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Abstract: In this paper, we study non-equilibrium dynamics induced by a sudden quench of strongly
correlated Hamiltonians with all-to-all interactions. By relying on a Sachdev-Ye-Kitaev (SYK)-based
quench protocol, we show that the time evolution of simple spin-spin correlation functions is highly
sensitive to the degree of k-locality of the corresponding operators, once an appropriate set of
fundamental fields is identified. By tracking the time-evolution of specific spin-spin correlation
functions and their decay, we argue that it is possible to distinguish between operator-hopping and
operator growth dynamics; the latter being a hallmark of quantum chaos in many-body quantum
systems. Such an observation, in turn, could constitute a promising tool to probe the emergence of
chaotic behavior, rather accessible in state-of-the-art quench setups.

Keywords: operator growth; scrambling; quantum quench; quantum chaos

1. Introduction

The study of strongly correlated quantum systems dates back to the early stages of
quantum mechanics, and it still represents one of the most intriguing and challenging sub-
jects of research [1–7]. Recent technological advances both in condensed matter [8–10] and
atomic physics [11–16] allowed the investigation of many-body physics at the nanoscale,
or single-atom level, both in equilibrium and non-equilibrium settings. In particular, state-
of-the-art experiments with ultracold atoms and trapped ions [6,17,18] offer the possibility
to engineer closed quantum systems with very high precision and to perform quantum
quench protocols [6,19–22], where non-equilibrium dynamics can be measured in real
time after a sudden variation of some parameters of interacting Hamiltonians. Notable
results have already been achieved in the context of relaxation dynamics and equilibration
properties of quantum many-body systems [16,23]. Interestingly, optical lattice designs can
be implemented to simulate quantum systems in various dimensions, under the presence of
both local and q-body photon-mediated interactions [24–28] between different lattice sites.

The above-mentioned progresses have attracted attention [23] due to their potential in
testing thermalization hypotheses and related conjectures in strongly correlated systems,
which exhibit intriguing connections with quantum chaos and black-hole physics [29–33].
Popular observables in this context are out-of-time-ordered correlators (OTOCs) [34–36],
which have been recently used to quantify the chaotic nature of a given quantum system.
(We notice that currently there are, at least, two notions of quantum chaos, which for
many-body systems, are believed to apply at different time (or energy) scales. The so-called
early-time quantum chaos, as measured by the OTOCs, applies at time scales shorter than
the scrambling (or Ehrenfest) time. The late-time quantum chaos, which applies at much
longer time scales (of order of the Thouless time), is instead based on the statistics of the
energy levels of a given quantum Hamiltonian, according to the Bohighas-Giannoni-Schmit

Entropy 2021, 23, 587. https://doi.org/10.3390/e23050587 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1956-7715
https://orcid.org/0000-0002-5408-3572
https://orcid.org/0000-0001-9747-1033
https://doi.org/10.3390/e23050587
https://doi.org/10.3390/e23050587
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23050587
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23050587?type=check_update&version=2


Entropy 2021, 23, 587 2 of 23

conjecture [37]. The connection between the two notions is still not clear and it constitutes
an active area of research [38,39]. In this paper, we will refer to the early-time quantum
chaos only.) In fact, due to the exponential growth of the OTOCs in time when dealing
with chaotic dynamics, they have been linked to the Lyapunov exponents of classical
chaos, thereby being proposed as a promising measure of quantum chaos [35,36]. They
quantify scrambling, or fast spreading of an initially confined perturbation across the
system. The spread of information in chaotic systems is intimately related to the notion
of operator growth [40–44], that is, to the idea that, during time evolution, fundamental
operators develop into rather complicated operators with increased spatial support and
non-locality, resembling the so-called butterfly effect.

Although few pioneering cold atom experiments have reported the possibility to
measure the OTOCs in specific systems [36], an implementation of the OTOCs remains
very difficult, since it demands the ability of measuring different operators involving time-
reversal of many-body dynamics. To overcome this difficulty, several approaches have
been proposed. On one hand, [45–48] have proposed ways to measure the OTOC without
requiring time-reversal of many-body dynamics. On the other hand, [49] proposed that
quantum chaos can be inferred by inspecting the temporal evolution of the full probability
distribution of randomly prepared initial states after a quantum quench.

Inspired by the Ref. [49], in this work we investigate whether the quench evolution of
simple spin-spin correlation functions can be used to diagnose the chaotic properties of the
quench Hamiltonian. At the practical level, we focus on quench protocols realized by means
of a paradigmatic example of dynamical system equipped with all-to-all interactions, that
is, the Sachdev-Ye-Kitaev (SYK) model [50–52]. It describes a strongly correlated quantum
system of Majorana or Dirac fermions with random, all-to-all, q-body interactions, with q
being an integer larger than or equal to 2. In particular, when q > 2, both the energy-level
statistics and time-evolution of the OTOCs indicate that non-local interactions and random
disorder make the model highly chaotic [51–54]. This particular model has attracted a
considerable amount of attention in recent years, since it is the first example of quantum
many-body systems being chaotic and yet solvable in the thermodynamic limit [51,52].

