.5281/zenodo.1490242.Funding
https://doi.org/10.5281/zenodo.1490242.Funding
https://doi.org/10.1016/j.cgh.2014.04.037
https://doi.org/10.1371/journal.pone.0214436
https://doi.org/10.1111/apt.14172
https://doi.org/10.1016/j.cmpb.2018.12.032
https://doi.org/10.1016/j.metabol.2019.154005
https://doi.org/10.1148/radiol.2020200058
https://doi.org/10.1148/radiol.2020200058
https://doi.org/10.1148/radiol.2020191160
https://doi.org/10.1148/radiol.2020191160
https://doi.org/10.1002/hep.31750
https://doi.org/10.1016/j.cgh.2019.12.025
https://doi.org/10.1016/j.cgh.2019.12.025
https://doi.org/10.1002/hep.21496
https://doi.org/10.1002/hep.21178
https://doi.org/10.1136/gut.2007.146019
https://doi.org/10.1136/gut.2007.146019
https://doi.org/10.1053/jhep.2003.50346
https://doi.org/10.1002/hep.20701
http://www.nature.com/scientificreports


	38.	 DeLong, E. R. & DeLong, D. M. C. P. D. Comparing the areas under two or more correlated receiver operating characteristic 
curves: A nonparametric approach. Biometrics 44, 837–845 (1988).

	39.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
	40.	 Lundberg, S. M. et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. 

Eng. 2(10), 749–760. https://doi.org/10.1038/s41551-018-0304-0 (2018).
	41.	 Angulo, P. et al. Simple noninvasive systems predict long-term outcomes in patients with nonalcoholic fatty liver disease. 

Gastroenterology 145(4), 782–789. https://doi.org/10.1016/j.earlhumdev.2006.05.022 (2013).
	42.	 Hagström, H. et al. Accuracy of noninvasive scoring systems in assessing risk of death and liver-related endpoints in patients 

with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 17(6), 1148-1156.e4. https://doi.org/10.1016/j.cgh.2018.11.030 
(2019).

	43.	 Treeprasertsuk, S., Björnsson, E., Enders, F., Suwanwalaikorn, S. & Lindor, K. D. NAFLD fibrosis score: A prognostic predictor for 
mortality and liver complications among NAFLD patients. World J. Gastroenterol. 19(8), 1219–1229. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​7​4​8​/​w​j​g​.​
v​1​9​.​i​8​.​1​2​1​9​​​​ (2013).

	44.	 Sebastiani, G. et al. Prognostic value of non-invasive fibrosis and steatosis tools, hepatic venous pressure gradient (HVPG) and 
histology in nonalcoholic steatohepatitis. PLoS ONE 10(6), 1–15. https://doi.org/10.1371/journal.pone.0128774 (2015).

	45.	 Le, M. H. et al. Prevalence of non-Alcoholic fatty liver disease and risk factors for advanced fibrosis and mortality in the United 
States. PLoS ONE 12(3), 1–13. https://doi.org/10.1371/journal.pone.0173499 (2017).

	46.	 Unalp-Arida, A. & Ruhl, C. E. Liver fibrosis scores predict liver disease mortality in the United States population. Hepatology 66(1), 
84–95. https://doi.org/10.1016/j.physbeh.2017.03.040 (2017).

	47.	 Kim, D., Kim, W. R., Kim, H. J. & Therneau, T. M. Association between non-invasive fibrosis markers and mortality among adults 
with non-alcoholic fatty liver disease in the United States. Hepatology 57(4), 1357–1365. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​2​/​h​e​p​.​2​6​1​5​6​.​A​s​s​o​c​
i​a​t​i​o​n​​​​ (2013).

	48.	 Xun, Y. H. et al. Non-alcoholic fatty liver disease (NAFLD) fibrosis score predicts 6.6-year overall mortality of Chinese patients 
with NAFLD. Clin. Exp. Pharmacol. Physiol. 41(9), 643–649. https://doi.org/10.1111/1440-1681.12260 (2014).

	49.	 Jaruvongvanich, V., Wijarnpreecha, K. & Ungprasert, P. The utility of NAFLD fibrosis score for prediction of mortality among 
patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis of cohort study. Clin. Res. Hepatol. 
Gastroenterol. 41(6), 629–634. https://doi.org/10.1016/j.clinre.2017.03.010 (2017).

