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Global warming is increasingly exacerbating biodiversity loss. Populations
locally adapted to spatially heterogeneous environments may respond dif-
ferentially to climate change, but this intraspecific variation has only recently
been considered when modelling vulnerability under climate change. Here, we
incorporate intraspecific variation in genomic offset and ecological niche
modelling to estimate climate change-driven vulnerability in two bird species
in the Sino-Himalayan Mountains. We found that the cold-tolerant populations
show higher genomic offset but risk less challenge for niche suitability decline
under future climate than the warm-tolerant populations. Based on a genome-
niche index estimated by combining genomic offset and niche suitability
change, we identified the populations with the least genome-niche interrup-
tion as potential donors for evolutionary rescue, i.e., the populations tolerant
to climate change. We evaluated potential rescue routes via a landscape
genetic analysis. Overall, we demonstrate that the integration of genomic
offset, niche suitability modelling, and landscape connectivity can improve
climate change-driven vulnerability assessments and facilitate effective con-
servation management.

" Check for updates

Anthropogenic climate change is one of the primary drivers of envir-
onmental change and global biodiversity loss"?. Rapid climate changes

the genomic variants of a species vary along current environmental
gradients and how much genetic change has been required to keep up

can lead to shifts in species ranges, population decline and even
extinction if the changes exceed the physiological tolerance of
organisms®*, As these effects become increasingly profound in light of
global warming, how organisms can respond to environmental chan-
ges is becoming a focus of basic research®®. Modelling changes in the
distribution range, suitable climatic conditions and vegetation types of
species under different climate scenarios has provided considerable
insights into the impacts of climate change on biodiversity (e.g. refs.
6-10). However, as these models rely solely on abiotic and biotic
environmental changes, ecologic genomics, which investigates how

with climate change-driven environmental changes, has only recently
been integrated into modelling species responses to climate
change" ™.

These ecological genomic studies have shown different genotype-
climate associations between populations and suggested that local
populations may respond differentially to climate change" ™. Never-
theless, intraspecific variation has rarely been incorporated into eco-
logical niche models that often assume a uniform climate response
between populations™*°, There is an urgent need to incorporate
intraspecific genomic variation in modelling habitat suitability in the
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context of climate change, as such information is necessary for
understanding fine-scale estimates of climate change-driven vulner-
ability (e.g. ref. 17).

Mountainous areas harbour exceptional biodiversity and ende-
mism but are highly vulnerable to climate change'®. This is because the
complex topography within a rather small geographical area leads to
dramatic ecological stratification in mountain regions. Species are
often confined to spatially heterogeneous environments and locally
adapted to diversified climate conditions®?°. These population-
specific adaptations likely drive different responses under climate
change because the populations likely track their own optimal envir-
onmental conditions®. Despite having high potential, this intraspecific
variation has not been considered in vulnerability estimates driven by
climate change in mountainous species. Herein, we integrate ecologi-
cal genomics and niche modelling to investigate the population-
specific responses to future climate change in two mountainous birds
in the Sino-Himalayan Mountains. Together with the mountains of
southwestern China (hereafter the Southwest Mountains) and the East
Himalayan hotspots?, these areas harbour unique temperate biodi-
versity of high elevation but are now under serious threat from the
rapidly changing climate?.

Our focal species, the Green-backed tit (Parus monticolus) and
Elliot’s laughingthrush (Trochalopteron elliotii), are two mountainous
birds that are mainly found in the Sino-Himalayan Mountains. The two
species are distributed across different elevation ranges; P. monticolus
is a mid-elevational bird commonly found between 1500 and 2500 m
above sea level (a.s.l.), whereas T. elliotii lives at higher elevations
between 2000 and 4500 m a.s.l.%. Previous phylogeographic studies
have revealed that these birds are often restricted to ecologically and
topographically heterogeneous areas, suggesting that they have
adapted locally to disparate ecological zones* . As such, these spe-
cies offer an excellent study system to examine the intraspecific var-
iation in genotype-climate associations and how this would influence
climate change-driven vulnerability.

Here, we combine ecological genomics and niche modelling to
evaluate the population-specific responses of the two species to future
climate change. We consider both the genomic offset (i.e., a measure
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Fig. 1| A framework integrating ecological genomics, niche modelling and
landscape genetic analysis to evaluate climate change-driven vulnerability.

A schematic representation of climate change-driven vulnerability modelling. We
combine ecological genomics and niche modelling to evaluate the population-
specific responses of the two species to future climate change. We consider both
the genomic offset and niche suitability change for potential evolutionary rescue.
Only populations with minor genome-niche interruption can be regarded as a
desired store of species’ survival for climate change (i.e., being a donor). A land-
scape genetic approach is then used to evaluate potential rescue costs.

of the mismatch in genotype-climate association between current and
potential future climates™) and niche suitability change (i.e., a measure
of the difference in niche suitability between current and future eco-
logical niches) for potential evolutionary rescue; that is, only popula-
tions with minor genome-niche interruption can serve as a desired
store of species’ survival for climate change (i.e., being a donor). We
then use a landscape genetic approach to evaluate potential rescue
costs (a framework is demonstrated in Fig. 1). Overall, as genomic
offset and niche suitability change show different population-specific
vulnerability estimates under future climate change, we emphasise the
importance and strength of combining ecological genomics, niche
modelling and landscape connectivity to guide effective mitigation
efforts on increasingly threatened biodiversity.

Results

Species distribution

The distribution ranges of T. elliotii and P. monticolus cover the Sino-
Himalayan Mountains and the mid-elevational mountains in Central
China (Fig. 2a). Across their ranges, the average elevation declines
from west to east and from north to south. The temperature and
precipitation decrease from southeast to northwest and from south to
north. The current distributions of T. elliotii and P. monticolus partially
overlap but differ in certain ecological zones and elevation ranges
(Fig. 2b). They both inhabit in the southwest mountainous zone, the
western mountainous plateau zone, and parts of the Loess Plateau
zone and the east meadow zone. However, T. elliotii also occurs in the
southern Tibetan zone, whereas P. monticolus also lives in the eastern
Himalayan zone. Given the considerable environmental and climatic
variation across their distribution ranges, the two species provide an
excellent opportunity to study intraspecific responses to environ-
mental change following future climate change.

De novo genome assembly and annotation of T. elliotii. We gener-
ated a reference genome for T. elliotii to facilitate mapping of the
resequencing data. In total, 157 gigabases (Gb) data were sequenced
for a T. elliotii individual. After cleaning and quality control of the raw
data, all qualified data were assembled into a genome of 1.12 Gb with an
N50 contig length of 95 Kb and N50 scaffold length of 2.702 Mb. Using
a homologue-based approach, we annotated 17,585 protein-coding
genes. Using Benchmarking Universal Single-Copy Orthologs (BUSCO,
aves_odb9%) as the reference gene set, we estimated that the assembly
contains 90% complete single-copy BUSCOs, 2% complete duplicated
BUSCOs, and 4.5% fragmented BUSCOs. We used this genome for the
subsequent ecological genomic analyses.