Early-time quantum chaos in the SYK model was studied from a slightly different
perspective than the study of the OTOCs, also in [43]. The authors thereof studied the
operator growth dynamics of the SYK model, with a particular emphasis on how simple
operators, that is, consisting of products between few Majorana fermions, evolve into more
complicated operators that involve products between a stack of Majorana fermions.

In this paper, we aim to study how the operator growth dynamics, linked to the onset
of quantum chaos, can be detected by quantum quench protocols [55,56]. Under the specific
protocol where the quench Hamiltonian takes the form of SYK models, with different values
of q, we investigate the dynamics of different spin correlation functions in 1D lattice spin
systems. We argue that these correlators, which, in general, can be accessed by state-of-
the-art quench experiments by exploiting local imaging of quantum gas microscopes [57],
contain useful information on the operator dynamics. In particular, we demonstrate that
the decay rate of these correlation functions can be traced back to the operator growth
dynamics under the SYKq quench Hamiltonian, depending on the specific value of q.

To make the logic of the discussion easier to follow, we now present a concise summary
of the main results and concepts we are going to discuss:

i. We start by presenting a seeming paradox, that is, that the time evolution of some
spin-spin correlation functions, when a spin chain model is perturbed by a quantum
quench, are dramatically affected by performing a simple rotation of an external
constant magnetic field.

ii. This issue is then explained, understanding that this simple rotation actually deeply
changes the operator size of the operators studied in the quench. This result, in turn,
suggests that quench experiments can be useful probes to study early-time quan-
tum chaos.
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iii. The above intuition is then corroborated, by showing that indeed the time evolution
of the spin-spin correlation functions can be used to detect the presence of operator
growth dynamics.

In detail, the paper is organized as follows. In Section 2, we introduce the quench
protocol and the models under study. In Section 3, we examine the quenched evolution
of connected spin-spin correlation functions. Specifically, we observe that a seemingly
innocent modification, that is, the change of the orientation of a static external magnetic field
coupled to the spins in an initial free Hamiltonian, strongly affects the quench dynamics.
In Section 4, we explain the above observation in terms of the dynamical evolution of the
“fundamental” operators in the theory. We introduce the notion of operator-hopping—to
be contrasted to the operator growth—which controls the dynamics under the integrable
SYK Hamiltonians at q = 2. In Section 5, instead, we consider the case of the chaotic SYK4
models. We find that the dynamics is governed by operator growth instead of operator-
hopping, as expected for chaotic systems, demonstrating how temporal evolution of
spin-spin correlators reflects the nature of operator dynamics. Generic integrable/chaotic
systems lie in the middle of two extremes, which are represented by SYK2 and SYK4,
with a mixture of both hopping and growth dynamics. Therefore, the two models under
investigation are excellent playgrounds to study these two prototypical kinds of operator
dynamics and how they affect the time evolution of the spin-spin correlators. Section 6
summarizes our main results and possible perspectives.

2. Model and Quench Protocol

The main focus of this work is the study of non-equilibrium properties of strongly
correlated quantum many-body systems. To this end, we consider a quench protocol,
where the interactions between single entities of a quantum system are suddenly switched
on at time t = 0 as

Ĥ(t) = Ĥ0 + θ(t)[Ĥ(q)
1 − Ĥ0] , (1)

where θ(t) is a step function and the dynamics for t > 0 is entirely governed by Ĥ(q)
1 in

a scale invariant fashion. Such quantum quench protocols can be engineered, and have
been realized, for example in cold-atoms setups [6]. Let us describe in more details our
setup. We initially prepare (for t < 0) the ground state of a free Ĥ0, that is, a quantum
system on a spin lattice of length L which we will elaborate later. At t = 0, the system starts
to evolve under the action of a quench Hamiltonian, possibly with all-to-all couplings,
whose chaotic properties we want to investigate. We then inspect the time evolution of
some simple spin-spin correlation functions. The goal is to determine whether their time
evolution can be used to probe the chaotic properties of the quench Hamiltonian, getting
information on out-of-equilibrium dynamics of a many-body system. For the latter, as a
practical case-study, we consider the SYKq Hamiltonian that represents a paradigmatic
example of all-to-all interacting systems [29,50–52]. These models recently gained a lot
of attention due to intriguing connections with black-hole physics, and since they can
show quantum chaotic behavior [29]. This family of Hamiltonians, classified in terms of
an integer parameter q, can be written in terms of 2L Majorana fermions, interacting via
q-body and all-to-all coupling terms as [50–52]