	50.	 Lee, J. et al. Prognostic accuracy of FIB-4, NAFLD fibrosis score and APRI for NAFLD-related events: A systematic review. Liver 
Int. 41(2), 261–270. https://doi.org/10.1111/liv.14669 (2021).

	51.	 Younossi, Z. M. et al. The Association of histologic and noninvasive tests with adverse clinical and patient-reported outcomes in 
patients with advanced fibrosis due to nonalcoholic steatohepatitis. Gastroenterology 160(5), 1608-1619.e13. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​
5​3​/​j​.​g​a​s​t​r​o​.​2​0​2​0​.​1​2​.​0​0​3​​​​ (2021).

	52.	 Salomone, F., Micek, A. & Godos, J. Simple scores of fibrosis and mortality in patients with NAFLD: A systematic review with 
meta-analysis. J. Clin. Med. 7(8), 219. https://doi.org/10.3390/jcm7080219 (2018).

	53.	 Paik, J., Younossi, E., Keo, W., Allawi, H., Henry, L. Y. Z. High risk fibrosis 4-score is predictive of all-cause, cardiovascular and 
liver-related mortality among adults non-alcoholic fatty liver disease (NAFLD) in the United States (U.S.). Abstract. AASLD The 
Liver Meeting. (2021).

	54.	 Boursier, J. et al. Non-invasive tests accurately stratify patients with NAFLD based on their risk of liver-related events. J. Hepatol. 
76(5), 1013–1020. https://doi.org/10.1016/j.jhep.2021.12.031 (2022).

	55.	 Shili-Masmoudi, S. et al. Liver stiffness measurement predicts long-term survival and complications in non-alcoholic fatty liver 
disease. Liver Int. 40(3), 581–589. https://doi.org/10.1111/liv.14301 (2020).

	56.	 Kim, B. et al. A liver stiffness measurementbased, noninvasive prediction model for high-risk esophageal varices in B-viral liver 
cirrhosis. Am. J. Gastroenterol. 105, 1382–1390 (2010).

	57.	 Kim, B. et al. Risk assessment of esophageal variceal bleeding in B-viral liver cirrhosis by a liver stiffness measurement-based 
model. Am. J. Gastroenterol. 106(9), 1654–1662 (2011).

	58.	 Kim, B. K. et al. Risk assessment of development of hepatic decompensation in histologically proven hepatitis B viral cirrhosis 
using liver stiffness measurement. Digestion 85(3), 219–227. https://doi.org/10.1159/000335430 (2012).

	59.	 Berzigotti, A. et al. Elastography, spleen size, and platelet count identify portal hypertension in patients with compensated cirrhosis. 
Gastroenterology 144(1), 102-111.e1. https://doi.org/10.1053/j.gastro.2012.10.001 (2013).

	60.	 Chang, D. et al. Machine learning models are superior to noninvasive tests in identifying clinically significant stages of NAFLD and 
NAFLD-related cirrhosis. Hepatology https://doi.org/10.1002/hep.32655 (2022).

	61.	 Lee, J. et al. Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and 
validation study. Hepatology 78(1), 258–271. https://doi.org/10.1097/HEP.0000000000000364 (2023).

	62.	 Cygu, S., Seow, H., Dushoff, J. & Bolker, B. M. Comparing machine learning approaches to incorporate time-varying covariates in 
predicting cancer survival time. Sci. Rep. 13(1), 1370 (2023).

	63.	 Gidener, T. et al. Liver stiffness by magnetic resonance elastography predicts future cirrhosis, decompensation, and death in 
NAFLD. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2020.09.044 (2020).

	64.	 Han, M. A. T. et al. MR elastography-based liver fibrosis correlates with liver events in nonalcoholic fatty liver patients: A 
multicenter study. Liver Int. 40(9), 2242–2251. https://doi.org/10.1111/liv.14593 (2020).

	65.	 Tamaki, N. et al. MRE plus FIB‐4 (MEFIB) versus FAST in detection of candidates for pharmacological treatment of NASH‐related 
fibrosis. Hepatology https://doi.org/10.1002/hep.32145 (2021).