Intraspecific variation in genotype-climate association. We inte-
grated population genomics and climatic data to identify climate-
associated genomic variation. We generated genome-wide resequen-
cing data from 55 and 58 individuals across the distribution ranges of T.
elliotii and P. monticolus, respectively (Supplementary Data 1). It is
noteworthy that the strategy to obtain deep-sequenced whole-genome
datasets (at average coverage of 19.14x and 15.48x for T. elliotii and P.
monticolus, respectively, Supplementary Data 2) allowed us to capture
maximal genomic variation, in contrast to most previous studies that
are based on reduced-representation genomic datasets (see ref. 13).
Using a de novo genome of T. elliotii generated in this study and an
assembly of the great tit (Parus major) genome?, we identified 10.3 and
3.9 million single-nucleotide polymorphisms (SNPs) in T. elliotii and P.
monticolus, respectively.

We used gradientForest’’, a machine-learning regression tree-
based approach, to first identify the climatic variables that are most
closely associated with the genetic variation in the two species and
then transform multidimensional climatic variables into multi-
dimensional genetic space (i.e., turnover in allele frequencies)". We
found that climatic variables related to seasonal changes in
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Fig. 2 | Sino-Himalayan Mountains and distribution ranges of the two moun-
tainous species studied. a The distribution ranges of P. monticolus and T. elliotii
cover the Sino-Himalayan Mountains and mid-elevational mountains in Central
China. The southern Tibetan zone (STZ) is in the southeastern part of the Qinghai-
Tibetan Plateau, which has an average elevation of 4500 m a.s.l. This zone is
dominated by shrubland (i). The southwest mountainous zone (SMZ) has a vertical
climatic zonation along an elevation gradient, ranging from the temperate con-
iferous forest (i), mixed forests (iii) and subtropical broadleaf forest (iv). The
eastern Himalayan zone (EHZ) is on the southern margin of the Qinghai-Tibetan
Plateau and encompasses a broad range of ecological habitats varying from grassy
meadows to a dense humid evergreen forest (i-iii). The western mountainous

plateau zone (WMPZ) is on the east side of the Sino-Himalayan Mountains and is
characterised by temperate broadleaf forests (iii). b Left, the distribution ranges of
P. monticolus (yellow shade) and T. elliotii (blue shade) partially overlap in the
southwest mountainous zone and western mountainous plateau zone, as well as in
parts of the Loess Plateau zone and east meadow zone. In the non-overlapping
parts of their distributions, T. elliotii occurs in the southern Tibetan zone, and P.
monticolus lives in the eastern Himalayan zone. The yellow and blue dots show the
sampling localities of P. monticolus and T. elliotii used in the genomic analysis.
Right, upper, T. elliotii; middle, P. monticulus; bottom, distribution ranges of the T.
elliotii and P. monticulus are shown by the blue and yellow outlines, respectively,
while the areas where they overlap are shown by the black outline.

temperature and precipitation were strongly associated with the
genomic variants in both species. Of the 19 climatic variables tested
(Supplementary Table 1), the top five uncorrelated variables iden-
tified were BIO3 (isothermality, i.e., mean diurnal range divided by
the temperature annual range), BIO18 (precipitation of the warmest
quarter), BIO9 (mean temperature of the driest quarter), BIO19
(precipitation of the coldest quarter) and BIO5 (max temperature of
the warmest month) for P. monticolus, while the top five climatic

variables for T. elliotii were BIO2 (mean diurnal range, i.e., the mean
of the monthly differences between the maximum and minimum
temperatures), BIO10 (mean temperature of the warmest quarter),
BIO7 (temperature annual range), BIO19 and BIO4 (temperature
seasonality) (Fig. 3a, b and Supplementary Table 2).

Out of 50,000 randomly extracted SNPs, we identified 5446
and 7294 SNPs that were significantly associated with the top cli-
matic variables (R>> 0, see Methods) for T. elliotii and P. monticolus,
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Fig. 3 | GradientForest modelling genotype-climate associations and genomic
offsets to future climate conditions of the two mountainous species. a, b Left,
principal component analyses of gradientForest transformed climatic variables for
T. elliotii (a) and P. monticolus (b). Arrows show the loadings of the top-ranked
uncorrelated climatic variables. The labelled vectors of the first two principal
components indicate the direction and magnitude of correlation. Right, gra-
dientForest transformed genotype-climate association across the distribution
ranges of T. elliotii (a) and P. monticolus (b). The difference in genetic composition
is mapped by assigning the three principal components to the RGB colour palette
according to the gradientForest manual, with the resulting colour corresponding to
the expected patterns of genetic composition. ¢, d Left, the gradientForest pre-
dicted genomic offsets under RCP8.5 2050 in T. elliotii (c) and P. monticolus (d).
Right, populations in the western parts of the distributions, i.e., the southern
Tibetan zone (STZ, T. elliotii, n =12,912 grids) and eastern Himalayan zone (EHZ,

U RN
) le\ ‘5\31/3&

P. monticolus, n=9224 grids), show greater genomic offsets than the populations
inhabiting the eastern (LPZ&EMZ, Loess Plateau zone and east meadow zone, T.
elliotii, n = 8694 grids, P. monticolus, n = 10,551 grids; WMPZ, western mountainous
plateau zone, T. elliotii, n = 6902 grids, P. monticolus, n = 26,979 grids) and southern
parts of the distribution ranges (SMZ, southwest mountainous zone, T. elliotii,
n=14,981 grids, P. monticolus, n= 20,275 grids). We tested genomic offsets among
these groups using the two-tailed Wilcoxon rank-sum test and FDR correction for
multiple comparisons. The box plots show the median (centre line) and 25th-75th
percentiles (box limits). The whiskers extend to the top/bottom to the maxima and
minima. Data beyond the end of the whiskers are considered outliers. White broken
lines demonstrate ecological zones. See Supplementary Fig. 1 for the predicted
genomic offsets under different emission scenarios and decades (RCP4.5 2050,
RCP8.5 2050, RCP4.5 2070 and RCP8.5 2070).

respectively. Using an aggregate community-level turnover func-
tion across these SNPs, we visualised the genotype-climate turnover
surface across the distribution ranges of the two species using the
first three principal components (PCs) of the gradientForest out-
puts. We found that the genotype-climate associations vary from

the western parts (i.e., the southern Tibetan zone and eastern
Himalayan zones) to the eastern (i.e., the western mountainous
plateau zone) and southern parts of the distribution ranges (i.e., the
southwest mountainous zone) (Fig. 3a, b). These results suggest
that the two species show intraspecific variation in their genotype-
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climate associations, which are likely subject to local adaptation to
heterogeneous climatic conditions.

Genomic offset to future climate change. Based on the genotype-
climate associations across the distribution ranges of the two spe-
cies, we predicted which part of their ranges might be most vulner-
able to future climate change. We used gradientForest” to calculate
genomic offset as the Euclidean distance between current and pro-
jected future genomic compositions. Genomic offset is thus a mea-
sure of how much genetic change is needed to adjust to the new
climate conditions, and the populations with the greatest genomic
offset are those that have to adjust the most. To account for varia-
bility between climate models, we predicted the genomic offset for
each species using four different climate models, MPI-ESM-LR*,
CCSM4*, MICRO-5* and CNRM-CM5-2* (Supplementary Table 3),
under the moderate scenario (representative concentration path-
way, RCP 4.5W/m? and the worst scenario (RCP 8.5W/m? of
greenhouse gas emission trajectories in 2050 and 5070, respectively.
Genomic offset estimates revealed similar but magnitude-dependent
spatial patterns under the four RCP emission scenarios considered at
the 2050 and 2070 horizons (Supplementary Fig. 1). These results
consistently showed that the populations in the western part (7.
elliotii in the southern Tibetan zone and P. monticolus in the eastern
Himalayan zone) exhibited greater genomic offset than the popula-
tions inhabiting the eastern (the Loess Plateau zone, eastern meadow
zone and western mountainous plateau zone) and the southern parts
of the distribution ranges (the southwest mountainous zone, two-
tailed Wilcoxon rank-sum test, false discovery rate (FDR)-adjusted
P<0.001, Fig. 3c, d). Altogether, these results suggest that intras-
pecific variation in genotype-climate associations of the two species
likely drives different genomic offsets in response to future climate
change.