Ĥ(q)
1 = (i)q/2 ∑

i1<···<iq

Ji1 ...iq γ̂i1 . . . γ̂iq , (2)

where the Majorana fermion operators, γ̂i, satisfy the following Clifford algebra relations:

{γ̂i, γ̂j} = δij , (3)
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and where the coupling constants Ji1 ...iq are extracted from a Gaussian distribution, with null
mean value and variance

J2
i1···iq =

J2(q− 1)!
(2L)q−1 . (4)

Throughout the paper, we set h̄ = 1 and the overline will denote the Gaussian
average over all the SYK coupling constants Ji1···iq . Unless otherwise specified, we also set
J2 = 1. While at q = 2 the SYK model has been known to show integrable behavior [58],
the situation gets completely different for higher values of q > 2: although sharing all-to-all
correlations, in this case, the model turns out to be chaotic based on the study of the
OTOCs [51,52], as well as the energy-level statistics [53,54]. It is thus interesting to take
both the q = 2 and q > 2 models as the quench Hamiltonian, investigating how they
differently affect the relaxation dynamics, looking for features related to the presence of
quantum chaos.

We consider the free Ĥ0 as an ensemble of non-interacting spin- 1
2 variables on a lattice

of length L immersed in a transverse magnetic field oriented along the a = x, y, z direction

Ĥa
0 ≡

L

∑
i=1

ĥa
i ≡ ω

L

∑
i=1

σ̂a
i , (5)

where σ̂a
i denotes the a-th Pauli matrix at site i and ω is the magnetic field strength, hereafter

assumed to be the same for all directions (and equal to 1) without loss of generality. Other
choices for Ĥ0 are possible, and they have been considered for quench protocols passing,
for example, from the integrable SYK2 Hamiltonian to the chaotic SYK4 Hamiltonian [59,60].
However, the particular static Hamiltonians we are considering, as it will become clear in a
moment, have the property of having terms of very different size. The notion of operator
size is crucial to study the presence or absence of operator growth, thus making our choice
of Ĥ0 particularly suitable for this kind of study. In detail, it will become apparent that the
specific choice of Ĥx

0 can be thought as a perfect “experimental setup” to test the chaotic
properties of the various SYK-like quench Hamiltonians.

At a formal level, the spin Hamiltonian defined in Equation (5) can be mapped into a
system of 2L Majorana fermions via the following, non local, Jordan-Wigner (JW) map [61],

γ̂2j−1 =
1√
2

(
j−1

∏
i=1

σ̂z
i

)
σ̂x

j ,

γ̂2j =
1√
2

(
j−1

∏
i=1

σ̂z
i

)
σ̂

y
j , (6)

which defines the duality between L spins and 2L Majorana fermions and that should
be considered as a formal change of variables. Obviously, also the SYKq Hamiltonians
can be mapped to the spin chain variables via the JW map (6), but this would result in
expressions that are highly cumbersome and not easy to put in a compact form. The
JW transformation (6), once applied to the spin variables, plays a key role in getting a
clear and transparent understanding of the physics behind the quench dynamics we will
study—while at first sight it may look just as a bookkeeping device.

Lattice spin Hamiltonians (5) can be realized in several settings, such as cold atoms,
trapped ions or solid state devices. For example, one can engineer a system of neutral
atoms with hyperfine interactions and coupling them to Rydberg states [62–65]. A trans-
verse field can be then introduced by applying a resonant microwave or Raman coupling
between two hyperfine states, and several type of correlations, ranging from local to long
range, towards all-to-all, interactions, have been proposed and recently realized, exploiting
photon-mediated correlations in optical cavities as well [24,25]. In passing, we mention that
some recent proposals have suggested the possibility to realize SYK-like Hamiltonians in



Entropy 2021, 23, 587 5 of 23

these settings [29,32,66,67]. Therefore, fundamental studies of non-equilibrium dynamics
and their possible connections with quantum chaos are worth being investigated. (Here,
a caution is in order. The SYK Hamiltonian (2), once considered as an operator defined
over the spin chain by means of (6), includes terms involving products of many Pauli
operators by increasing L. This, in turn, could naively raise some concerns on the practical
feasibility of our protocol, since it would put some limits on the maximum lenght, L, which
can be practically achieved when studying SYK-like Hamiltonians. However, we stress
again that we consider the SYK models just as theoretical case-studies for their interesting
dynamical properties.)