Author contributions
HMK contributed to study concept and design, performed data collection, statistical analysis, and contributed 
to writing and editing the manuscript; CM contributed to study concept and design, performed the machine 
learning analysis and contributed to writing of the manuscript; MS performed data collection for the McGill da-
taset; MF performed data collection and review of all ultrasound data for the Toronto cohort; CB performed data 
collection; OA served as the lead pathologist reviewing liver biopsies from the Toronto cohort, GS contributed 
to study concept and design, served as the lead investigator for the McGill cohort, and contributed to the writing 
and editing of the manuscript; KJ contributed to study concept and design, served as the radiology lead for the 
Toronto cohort, and contributed to the writing and editing of the manuscript; KP contributed to study concept 
and design, served as the lead investigator for the study and contributed to the statistical analysis, writing and 
editing of the manuscript.

Funding
This study was supported by a research grant for gastroenterology residents/fellows, provided by the Univer-
sity of Toronto. GS is supported by a Senior Salary Award from Fonds de Recherche du Quebec – Sante (FRQS) 
(#296306).

Scientific Reports |        (2025) 15:24579 14| https://doi.org/10.1038/s41598-025-09288-1

www.nature.com/scientificreports/

https://doi.org/10.1038/s41551-018-0304-0
https://doi.org/10.1016/j.earlhumdev.2006.05.022
https://doi.org/10.1016/j.cgh.2018.11.030
https://doi.org/10.3748/wjg.v19.i8.1219
https://doi.org/10.3748/wjg.v19.i8.1219
https://doi.org/10.1371/journal.pone.0128774
https://doi.org/10.1371/journal.pone.0173499
https://doi.org/10.1016/j.physbeh.2017.03.040
https://doi.org/10.1002/hep.26156.Association
https://doi.org/10.1002/hep.26156.Association
https://doi.org/10.1111/1440-1681.12260
https://doi.org/10.1016/j.clinre.2017.03.010
https://doi.org/10.1111/liv.14669
https://doi.org/10.1053/j.gastro.2020.12.003
https://doi.org/10.1053/j.gastro.2020.12.003
https://doi.org/10.3390/jcm7080219
https://doi.org/10.1016/j.jhep.2021.12.031
https://doi.org/10.1111/liv.14301
https://doi.org/10.1159/000335430
https://doi.org/10.1053/j.gastro.2012.10.001
https://doi.org/10.1002/hep.32655
https://doi.org/10.1097/HEP.0000000000000364
https://doi.org/10.1016/j.cgh.2020.09.044
https://doi.org/10.1111/liv.14593
https://doi.org/10.1002/hep.32145
http://www.nature.com/scientificreports


Declarations
Competing interests
The authors declare no competing interests.

Ethical approval and consent statement
This study was performed according to the ‘Good Clinical Practice’ guidelines based upon principles outlined 
in the Declaration of Helsinki, as well as local and national guidelines regarding the conduct of clinical 
research studies. This study was approved by the Institutional Research Ethics Board at the University Health 
Network and McGill University Health Centre. All patient data used for this study was de-identified and 
anonymized; accordingly, patient consent was not required.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​0​9​2​8​8​-​1​​​​​.​​

Correspondence and requests for materials should be addressed to H.M.-K.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:24579 15| https://doi.org/10.1038/s41598-025-09288-1

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-09288-1
https://doi.org/10.1038/s41598-025-09288-1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Machine learning models using non-invasive tests & B-mode ultrasound to predict liver-related outcomes in metabolic dysfunction-associated steatotic liver disease
	﻿Methods
	﻿Study design and population
	﻿Clinical and imaging data acquisition
	﻿Non-invasive prediction of advanced (F3-4) fibrosis
	﻿Histologic analysis
	﻿Statistical analysis
	﻿ML analysis

	﻿Results
	﻿Baseline demographics
	﻿Ultrasound features
	﻿Liver-related outcomes
	﻿Machine learning models
	﻿Simple biochemical markers for prediction of liver-related outcomes
	﻿Biopsy F3-4 and clinical outcomes


	﻿Discussion
	﻿References