Intraspecific variation in genotype-climate association drives dif-
ferent degrees of genomic offsets. To investigate how the intraspe-
cific variation in the genotype-climate association has driven the
different degrees of genomic offsets in response to climate change, we
identified genomic variants that are significantly associated with each
of the top climatic variables (as identified by the gradientForest ana-
lysis) using three complementary approaches: latent factor mixed
model (LFMM?**), redundancy analysis (RDA) and distance-based
redundancy analysis (dbRDA)*>?°. A total of 72 and 798 SNPs were
identified by all three methods for T. elliotii and P. monticolus,
respectively (Fig. 4a, b). These SNPs are widely distributed across the
genomes, with 25 and 204 SNPs located in the coding sequence and
promoter regions (5k upstream and downstream of genes) across 23
and 147 genes for T. elliotii and P. monticolus, respectively (Supple-
mentary Table 4). We then carried out functional enrichment analyses
and found that these genes are functionally enriched in catalytic and
metabolic processes (Supplementary Fig. 2), with some previously
documented as being important in climate adaptation. In particular,
CRBI, the only climate-associated gene identified in both T. elliotii and
P. monticolus, has also been identified in other cold-tolerant verte-
brates, i.e., the Adélie penguin (Pygoscelis adeliae)” and the Emperor
penguin (Aptenodytes forsteri)®®. The relationships between allele fre-
quency variation in the SNP of CRBI and the mean diurnal range (BIO2,
T. elliotii), as well as the isothermality (BIO3, P. monticolus), suggest a
potential role of this gene in adaptation to extreme temperatures
(Fig. 4¢, d). In addition, we also detected some genes that are related to
heat and cold tolerance, i.e., VPS53*, BRS3'° and FASN", as well as
adaptation to hypoxic conditions, i.e., MYH7*’, SLCI9A1* and
ARHGAP39*.

We then carried out population genetic structure analyses based
on these SNPs using Admixture v1.3* to define the climate-tolerant
groups. We found K=3 to have the smallest cross-validation error in

both species and thus to be the optimal number of clusters explaining
the variation among individuals (Supplementary Fig. 3). Based on the
proportion of the respective cluster within each individual (>0.6), we
classified 33% of T. elliotii individuals as tolerant to cold-dry conditions
(shrubland and coniferous forests in the southern Tibetan zone and
southwest mountainous zone), 15% as tolerant to warm-humid condi-
tions (subtropical broadleaf forests in the southwest mountainous
zone), and 16% to warm-dry conditions (temperate broadleaf forests in
the western mountainous plateau zone). In P. monticolus, 10% of the
individuals were classified as cold-dry tolerant (coniferous forests in an
eastern Himalayan zone), 40% of the individuals were classified as
warm-humid tolerant (subtropical broadleaf forests in the southwest
mountainous zone), and 48% of the individuals were classified as
warm-dry tolerant (temperate broadleaf forest in the western moun-
tainous plateau zone, Fig. 4e, f).

We then compared genomic offset values among the three groups
using outputs calculated from gradientForest analysis (i.e., R? positive
SNP dataset, see Methods). We found that the cold-dry tolerant groups
showed greater genomic offsets than the warm-humid and warm-dry
tolerant groups (two-tailed Wilcoxon rank-sum test, FDR-adjusted
P<0.001, Fig. 4g, h and Supplementary Fig. 4a). In addition, we
implemented a separate gradientForest analysis using the outlier SNPs
identified by the three genotype-climate association analyses (i.e.,
outlier SNP dataset), and the analyses yielded similar results (two-
tailed Wilcoxon rank-sum test, FDR-adjusted P<0.05, Fig. 3i, j and
Supplementary Fig. 4b). To further validate this, we also carried out a
parallel genomic offset analysis using generalised dissimilarity mod-
elling (GDM*®), a distance-based method (i.e., Fs7) that is less sensitive
to unequal sampling sizes, to estimate and compare genomic offsets
among the three groups. Our GDM analyses using two datasets (R?
positive SNP and outlier SNP datasets, see Methods) show similar
patterns to those of the gradientForest analyses (two-tailed Wilcoxon
rank-sum test, FDR-adjusted P<0.001, Supplementary Fig. 5), sug-
gesting that our genomic offset results are robust to different datasets
and methods.

Integrating intraspecific variation into ecological niche modelling.
We next investigated whether the predicted changes in niche suit-
ability caused by future climate conditions differed among the three
climate-tolerant groups. We carried out ecological niche modelling
using an ensemble modelling approach that combines the outputs of
different modelling algorithms, including maximum entropy, gen-
eralised boosted model, generalised additive model and multivariate
adaptive regression splines implemented in Biomod2*. We projected
niche suitability separately for the cold-dry, warm-humid and warm-
dry tolerant groups, respectively. All ecological niche models have
great discrimination ability (true skill statistics, TSS, 0.71-0.88; area
under the receiver operating characteristic curve, AUC, 0.9-0.96,
Supplementary Table 5).

Niche modelling inferred under the different future emission
scenarios and decades consistently showed that the three climate-
tolerant groups had different degrees of niche suitability change
(Fig. 5a, b and Supplementary Fig. 6). Using the current niche suit-
ability value as the benchmark, we calculated the change in the
niche suitability index between the current and future climate
(NSC =niche suitability index in the future climate —niche suit-
ability index in the current climate). A negative value indicates a
decrease, while a positive value shows an increase in niche suit-
ability under future climate conditions. We found that the NSC
decreased to a much smaller degree in those areas that harboured
cold-dry tolerant groups than in those areas that maintained the
warm-dry and warm-humid groups (two-tailed Wilcoxon rank-sum
test, FDR-adjusted P<0.001, Fig. 5a, b and Supplementary Fig. 6).
These results suggest that the areas suitable for warm-tolerant
individuals are more likely to decrease suitability under future
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genomic offsets among these groups using the two-tailed Wilcoxon rank-sum test
and FDR correction for multiple comparisons. g, h R? positive SNP datasets,

i, j outlier SNP datasets. Note that spatial scales of the Y axis (genomic offsets) for
the R? positive SNP datasets (g, h) differ from those for the outlier SNP datasets
(i, j). g-j The box plots show the median (centre line) and 25th-75th percentiles
(box limits). The whiskers extend from the top/bottom to the maxima and
minima. Data beyond the end of the whiskers are considered outliers. Two-tailed
Wilcoxon rank-sum test and FDR correction for multiple comparisons. Only the
predicted genomic offsets under RCP8.5 2050 are shown, while those under the
different emission scenarios and decades (i.e., RCP4.5 2050, RCP8.52050, RCP4.5
2070 and RCP8.5 2070) can be found in Supplementary Fig. 4.
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Fig. 5 | Niche suitability change predicted by ecological niche modelling and
evolutionary rescue routes identified by the landscape genetic analysis.