We are interested in tracking the time-evolution of the ground states, |0a〉, after the
action of the quench protocol of Equation (1). In order to make fair comparisons of time-
evolution dynamics across different spin models with various sizes and interaction types,
the quench Hamiltonian can be properly normalized as Ĥ(q)

1 → Ĥ
(q)

1 to have a unit
bandwidth. This can be done [55] by renormalizing all coupling constants by the energy
bandwidth of the interaction Hamiltonian, ∆

Ĥ(q)
1

, defined as the energy gap between the

maximum/minimum eigenvalues, i.e.,

Ĥ
(q)

1 ≡
Ĥ(q)

1
∆
Ĥ(q)

1

=
Ĥ(q)

1

EMax
Ĥ(q)

1

− EMin
Ĥ(q)

1

. (7)

In the following, in line with the recent results of [49], we show that the SYK quench
Hamiltonian can produce markedly distinct effects on the dynamics starting from different
initial states and depending on the operator dynamics under investigation. To this end, we
will focus on two possible choices, a = x or a = z, for Ĥa

0 (the case a = y being completely
equivalent to the case a = x).

At first sight, the distinction between the two models may look very minor, since
they can be related by a simple rotation of the external magnetic field. However, they
have different dynamical features: for example, the global symmetries of the constant
Hamiltonians (5) are broken by the quench term in different ways. Indeed, Ĥx

0 preserves
the total spin along the x axes and the quench term completely breaks this symmetry (exactly
the same pattern happens for the a = y Hamiltonian). On the other hand, Ĥz

0 preserves the
total spin along the z axes and this symmetry is just partially broken by the quench term
down to the parity symmetry.

3. Dynamical Spin-Spin Correlation Functions

Time-resolved detection of propagating correlations in an interacting quantum many-body
system after a quantum quench has been recently inspected, and also reported, [12,16,68,69]. In
addition, the ability offered by quantum gas microscopy [57,70,71] of single-site imaging
in an optical lattice [72] allows the spatial resolution and sensitivity to reveal the real-time
evolution of a many-body system at the single-particle level. Motivated by these progresses,
we numerically investigate, by means of discrete time-evolution simulations, the dynamics
of the evolved states after the quantum quench by studying the time evolution of the
connected part of the two-point function or dynamical susceptibility,

χa(t) ≡∑
i<j

(
〈σ̂a

i σ̂a
j 〉 − 〈σ̂a

i 〉 〈σ̂a
j 〉
)

, (8)

where the expectation value 〈· · · 〉 is taken over the evolved ket, defined as

|ψ(t)a〉 ≡ e−iĤ(t) t |0a〉 . (9)

The connected correlators (8) are the ones that are usually measured in experiments [57,70,71].
For this reason, we will focus on these particular connected functions, although we will
also discuss at length the behavior of the single summands appearing in (8).
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For the sake of simplicity, we start discussing the case of a quench Hamiltonian of
SYK2 type, while larger values q > 2 are considered in later sections. We recall that, when
q = 2, the SYK Hamiltonian is non-chaotic, thus providing an example of disordered,
all-to-all, integrable dynamics.

The time evolution of χa(t) for both a = x, z is reported in Figure 1. In both cases,
this quantity shows an initial rise, up to a maximum value χa

max, followed by a decrease
toward 0. Interestingly, the peak is drastically larger in the a = x model, with the difference
getting parametrically enlarged by increasing L. In detail, we have observed that χx

max
grows quadratically with L, while χz

max grows linearly with L (see the inset in Figure 1).
Such difference is not obvious to be explained, given that, as already outlined, the two
pre-quench models, as well as their correlators just differ by a global rotation.

Figure 1. The function χa(t) for both the a = x and the a = z model computed for L = 15, averaged
over 300 ensemble realizations. Inset: the values of χa

max as functions of L (black circles, for a = x,
and black squares, for a = z). We observe that these behaviours are very well-reproduced by the
functions χx

max(L) = aL2 + b (blue line) and χz
max(L) = cL + d (orange line). The fitting parameters

are a = 0.11, b = −1.3, c = 0.18 and d = 0.083.

To better clarify these behaviors, it is instructive to inspect the single spin-spin correla-
tion functions

χa
ij(t) ≡ 〈σ̂a

i σ̂a
j 〉 − 〈σ̂a

i 〉 〈σ̂a
j 〉 with i < j , (10)

appearing in the sums of Equation (8), with i, j indicating two lattice sites. Across all i, j
combinations, the time-evolution of χa

ij(t) exhibits the same qualitative pattern as of χa(t),

which is an initial rise followed by a decay. This is because both 〈σ̂a
i σ̂a

j 〉 and 〈σ̂a
i 〉 〈σ̂a

j 〉 decay
monotonically from one to zero but with different rates, such that χa

ij(t) and χa(t) develop
a peaked structure.

To understand the differences in the peaks between the a = x and a = z models, we
study the height of the peaks Pa

ij ≡ maxt(χa
ij(t)) as a function of i and j. From the naive

intuition that arises when looking the system by means of the spin 1/2 description, one
would expect Pa

ij to be homogeneous and independent of i and j, because the initial Hamil-
tonian (5) treats all the spins equally and does not involve spin-spin couplings, and the
SYK term (2) is all-to-all and involving many spin variables at once. Hence, one would
expect that the models do not have any notion of neighboring sites, therefore Pa

ij would be
independent of the lattice sites after averaging over the Gaussian random couplings.

Numerical results on Pa
ij are displayed in Figure 2. In agreement with the motivations

just explained above, Pz
ij is independent of i, j. On the other hand, Px

ij exhibits a very
intriguing behavior; it is highly dependent on i and j. In addition, the following patterns
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clearly emerge; the peaks are more pronounced for i and j being closer to each other,
and they are further magnified when i and j approach the center of the lattice.

Figure 2. The peak heights of Px
ij and Pz

ij as a function of the lattice sites i, j at L = 15 and averaged over 300 ensemble realizations.

Notice that these differences are not very easy to understand solely from the symmetry
breaking perspective. For example, it is not obvious why Px

ij is site-dependent. Moreover,
in Appendix A we provide further evidences that the symmetry breaking pattern alone
cannot explain the dynamical differences observed between Ĥx

0 and Ĥz
0, considering hard-

core bosonic versions of the SYK models. Although the bosonic variants show the same
symmetry breaking patterns as in their fermionic counterparts, they exhibit clearly distinct
dynamical properties.

4. Size in Operator Space and Quantum Dynamics

Here, we demonstrate how the difference between Px
ij and Pz

ij presented above can be

explained by inspecting the temporal decay properties of the correlation functions 〈σ̂a
i σ̂a

j 〉
and 〈σ̂a

i 〉. Our approach is similar to the one discussed in [43] and based on the notion of
operator size.

It is fairly simple to rewrite the Pauli matrices σ̂a
i , as well as the product σ̂a

i σ̂a
j of

any two Pauli pairs as a product of Majorana fermions γ̂i [73], by making use of the JW
maps defined in (6). For this reason, we find more convenient to treat the Majorana fields
γ̂i, rather than the Pauli operators σ̂a

i , as the fundamental operators [43] to get a more
transparent tracking of the time-evolution of the spin correlators.

Given the set of fundamental operators, one can introduce the notion of size of opera-
tors: an operator Ô is said to have size k if it can be written as a product of k fundamental
operators. More generally, an operator is k-local if, once rewritten as a sum of operators
with definite size, the maximum size of its constituents is k. (The notion of k-locality just
introduced should not be confused with the notion of locality in the spin chain. The latter,
for the reasons already explained, is not directly relevant in our case, since Ĥ0 is free
and the SYK models are all-to-all.) We will denote the k-locality of an operator Ô in the
superscript, that is, Ô(k). It has been emphasized in [43] that a proper identification of the
set of fundamental operators, and the associated notion of operator size, allows a clear
description of the dynamics of a strongly correlated quantum system.
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Let us start considering the a = z case, whose description is simpler. By making use
of the JW map (6), the operators σ̂z

i and σ̂z
i σ̂z

j can be re-written in terms of the Majorana
variables as follows:

σ̂z
i = −2i γ̂2i−1γ̂2i ,

σ̂z
i σ̂z

j = −4 γ̂2i−1γ̂2iγ̂2j−1γ̂2j ,
(11)

thus showing that they are, respectively, of size 2 and 4 in the space of the Majorana
operators. It is noticeable that the sizes of the operators σ̂z

i and σ̂z
i σ̂z

j are independent of the
lattice sites i and j.

The situation is more involved in the a = x case. Here, the spin operators, σx
i , show

varying sizes which depend on the lattice site. More precisely, we find that σ̂x
i is an operator

of size (2i− 1), i.e.,

σ̂x
i =

(√
2
)2i−1

(−i)i−1
2i−1

∏
p=1

γ̂p . (12)

The application of the Clifford algebra (3) shows similarly that the product operator σ̂x
i σ̂x

j
is of size 2|j− i|. We summarize the size of the above spin operators as follows:

Operator σ̂z
i σ̂z

i σ̂z
j σ̂x

i σ̂x
i σ̂x

j
Size 2 4 2i− 1 2|j− i|

. (13)

The post-quench evolution of a generic spin operator Ô(k) of size k follows the Heisen-
berg equation of motion,

d
dt
〈Ô(k)(t)〉 = i〈[Ĥ (2)

1 , Ô(k)(t)]〉, (14)

which involves the commutator between the SYK2 Hamiltonian and the operator itself.
The crucial advantage of the Majorana representation—which makes possible to get a
simple and compact understanding of the dynamics—comes from the fact that the above
commutator can be computed in a simple way that manifestly preserves the operator size,
by using [

Ĥ(2)
1 , γ̂i

]
= −i ∑

j
Jij γ̂j . (15)

Hence, the operator dynamics, in the space of Majorana operators, under the SYK2 Hamil-
tonian is a kind of operator-hopping: an operator Ô(k), under time evolution, moves along
the space of the operators of the same size k. The operator size does not grow in time. We
underline that this characteristic is very distinct from the operator dynamics under SYKq
Hamiltonians with q > 2, studied in [43], which will be discussed in the following section.