a, b Left, projection of niche suitability change between current and future climate
conditions under RCP8.5 2050 (niche suitability index predicted for future climate
minus niche suitability index for current climate). The reddish colours show areas
with increasing niche suitability (>0), and blue colours show areas with decreasing
niche suitability (<0). Right, the warm-humid (T. elliotii, n=7061 grids; P. mon-
ticolus, n =30,336 grids) and warm-dry tolerant groups (T. elliotii, n = 15,416 grids; P.
monticolus, n=42,929 grids) are under the severer challenge for niche suitability
decline than are the cold-dry tolerant groups (T. elliotii, n = 21,402 grids; P. mon-
ticolus, n = 6926 grids). We tested niche suitability change among these groups
using the two-tailed Wilcoxon rank-sum test and FDR correction for multiple
comparisons. The box plots show the median (centre line) and 25th-75th percen-
tiles (box limits). The whiskers extend to the top/bottom to the maxima and
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minima. a T. elliotii; b P. monticolus. c, d Projection of the genome-niche index
based on the combined estimates of genomic offset and niche suitability change
under RCP8.5 2050. The populations in the central areas of the Southwest Moun-
tains have the least genome-niche interruption by climate change, and can then
serve as the donor populations (large yellow dots) for evolutionary rescue. Black
arrows show potential routes for evolutionary rescue under climate change.

a-d Only the projections under RCP8.5 2050 are shown, and those under different
emission scenarios and decades (RCP4.5 2050, RCP8.5 2050, RCP4.5 2070 and
RCP8.5 2070) can be found in Supplementary Figs. 6, 7. e, f Landscape genetic
analysis predicted the density of dispersals between populations based on the
effect of niche suitability for T. elliotii (e) and niche suitability and elevation for P.
monticolus (f). c—f large yellow dots, donor populations; small purple dots, vul-
nerable populations.
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climate conditions than those areas where cold-dry tolerant indi-
viduals live.

Identify potential climate-tolerant populations for evolutionary
rescue. Strikingly, while the warm-humid and warm-dry tolerant
groups are likely to risk a decline in niche suitability, they are predicted
to need less genetic change to cope with future climate conditions.
Conversely, while the cold-dry tolerant group is likely to maintain most
of its current habitats, it needs to undergo a greater genetic change. To
better reflect the intraspecific variation in responses to climate change
in the two species, we combined the genomic offset and NSC to esti-
mate a genome-niche index as described in ref. 48 (see also Methods).
We considered only niches with increasing suitability (positive NSC
value) because these areas will remain hospitable for these species,
while other areas with decreasing niche suitability (negative NSC value)
will be challenged by habitat suitability decline. Under future climate
conditions, the populations in the central areas of the Southwest
Mountains, i.e., the junction between different ecological zones, are
predicted to experience minor interruptions of genomic offset-based
habitat suitability and will thus maintain their current status in the
distribution ranges (Fig. 5c, d and Supplementary Fig. 7). Therefore,
these populations can be considered potential donors for evolutionary
rescue under climate change.

Landscape connectivity establishes evolutionary rescue routes. To
explore how landscape features would affect the patterns of gene
flow between populations, i.e., the potential for setting up evolu-
tionary rescue routes, we implemented linear mixed-effect mod-
elling using maximum likelihood population effects (MLPE*’) to fit
five landscape features on the matrix of pairwise genetic distance
(Fst, see Methods). We found that landscape connectivity was
strongly related to a combination of habitat suitability and eleva-
tion for P. monticolus and habitat suitability for T. elliotii, supported
by Akaike weights (w;) and a linear mixed modelling approach
(Supplementary Table 6). We then extrapolated these relationships
to estimate migration possibilities from the donor populations to
the populations that are potentially vulnerable to climate change.
In both species, individuals from the donor populations could
disperse westward to the south Tibetan zone and eastern Hima-
layan zone, southward to the southwest mountainous zone,
northwards to the Loess Plateau zone and east meadow zone, and
eastward to the western mountainous plateau zone (Fig. Se, f).
Considering that the ecological niche modelling predicted a sub-
stantial decrease in the niche suitability in the southern, northern
and eastern parts of the distribution ranges, a plausible evolu-
tionary rescue would be a westward dispersal under the assump-
tion of a westward expansion of suitable niches even beyond the
current range (Supplementary Fig. 8). Consequently, the evolu-
tionary rescue of mountainous species depends not only on
genomic offset and niche suitability estimates but also on land-
scape connectivity of the populations.

Demographic model tests the migration possibility among groups.
To further explore the possibility of migration between the groups,
we compared three models of gene flow (one with continuous gene
flow, one with secondary gene flow and one with no gene flow,
Supplementary Fig. 9) between groups using Fastsimcoal v2.6®.
Our model tests and Akaike information criterion (AIC) comparison
supported a secondary gene flow (Supplementary Table 7). The
demographic parameters generated under the optimal model sug-
gest that migration between groups is likely to have occurred
between 11.5-17.5 thousand years ago in the two species (Supple-
mentary Table 8), consistent with a possibility that Pleistocene
glaciations have driven range shift and secondary contact between
previously isolated groups*?°. The gene flow, however,

likely occurs along the areas where the three groups meet, as the
mixed genotypes are mostly found in individuals from the central
areas of the Southwest Mountains (Supplementary Fig. 10). Taken
together, the migration estimates demonstrate that the central
areas of the Southwest Mountains provide potential corridors and
routes of connectivity for the three climate-tolerant groups.

Discussion

Understanding species’ responses to climate change plays a vital role
in developing effective biodiversity conservation plans®. Intraspecific
variation in the genotype-climate association has been documented
for many species (e.g. refs. 12, 13, 24-26) but has only recently been
considered in the vulnerability prediction to climate change™* By
considering intraspecific variation in climate-associated genotypes, we
show that the cold-tolerant populations have a greater genomic offset
but risk less niche suitability decline under future climate conditions
than warm-tolerant populations. By combining genomic offset and
niche suitability change, we consider the populations with minor
genome and niche interruptions to be the potential donor populations
for evolutionary rescue. We then used landscape genetic analysis to
identify potential rescue routes to mitigate the challenge of climate
change. Altogether, our study demonstrates a framework of incor-
porating ecologic genomics, niche modelling and landscape genetics
in predicting climate change-driven vulnerability and aiding con-
servation efforts.

The highly heterogeneous environments in mountainous areas
often drive intraspecific genetic divergence and local adaptation of
mountainous species to specific climatic conditions*~°. T. elliotii and
P. monticolus are among the most characteristic passerines of the Sino-
Himalayan Mountains. We found that the top climatic variables con-
tributing to genomic variation in the two species were related to sea-
sonal temperature and precipitation (Supplementary Table 2). The
amplitudes of climatic variables have long been considered to play an
important role in shaping the richness and biodiversity pattern of
mountainous birds'®?°. Our results demonstrate that climatic fluctua-
tion is also the definitive factor in shaping the genomic variation and
divergence of these mountainous birds, further supporting the role of
topological complexity and climatic heterogeneity in shaping moun-
tainous biodiversity".

By mapping genotype-climate associations across the distribution
ranges of the two birds, we identified that the populations in the cold-
dry areas showed distinctly different associations from those in the
warm-humid and warm-dry areas. Additionally, our cluster analyses of
SNPs that are significantly associated with the top climatic variables
separate the cold-dry, warm-humid and warm-dry tolerant individuals.
The three genetic groups are geographically congruent with the cur-
rently recognised ecological zones. For example, the cold-dry tolerant
group of T. elliotii inhabits the southern Tibetan zone, which has an
average elevation of 4500 m a.s.l. and is dominated by a plateau with a
cold-dry climate and typical alpine meadow and shrubland. The warm-
dry groups of T. elliotii and P. monticolus are mostly located in the
western mountainous plateau zone, which mostly comprises mid-
elevational mountains with a typical temperate climate. However, in
the spatially heterogeneous southwest mountainous zone, we found
that the populations of T. elliotii in the temperate coniferous forests in
the northern part and the tropical broadleaf forests in the southern
part are clustered into cold-dry and warm-humid tolerant groups,
respectively. The cold-dry tolerant populations showed greater geno-
mic offset values than the warm-humid tolerant populations (Supple-
mentary Fig. 11). Altogether, the intraspecific variation in genotype-
climate relationships is likely due to local adaptations to hetero-
geneous climatic conditions, which drive population-specific respon-
ses to future climate change.

Based on the intraspecific variation observed in the two species,
we predicted population-specific genomic offsets for future climate
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change. We found that the populations in the cold areas show higher
genomic offsets to future climate change than the populations in the
warm areas. When incorporating intraspecific variation in predictions
of niche suitability under future climate conditions, we found that the
niche suitability for the warm-tolerant populations will decrease to a
much greater degree than for the cold-tolerant populations. In addi-
tion, we observed an expansion of the potential niches for the cold-
tolerant populations but not for the warm-tolerant populations (Sup-
plementary Fig. 8). These results suggest that warm-tolerant popula-
tions, despite having relatively minor genomic offsets to climate
change, may still need to cope with habitat degradation under future
climate conditions.

The cold-tolerant populations are mostly found in the mountains
in the southwest mountainous zone and eastern Himalayan zone,
which are characterised by drastic elevational variation from mountain
tops to valleys. For example, a series of mountains, including Gongga
Mountain, reach above 7000 m a.s.l., while the Red River valley lies at
elevations below 300 m a.s.l.”. Considering that such a wide elevation
gradient allows up- and down-slope dispersal, it seems reasonable to
expect that cold-tolerant populations can still maintain their niche
suitability even through drastic climate fluctuations. However, the
warm-tolerant populations in the western mountainous plateau zone
and in the southern part of the southwest mountainous zone are
mostly found in the patchily distributed mid-elevational mountains.
The summits of these mountains are below 4000 m ass.l,, e.g. 3771 m
a.s.l. for the Qinlin Mountains (Mt. Taibai, see ref. 53) and 3105 m a.s.l.
for the Shenlongjia Mountains (Mt. Shennongding, see ref. 54). As the
species studied herein have almost reached their upper elevational
limits, there are few available niches allowing uphill migration®. Con-
sequently, these populations with decreasing niche suitability are
more likely to be at risk for habitat decline when the climate becomes
warmer.

When species are vulnerable to future climate change, their sur-
vival may depend on evolutionary rescue. The populations in the
central areas of the Sino-Himalayan Mountains not only have the least
genomic offset to climate changes but are also predicted to have only
minor niche suitability interruption throughout climate fluctuations.
Consequently, they can serve as potential donor populations for evo-
lutionary rescue. In fact, this part of the mountains has long been
considered to be 'glacial refugia’, where populations were maintained
throughout the Pleistocene glaciations despite the drastic climatic
fluctuations, while populations elsewhere experienced severe
bottlenecks™ 2.

Evolutionary rescue is also dependent on landscape con-
nectivity between populations. The central areas of the Southwest
Mountains are characterised by a series of parallel mountains, riv-
ers and valleys running in a south-north direction®**’, which pro-
vide corridors for the exchange of individuals living in different
ecological zones?**®, Indeed, our landscape connectivity analyses
show that dispersal possibilities are possible for southward, west-
ward, eastward and northward migration via the central areas of the
Southwest Mountains. However, as the southern, northern and
eastern parts of the distribution ranges are predicted to face a
substantial decrease in niche suitability, an evolutionary rescue is
possible via westward migration to the southern Tibetan zone (T.
elliotii) and the eastern Himalayan zone (P. monticolus), where
suitable niches will expand westward. Consequently, conservation
measures to preserve biodiversity from future climate change
should consider not only the species’ genomic offsets and niche
suitability but also the landscape connectivity and their ability to
disperse.

Species in the mountains often live in spatially heterogeneous
environments and are thus locally adapted to different climate con-
ditions. This intraspecific genetic variation is an important feature that
should be considered when estimating vulnerability to climate change.

By considering population-level genetic variation in mountainous
species in response to future climate change, we demonstrate that a
combination of genomic offset and niche suitability provides unique
insight into climate change-driven vulnerability. We highlight the
importance of integrating multiple factors, i.e., genomic offset, niche
suitability and landscape connectivity, in estimating climate change-
driven vulnerability.

In reality, the actual evolutionary responses of species to climate
change are more complex than those explained by the aforementioned
three factors. It requires understanding interactions between local
adaptation, phenotypic plasticity, evolutionary potential, effective
population size, dispersal ability, and interspecific interactions (i.e.,
refs. 15, 51, 59). Consequently, a combination of multiple predictors
will improve our understanding of climate change-driven species vul-
nerability. Further implementing experiments on the physiological
tolerance of species, i.e., common garden and transplant
experiments®, as well as a functional test of climate-sensitive genes*®,
will shed more light on how species respond to future climate change.

Methods

Study areas

The distribution ranges of T. elliotii and P. monticolus cover the Sino-
Himalayan Mountains (including the Southwest Mountains and East
Himalayas) and a chain of mid-elevational mountains in Central China
(Fig. 2a). The Southwest Mountains are located at the junction of the
Palaearctic and Oriental biogeographic realms?. This region comprises
a cluster of high mountains with a high range in elevation and het-
erogeneous climates. The northern part of the Southwest Mountains,
the southern Tibetan zone, is located in the southeastern part of the
Qinghai-Tibetan Plateau, which has an average elevation of 4500 m
a.s.l. (STZ in Fig. 2a). This zone is dominated by a cold-dry climate and
characterised by typical alpine meadow and shrubland. The southern
part, the southwest mountainous zone (SMZ in Fig. 2a), has a vertical
climatic zonation ranging from subtropical broadleaf forests and
temperate coniferous forests to alpine meadows?. On the southwest
side of the Southwest Mountains lies the East Himalayan biodiversity
hotspot, which is zoo-geographically attributed to the eastern Hima-
layan zone (EHZ in Fig. 2a). This region is on the southern margin of the
Qinghai-Tibetan Plateau and encompasses a broad range of ecological
habitats varying from grassy meadows to dense humid evergreen
forest. On the east side of the Southwest Mountains, a chain of mid-
elevational mountains spans eastward. These mountains and adjacent
lowlands belong to the western mountainous plateau zone (WMPZ in
Fig. 2a).