We are now at the position to explain the observed differences in the time evolution
of the spin-spin correlation functions χa

ij(t), in terms of 〈σ̂a
i σ̂a

j 〉 and 〈σ̂a
i 〉, for the a = x

and a = z cases. First of all, after averaging over the SYK coupling constants, the above
correlators turn out to be return amplitudes, that is, they compute the amplitude that at t > 0
the evolved operator is exactly proportional to the initial operator. This is a consequence of
the Gaussian averaging, as we show explicitly in Appendix B. (Contrary to the analysis of
the Ref. [43], we are considering correlators which are averaged over the Gaussian couplings
Ji1 ...iq ; while the analysis of [43] is performed at fixed (but random) values of the couplings
Ji1 ...iq . When computed at fixed values of the couplings Ji1 ...iq , the return amplitude for the
fundamental operator γ̂i is proportional to Tr(γ̂i(t) γ̂i).)

When the operator Ô(k) starts its time evolution, Equation (15) shows that additional
terms, of the same size, are added to the initial operator Ô(k). These terms, on average, gives
rise to vanishing contributions in the correlator 〈Ô(k)(t)〉. From this reasoning, it follows
that the value of the correlators 〈Ô(k)(t)〉 has to decrease with time. At late times, when
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the number of terms appearing in the expansion stops increasing, we expect that 〈Ô(k)(t)〉
should oscillate around zero. It is because most of the terms involved in the expansion of
〈Ô(k)(t)〉 average out to zero. However, there is still a non-vanishing small probability that
the evolved operator overlaps with the original operator. Such a probability is inversely
proportional to the number of inequivalent terms that appear in the expansion of Ô(k)(t).

Given these considerations, we argue that the initial decay of the spin-spin correlation
function is faster when the size, k, of the initial operator is larger. This is because larger
operators, when commuting with the Hamiltonian, produce more terms in a single iteration.
Moreover, we also expect that the late time fluctuations should be smaller for larger operators.
Indeed, as k becomes bigger, the dimension of the space of all size k operators

dimk =
(2L)!

k!(2L− k)!
(16)

increases monotonically until it reaches k = L, that is, exactly half of the maximum possible
size for an operator, and then decreases down to k = 2L. Given this property, the probability
for the evolved operator at late times of being proportional to the initial operator is smaller
for larger operators.

To numerically confirm the above arguments, we have studied the time evolution
of various spin operators 〈Ok(t)〉 in the a = x model. We have checked (not shown) that
the evolution of the return amplitude turns out to be solely characterized by the operator
size k. For instance, the decay patterns of 〈σ̂x

i σ̂x
i+`(t)〉 are essentially identical across all

1 ≤ i ≤ L− `, while they strongly depend on the value of `. Furthermore, Figure 3 exhibits
the pattern that the operators with higher k ≤ L decay faster to zero and show suppressed
late time fluctuations, in agreement with the prediction. We also confirmed (not shown)
that a greater value of k > L leads to a slower decay rate, since the operator is completely
equivalent to an operator having size k′ < L. Further numerical evidences, showing that
the number of terms generated at each time step controls the early time decays while the
dimension of the effective Hilbert space controls the strength of the late times fluctuations,
are collected in Appendix C.

Figure 3. The decay of the correlation functions, 〈Ok(t)〉, at various values of k, for the SYK2 model (with
a = x) and for the case L = 15. The ensemble averages are performed over 300 ensemble realizations.
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The relation between the size of the operator and the decay rate, once the system
is translated to the Majorana variables, suffices to explain in a very simple way how the
connected part of the spin-spin correlation functions (10) evolve in time. In the a = z model,
the first term, which is a correlator of size 4, vanishes slightly slower than the second term,
which is the product of two size 2 operators. The difference between the two terms is small
and independent of the choice of i and j, in agreement with Figure 2.

On the contrary, in the a = x model, χx
ij(t) is the difference between a correlator of

size 2(j− i) and the product of two correlators of respective sizes (2j− 1) and (2i − 1).
The peak height Px

ij is therefore maximized when i and j are adjacent, that is, j = i± 1, and
i ∼ j ∼ L/2. Furthermore, since the product of correlators diminishes much more rapidly
than the single correlator term, Px

ij is generically larger than Pz
ij, thereby contributing to the

bigger bump of χx(t), as visualized in Figure 1.
An important point to stress is that the fast decay of the averaged correlator is a

consequence of the property that the interactions are all-to-all in the Majorana language,
which remains true for any SYKq models irrespectively of the value of q. In the present case
of the SYK2 model, thanks to all-to-all interactions, the operator Ôk(t) when commuting
with the Hamiltonian can create a large number of new terms, leading to the fast decay
of the return amplitudes. More generally, the condition for return amplitudes to decay is
that the number of terms that Ôk(t) can generate under unitary time evolution is large
enough, which can be satisfied whenever the operator Ôk(t) sits on a highly connected
(hyper)-graph [74,75].