Across their distribution ranges, T. elliotii and P. monticulus are
commonly found between 1500 and 45,000 m a.s.l. Because distribu-
tion maps obtained from the International Union for Conservation of
Nature (IUCN, https://www.iucn.org/) include unsuitable habitats, i.e.,
areas below 1000 m a.s.l., we restricted our study to areas by inte-
grating distribution records and expert distribution maps based on
ecological niche modelling®. This restriction removed parts of unsui-
table habitats, i.e., a lowland Sichuan Basin with an average elevation of
500 m a.s.l. from our subsequent analyses.

De novo genome assembly and annotation of T. elliotii

We generated a 10X Genomics linked-read library for muscle froma 7.
elliotii individual collected from Shenlongjia Mountain, Hubei Pro-
vince, China (voucher number SNJO8157). Sequencing was carried out
on BGl-seq 500 platform with PE150. We cleaned the raw reads using
SOAPfilter v2.2 with the following steps; (1) removing reads with >10%
of N; (2) removing reads with >60% low-quality bases (Phred score
<10); (3) removing reads with undersize insert size; (4) removing PCR
duplicates. All cleaned reads were used to assemble the genome using
Supernova v2.0.1°* under the 'pseudohap’ mode and the intra-scaffold
gaps were filled using GapCloser v1.12%°, We measured genome
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completeness using BUSCO v3.0.2%. We applied the homologue-based
approach to annotate the protein-coding genes by using the protein
sequences of Gallus gallus and Taeniopygia guttata. The protein
sequences of these reference genes were aligned to T. elliotii genome
using TABASTN v2.2.26°* with an e-value cut off 1e™, and multiple
adjacent hits of the same query were connected by genBlastA v1.0.4%.
Homologous blocks with lengths larger than 30% of the query protein
length were retained. The connected hit region was later extended to
include its 2Kb flanking regions, on which gene structure was pre-
dicted by Genewise v2.4.1°°. We then used Muscle v3.8.31% to align the
annotated proteins with the reference proteins. Predicted proteins
with a length >30 amino acids and identity value >40% were retained.

Sample information for resequencing

We sampled 55 and 58 individuals from the distribution ranges of T.
elliotii and P. monticolus, respectively (Fig. 2b and Supplementary
Data 1). The tissues of these birds were stored in a —80 °C freezer
before transportation to the sequencing centre. The Zoological
Museum of Institute of Zoology has the authority for specimen col-
lecting and exemption of export/import of samples for scientific pur-
poses (No. 1999/84, provided by Article VII from CITES). Tissue
collecting procedures conform to the regulations of the Animal
Experimental and Medical Ethics Committee of the Institute of Zool-
ogy, Chinese Academy of Sciences.

Genomic data generation and processing

Genomic DNA was extracted from tissues and subsequently sequenced
on the Illumina sequencing platform (NovaSeq 6000) at Berry Geno-
mics Corporation (Beijing, China). DNA libraries were constructed
according to the manufacturer’s instructions and subsequently
sequenced in PE150. We conducted quality control to filter reads, (1)
>10% unidentified nucleotides (N); (2) >10 nt aligned to the adaptor
sequence, allowing <10% mismatches; (3) >50% bases having Phred
quality <5; and (4) PCR duplicates.

Qualified reads of P. monticolus and T. elliotii were aligned against
the great tit genome (GCA_001522545.3%) and the de novo genome of
T. elliotii generated in this study using BWA v0.7.17°®* We classified
variants using the HaplotypeCaller function from GATK v3.7.0°° and
Samtools v1.3.1° with default settings and then intersected two VCFs
for each species to obtain the final dataset. We further used VCFtools
v0.1.12b”" and BCFtools’® to remove indels and keep only biallelic SNPs
with the following filtering criteria: (1) minQ >30, (2) min-DP >7 and
max-DP <1000, (3) max-missing counts = 5, (4) SNPs at least 5 bp away
from INDEL regions.

Genomic offset modelling with gradientForest
We used gradientForest” to model compositional genetic turnover
(i.e., turnover in allele frequencies) using nonlinear functions of cli-
matic gradients. The turnover function transforms multidimensional
climatic variables to multidimensional genetic space while selecting
and weighting these variables so that they can best summarise geno-
mic variation"?’. We used only SNPs with a minor allele frequency
>0.05 because rare alleles tend to yield false positives. We collected
19 climatic variables at 2.5-min resolution from WorldClim’* (http://
www.worldclim.org). We randomly selected 50,000 SNPs because of
constraints in computational time. For each SNP, we used 500
regression trees to build a function for each of 19 climatic variables.
Only SNPs with R?> 0 (a measure of the response of individual SNPs to
the gradient of a given climatic variable) were considered to be ‘pre-
dictive’ loci and were further used in the aggregate turnover function,
accounting for the importance of climatic variables and the goodness
of fit for each SNP.

The gradientForest analysis provided a weighted R? value for each
of 19 climatic variables to assess its importance (Supplementary
Table 2). We selected the top variables by ranking their importance and

discarded those that were highly correlated with a variable with a
higher weighted R? value (Pearson’s r>0.7). We then used turnover
functions to examine changes in allele frequencies among the top
variables and to transform them into genetic importance values. To
visualise the resulting multidimensional genetic patterns in geo-
graphic and biological space, we used principal component analysis
(PCA) to reduce the transformed climatic variables into three PCs"%.

We used the gradientForest outputs calculated for the current
climate as the baselines to predict genomic variation under future
climate conditions. The Euclidean distance between the current and
predicted values is referred to as the genomic offset". To explore a
range of potential future climate conditions, we used four climate
models (CCSM4, MICRO-5, MPI-ESM-LR and CNRM-CM5-2) and four
emission scenarios (RCP4.5 and RPC 8.5 for 2050 and 2070 pro-
jections, Supplementary Table 3) for a total of sixteen future climate
conditions to predict genomic offset. To estimate the spatial
regions where the genotype-climate relationship will be most dis-
rupted under future climate, we transformed the climatic variables
from each of the 16 climate conditions into genetic importance
using the turnover functions as described above. For each grid, we
calculated the Euclidean distance between the current and future
genomic importance values™?’, which serves as a metric of genomic
offset. We averaged the genomic offset values of the four climate
models. For each of the future climate emission scenarios and
decades, we compared genomic offset values among different
climate-tolerant groups using the two-tailed Wilcoxon rank-sum
test. A Pvalue of 0.05 after FDR correction for multiple comparisons
was considered to be significant. We used two datasets, i.e., R
positive SNPs identified in the gradientForest (5446 and 7294 SNPs
for T. elliotii and P. monticolus) and outlier SNPs identified in a
combination of three genotype-climate association approaches (72
and 798 SNPs for T. elliotii and P. monticolus, see below), to check
the consistency of the results.

Genomic offset modelling with GDM

Ideally, the gradientForest analysis should use at least four individuals
for each locality (e.g. ref. 13). However, our study areas are in highly
heterogeneous mountains, which presents a great challenge for
obtaining samples. Although our study, to our knowledge, represents
the densest bird sampling in this region, we could only include two or
three individuals of T. elliotii for three localities (i.e., Rangtang, Man-
gkang and Wulong). As these localities are on the junction areas of the
three identified genetic groups, we wanted to retain them because
they would help to define fine-scale population structure and estimate
the extent of genetic admixture. Given this small sampling size, we
implemented a deep-sequencing strategy because low precision in
statistical inference due to the low sample size can be offset by using a
large number of SNPs in the analyses’”*.