5. From Operator-Hopping to Operator Growth

In this section, we inspect how the evolution of 〈Ôk(t)〉 after a quantum quench proto-
col can discriminate between two different types of operator dynamics: operator-hopping,
discussed in Section 4, versus operator growth, discussed, for example, in [43]. To this end,
we turn now to the case in which the quench Hamiltonian is the SYKq Hamiltonian with
q > 2 and we focus on the case q = 4.

Contrary to the q = 2 algebra, (15), which preserves the operator size, the commutation
relation at q = 4, [

Ĥ(4)
1 , γ̂i

]
= ∑

j<k<l
Jijkl γ̂jγ̂kγ̂l , (17)

realizes an example of operator growth dynamics; the evolution of a fundamental operator
γ̂i is not confined in the space of size 1 operators, but its degree of k-locality continues
to increase with time until it saturates L. Notice that the notion of the operator growth
is a hallmark of the early-time quantum chaos. The underlying idea is that the operator
growth dynamics can develop simple (even fundamental) operators into more complex
and extended ones, thereby realizing a quantum analogue of the well-known “butterfly
effect” [40,76].

We recall that the decay rate of 〈Ôk(t)〉 is instantaneously controlled by its effective
size. This implies that the decay rate of 〈Ôk(t)〉 should be less sensitive to the value
of k under the operator growth, compared to the hopping dynamics. This is because,
as explained before, the operator-hopping does not change the operator size, therefore
a set of possible trajectories is also confined in the space with the fixed dimension (16).
Under operator growth, however, the degree of locality of time-evolved operator quickly
saturates to L, regardless the initial value of k, leading to the conclusion that the Gaussian
averaged correlator 〈Ôk(t)〉 should be less sensitive to k.

To validate the above reasoning, we have computed the averaged correlators under
the SYK4 quench and plotted them into Figure 4. By contrasting Figure 4 with Figure 3,
which displays the averaged correlators under the SYK2 quench, we recognize that the
decay curves start to overlap, becoming indistinguishable from each other, at a smaller
values of k in the case of SYK4 quench. This is consistent with the argument just presented
and shows that dependence on k is drastically reduced when passing from the quadratic
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model to the quartic model; essentially the dependence just remains for very small values
of k, since even in presence of operator growth small operators require a certain amount of
time to increase their size and thus fastly create enough more additional terms under time
evolution. In addition, we see that the late time fluctuations, in the case of SYK4 quench,
are drastically suppressed for all the values of the initial size. This is consistent with the
argument that the strength of the late fluctuations is controlled by the effective dimension
of the operator space which, in case of operator growth, always saturates to the largest
possible dimension, L.

Figure 4. The decay of the correlation functions, 〈Ôk(t)〉, at various values of k, for the SYK4 model
(with a = x) and for the case L = 15. The ensemble averages are taken over 100 realizations.

To better distinguish the decay pattern of the correlators, 〈Ôk(t)〉, under the SYK4 vs
SYK2 quench dynamics, one can directly look at the decay rate,

Dk(t) ≡
∣∣∣∣ d
dt
〈Ôk(t)〉

∣∣∣∣, (18)

focusing on its maximum value, maxt(Dk(t)), the highest speed of correlation decay over
time. As we compare the maximum decay rate across different SYKq models and various
sizes L of the spin lattice, it is also convenient to normalize the degree of k-locality as
krel ≡ k/L, and the maximum decay rate, maxt(Dk(t)), as

R(krel) ≡
maxt(Dk(t))
maxt(DL(t))

. (19)

In Figure 5, we display the normalized maximum value (19) of the decay rate as a function
of krel for different SYKq models, for a = x (We could have taken the a = z model as
well. The results are the same, with the only difference that for the a = z model one can
consider observables with Ôk with k even only.). We have found that these plots are largely
insensitive to the lattice size L, only depending on the value of q.
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Figure 5. R(krel), as function of krel for L = 15 and for q = 2, 4 and 6.

We observe that R(krel) saturates at a smaller value of krel under the SYK4 quench
than in the SYK2 case. This is in agreement with the expected difference between oper-
ator growth and hopping: since the hopping dynamics preserves the size of operators,
the associated decay rate must be more sensitive as explained above.

For sake of comparison, we also depict the values ofR(krel) for the SYK6 model, for
which we observe that a saturating krel is even smaller than the one for the SYK4 dynamics.
The smaller saturating krel for the SYK6 model is easy to explain, since the sextic SYK
Hamiltonian is faster in increasing the operator size than the quartic SYK Hamiltonian and
it also creates more additional terms for each commutator (because the sextic Hamiltonian
contains more terms). Also, it is worth to notice that the difference between the SYK4 and
SYK6 models is much less pronounced than that between the SYK4 and SYK2 models.