We then conducted a parallel genomic offset analysis using R
package GDM*, a distance-based method (i.e., Fst), to estimate the
relationship between genetic variation and climatic variables. It has
been shown that Fst analysis provides reliable estimates even for
populations with small sample sizes (i.e., two individuals) given a large
number of SNPs (i.e., >1500)"*"”*. After removing autocorrelated vari-
ables (Pearson’s r>0.7), we kept BIO1, BIO2, BIO4, BIO7 and BIO14 for
T. elliotii, and BIO1, BIO2, BIO4, BIOS5, BIO12 and BIO14 for P. monticolus
in the GDM analyses. We calculated the pairwise Fst matrix among
sampling localities based on 100,000 SNPs that were randomly
extracted from genomes using diveRsity package’®, and rescaled the
Fst values to range between 0 and 1. To estimate the relative important
of these selected variables, we rescaled the maximum value of the
fitted I-Splines between O and 1, which is proportional to variable
importance. We used 'gdm.transform' to predict and map the pattern
of genotype-climate association across the distribution ranges of the
two species'.

Nature Communications | (2022)13:4821

10


http://www.worldclim.org
http://www.worldclim.org

Article

https://doi.org/10.1038/s41467-022-32546-z

We predicted the genomic offsets to future climate conditions
following the same procedure as gradientFroest analyses. Specifically,
we calculated genomic offset as the extent of mismatch between
current and expected future genetic variation based on genotype-
climate association modelled by GDM analysis, under the sixteen cli-
matic conditions that were obtained from four climatic models and
four emission scenarios and decades (Supplementary Table 3). We
predicted the genomic offset by 'predict.gdm' function, and then
obtained a metric of genomic offset for each of the gridded climate
points. The resultant genomic offsets were mapped with ArcGIS10.1 to
show the geographic distribution of population-level variation. We
compared the genomic offset values among groups using the two-
tailed Wilcoxon rank-sum test and a P value of 0.05 after FDR correc-
tion for multiple comparisons was considered to be significant. In
addition, we run the separate GDM analyses using the datasets of 72
and 798 outlier SNPs identified for T. elliotii and P. monticolus,
respectively, in the three analyses of genotype-climate associations
(see below).

Identify SNPs associated with climatic variables

To control for false positives that are often observed in individual
genotype-environment programmes’’, we used three approaches to
identify SNPs that are highly associated with the top climatic vari-
ables identified by gradientForest, i.e., LFMM**, RAD and dbRAD*"°,
For the LFMM, we ran five separate MCMC runs with a latent factor
of K =3 (see Results). P values from all five runs were combined and
adjusted for multiple tests using a FDR correction of P<0.05. RAD
and dbRAD analyses were carried out using the R package vegan
v2.5-7 (https://CRAN.R-project.org/package=vegan). Only the con-
strained axes with a significance of P<0.05 were retained and
subsequently used to build the loading value (‘'species scores' in
vegan). SNPs were identified as outliers if their loading values were
greater than three standard deviations of the average loading
values. We regarded SNPs identified by all three methods as climate-
associated SNPs. We annotated these SNPs using SnpEff’® and the
resultant genes were enriched using Kobas v3.0”° with Benjamini
and Hochberg adjusted P values.

Subsequently, we used these climate-associated SNPs to define
climate-tolerant groups using a model-based clustering algorithm in
Admixture v1.3*. We run the programme with tenfold cross-validation
and 10,000 bootstrapping replicates for the coancestry cluster (K)
between 1 and 6. The optimal cluster was selected as the one with the
smallest cross-validation error*. The genetic ancestry of the individual
is assigned to the group identified in the optimal genetic cluster (K=3,
see Results) if it has a proportion of inferred ancestry >60%.

Ecological niche modelling predicted niche suitability under
future climate

We used an ensemble modelling approach in the R package Biomod2*’
to model niche suitability under current and future climates. After
initially including six commonly used models, i.e., maximum entropy,
generalised boosted model, generalised additive model, multivariate
adaptive regression splines, classification tree analysis and random
forest, we combined the first four models due to the poor performance
of the last two models. This ensemble framework was applied to cap-
ture the variation in different ecological niche model algorithms and
enhance the robustness of prediction®*®',

We collected distribution records from museum collections
and the Global Biodiversity Information Facility (GBIF, https://www.
gbif.org). We first tested how reducing sampling bias affected
autocorrelation using a range of thresholds to thin distribution
records, i.e., from 5 to 35 km with 5-km intervals. We used Moran’s |
to estimate the degree of spatial autocorrelation in each thinning
threshold. Compared to that of the non-thinned records, we found
that Moran’s | decreased and reached a stable level at the

approximately 10-km and 20-km thresholds (Supplementary
Fig. 12). We decided to use a 10-km threshold to minimise sampling
bias because this resolution is considered to essentially capture
the environmental variation in the mountains and has been used
in previous ecological niche modelling in mountainous areas
(e.g., **). We removed redundant records and kept only one
record every ten kilometres using the function ‘thin_b’ in the R
package ENMwizard®. We run separate models for individuals that
were identified as tolerant to cold-dry, warm-dry and warm-humid
conditions to evaluate whether they would be affected differentially
by climate change. Because some individuals of T. elliotii located in
the adjoined areas of the three ecological zones, i.e., Mangkang,
Hanyuan and Wulong, showed admixed genotypes, we removed
these records from modelling. After filtering, a total of 292 records
were retained for T. elliotii and 619 for P. monticolus. These records
included 175 and 284 cold-dry tolerant individuals, 49 and 155 warm-
humid tolerant individuals and 68 and 180 warm-dry tolerant indi-
viduals for T. elliotii and P. monticolus, respectively.

We used 19 climatic variables at a 2.5-min resolution from
WorldClim™ to model the current niche suitability. After removing
autocorrelated variables (Pearson’s r> 0.7) using usdm®®, we kept the
remaining uncorrelated variables for subsequent analyses (Supple-
mentary Table 9). We used ENMeval®” wrapped in ENMwizard® with
different feature classes (linear, quadratic and hinge) and regularisa-
tion multipliers (RM, from 0.5 to 5 with an increment of 0.5) and
selected the best combinations for the maximum entropy models®.
We used clamping to avoid extreme predictions for climatic values
falling outside the range®. To enhance the foresting accuracy, we
removed distribution records with the 10% lowest probability detected
by ENMeval®’. We estimated the best fitting models based on the
lowest AIC¥.

For the four ecological niche models, we randomly generated
10,000 pseudo-absence points (or background points’®) across each
group’s range and gave equal weights to presence data and back-
ground points (i.e., 50% balancing the weights of presence and back-
ground points to a prevalence of 0.5)”°%. We employed cross-
validation with five repeats by randomly splitting distribution
records into two subsets; 70% of the data were used to calibrate the
models, and the remaining 30% were used for testing. To increase
prediction accuracy, we excluded the models with AUC <0.8 or TSS
<0.6 from the final ensemble prediction®. We assigned weights to
these models based on their TSS values and constructed ensemble
models by calculating the weighted mean of niche suitability across
the predictions®. When ecological niche modelling is projected out-
side the range of the climatic variables on which models were cali-
brated, there are usually nonanalogous climates (i.e., areas where the
value of at least one predictor variable is outside the training region)®.
To minimise such uncertainties, we made conservative predictions and
restricted our projections to those analogous climates that can be
sampled in the current distribution ranges.

We projected niche suitability under future climate conditions
using four climate models (CCSM4, MIROC5, MPI-ESM-LR and
CNRM-CMS5) under four emission scenarios (RCP4.5 2050, RCP8.5
2050, RCP4.5 2070 and RCP8.5 2070). We run separate models for
each dataset and then averaged the projections across the four
climate models. For each of the four emission scenarios and dec-
ades, we calculated the change in niche suitability between the
current and future climate (NSC =niche suitability index in the
future climate — niche suitability index in the current climate)*. A
negative value indicates decreasing niche suitability, while a posi-
tive value shows increasing niche suitability in future climate con-
ditions. We compared NSCs between the cold-dry, warm-dry and
warm-humid tolerant groups in each species using a two-tailed
Wilcoxon rank-sum test and an FDR-adjusted P<0.05 was con-
sidered to be significant.
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Combining genomic offset and NSC

As genomic offset and NSC revealed different estimates of the cli-
mate change-driven vulnerability among the three groups, we used
a genome-niche index, which allows incorporating genomic offset
and NSC to better predict the responses of two species subject to
future climate change*®. Only the niches of increasing future suit-
ability were considered because populations in these areas would
not be challenged by niche suitability decline, as we aim to find the
populations that are least interrupted by future climate change. The
genome-niche index (gni) of each grid is calculated as follows:
gni;=nsc¥ gol=*, where nsc; and go; are the NSC and genomic offset
at location i, respectively, and a € [0,1] is the weight of normalised
nsc;, i=1, 2,..., n. To minimise the total deviation between ngi; and
nsc;, go;, we used the equation below to find the smallest value of
minY :*

. n la In nsc;+(1 — a) In go;
mlnY= Z lI ( ) g l+
i-1 n nsc;
+a|nnsc,-+(lfa)lngo,~+

In go;

In nsc;
aln nsc;+(1 - a) In go;
In go;
alnnsc;+1—a)Ingo;,

We used the artificial bee colony (ABC) algorithm to find the
smallest value of min ¥ and estimate the optimal o value using the R
package ABCoptim (https://CRAN.R-project.org/package=ABCoptim).
We set the population size to 20, the maximum number of iterations to
1000 and the limit to 50. We normalised nsc; and go; values between
0.1 and 0.9. After the ABC algorithm converged, we obtained optimal
estimates of nsc;, i.e., under the projection RCP8.5 2050, a = 0.52725
for T. elliotii and a =0.617253 for P. monticolus, which were further
calculated to obtain gni;=nsc?5> go47275 for T. elliotii and
gni;=nsc617253 go0-382747 for P. monticolus. We used ArcGIS 10.1 to
visualise the resultant genome-niche index across each species’
distribution range.

Landscape genetic analysis

To investigate the influence of different landscape features on
genetic structure, we employed a modelling approach to test a set
of alternative hypotheses of landscape connectivity. We generated
aresistance surface for each landscape feature, including elevation,
slope, a standard deviation of elevation, habitat suitability and land
cover using Circuitscape®. For each elevation, slope and standard
deviation of elevation raster layers, we extracted values for all dis-
tribution records (used for ecological niche modelling) for each
species and calculated the average value for each landscape feature.
We used this value as the benchmark (i.e., the lowest resistance
cost) and regarded the absolute difference between this value and
the focal value of each grid as the resistance cost for this given grid.
In addition, we normalised the niche suitability feature by sub-
tracting the habitat suitability index obtained from the ecological
niche modelling by 1. We rescaled these continuous values between
1(the lowest resistance) and 10 (the highest resistance) to normalise
these landscape features.

According to our field observations and written sources®, T.
elliotii and P. monticolus are mainly found in coniferous forests and
broadleaf forests (and shrublands in T. elliotii). We thus assigned the
lowest resistance (i.e., 1) to these habitat types. We then assigned a
resistance cost of 3 to savannas, 5 to croplands, 7 to barren and
sparsely vegetated areas and 10 to water bodies (Supplementary
Table 10). Considering that this assignment is arbitrary, we carried
out a sensitivity test by assigning different resistance costs to these
habitat types. Our model test showed that assigning a low resistance
cost to forest habitats always gave better model performance, thus
validating our resistance cost assignment in land cover (Supple-
mentary Table 10).

We randomly extracted 100,000 SNPs from the genome to cal-
culate the genetic distance (Fst) between populations in the R package
diveRsity’®. We used linear mixed-effect models to estimate the effects
of landscape features on the patterns of gene flow in Ime4” to account
for multiple memberships by MLPE. Here, the term 'population’ refers
to localities. In all models, pairwise genetic distance was used as the
dependent variable, and resistance costs from the landscape features
were used as the independent variables. All independent variables
were z-transformed to meet the normality assumption. As a high
degree of collinearity between landscape features may bias the para-
meter estimation, we kept only features that had a Pearson’s r < 0.8. We
evaluated modelling performance by ranking AIC with second-order
bias correction (AICc). The best model was selected by computing
Akaike weights (w;)’*. As model selection with AICc can be biased by
the nonindependence of pairwise datasets’’, we estimated model fit
with marginal R? (i.e., landscape features) and conditional R* (i.e.,
landscape features and population effect) using MuMIn®,

Demographic model tests the migration possibility between
groups

We used a coalescence-based approach to test the presence of
migration between the groups using Fastsimcoal v2.6®. We first
generated a two-dimensional, folded site frequency spectrum (SFS)
dataset based on whole-genome-wide SNPs for each pair of groups
using easySFS.py (https://github.com/isaacovercast/easySFS). We
compared three demographic models for each pair of groups, M1)
no occurrence of gene flow, M2) occurrence of a secondary gene
flow assuming that the groups have been in secondary contact at
some time, and M3) occurrence of a continuous gene flow assuming
that the groups frequently exchange migrants (Supplementary
Fig. 9). For each model, we run 100 replicates with 100,000 coa-
lescent simulations with a minimum of 20 and a maximum of 40
cycles in a conditional maximisation algorithm. We specified a
mutation rate of 3.3e”® per site per generation following the esti-
mate for passerine birds®. We used the AIC to evaluate which model
had the higher likelihood (Supplementary Table 7). We simulated
100 replicates of the SFS from the *_maxL.par file (i.e., the parameter
estimates that produced the maximum likelihood) for the best-fit
run (minimised difference between maximum estimated likelihood
and maximum observed likelihood) of the best-fit model. We run
the 100 bootstrap replicates and ranked their maximum observed
likelihoods. The demographic parameters from the top 30 runs
were used to estimate confidence intervals'®.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The genome assembly and sequencing data of the de novo sequenced
individual of T. elliotii have been deposited to the National Genomics
Data centre (https://db.cngb.org/) under BioProject accession number
CNP0003256 and NCBI with BioProject accession number
PRJNA860040. The resequencing data from P. monticolus and T. elliotii
have been deposited in the National Genomics Data centre (https://db.
cngb.org/) under the accession number CNP0002314 and
CNP0002315, respectively. VCF datasets, location records used in
ecological niche modelling, climatic data used in genotype-climate-
association, outputs of ecological niche modelling and genomic offset
analyses are available in Dryad (https://doi.org/10.5061/dryad.
brvi5dvb5).

Code availability
Analysis scripts can be found in Dryad (https://doi.org/10.5061/dryad.
brvl5dvb5).
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