The above numerical results strongly suggest that the maximum valueR(krel) of the
decay rate of the averaged spin correlators can effectively distinguish the dynamics of
operator growth versus hopping. However, from its definition,R(krel) is not a convenient
quantity to be directly accessed. Indeed, to distinguish between hopping and growth, one
still should in principle measure the correlators 〈Ôk(t)〉 for all the possible values of k,
from k = 1 to k = L. Considering long spin-chains, this would imply the necessity of
measuring a very large number of averaged correlators, thus making the requirements in
terms of number of measurements very demanding. Noticeably, the gap between q = 2
and q = 4 curves in Figure 5, which shows the difference between hopping and growth,
remains stable by increasing the value of L. It would be more desirable to find a quantity
which instead discriminates between hopping and growth in a way that scales with L.

With these ideas in mind, we therefore wonder whether there is a simpler correlation
function, which alone can discriminate between operator-hopping and growth. As it can
be inferred from Figure 5, the averaged correlators at a large degree of k-locality are not
very useful, since both hopping and growth are in the saturation regime at large k and the
resulting dynamics will be indistinguishable. Instead, the difference between two kinds of
dynamics must be evident at small degree of k-locality, such as k = 1 or k = 2. It is therefore
interesting to study the correlator χx

1L, involving the difference between an operator of size
2(L− 1), whose dynamics is identical to the operator of initial size 2, and the product of
two operators of effective size 1. Hence, we expect to observe the maximum difference
between hopping and growth using this probe.

Figure 6 contrasts the time evolution of the correlator χx
1L(t) in the q = 2 and the

q = 4 models. The ensemble averages are taken over 100 sets of random couplings. It is
immediate to notice that the behaviors are rather different. In SYK4 model, the correlation
function exhibits a clear maximum, higher than the noise amplitude at late times by a
few order of magnitudes; that is, the peak is by far larger than the late time fluctuations,
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which are highly suppressed since, as already explained, in the case of operator growth, the
late time-effective dimension of the operator is large. On the other hand, in SYK2 model,
the height of the initial peak is of the same order of the fluctuation amplitude at late times.
This marked difference can be understood by recalling the description of the dynamics we
gave in Section 4. On one hand, the fact that the dimension of the operator is fixed implies
that the rate of new terms which are created by time evolution does not increase in time.
This feature is responsible for the smaller value of the peak. More dramatically, since in
case of hopping the operator keeps its relatively small size, the late time fluctuations are
much more pronounced, thus making easy to identify the lacking of operator growth in
the model.

Figure 6. The spin-spin correlators, χx
1L, computed at L = 15 and averaged over 100 ensemble

realizations, for both the q = 2 and the q = 4 cases.

We have extensively checked that these marked differences are robust by increasing the
number of ensemble realizations over which the Gaussian average is performed. Moreover,
we checked that they become parametrically more evident by increasing the lattice size
L. This is the property we were looking for. It can be simply understood by considering
again the dimensionality of the relevant Hilbert spaces, discussed in (16). In the case
of operator-hopping, the relevant Hilbert spaces preserve their dimensions at late times.
Therefore at late times the relevant Hilbert spaces are still identified with the spaces of
operators of size 1 and size 2. From this observation we conclude that the fluctuations can
be truncated, at most, quadratically with the spin chain length, that is, δ ∝ 1/L2 with δ
being an appropriately defined measure for the strength of the fluctuations. On the other
hand, in case of operator growth, the relevant Hilbert spaces are the Hilbert spaces of
operators of maximal size. Hence, at late times the fluctuations will be suppressed by a
much larger factor, δ ∝ (L!)2/(2L)!. It is immediate to see that the difference between the
two behaviors becomes more and more evident in the large L limit.

These observations suggest that the evolution of χx
1L(t) in time, and in particular its

late-time fluctuations, could be a useful diagnostics of operator growth versus hopping,
being able to identify the nature of the operator size dynamics.

6. Conclusions

In this paper, we have investigated whether quantum chaos, and specifically operator
growth, can be revealed by performing quantum quench protocols on systems defined
over spin lattices.

By using the celebrated SYKq model as the quench Hamiltonian with all-to-all interac-
tions, we have established that the time evolution of the spin-spin correlation functions
can be used as a probe of operator growth.
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Mapping the spin variables to the Majorana fields, which here constitute the fun-
damental operators, the associated size of different spin-spin correlation functions have
been identified.

We have demonstrated how the decay rate of the averaged spin correlators 〈Ôk(t)〉
is controlled by their initial sizes. Moreover, the relative decay rate, R(krel), can distin-
guish operator growth from operator-hopping; the former being a hallmark of early-time
quantum chaos, while the latter shows rather trivial dynamics in an operator space. Fi-
nally, we have discussed that the difference in operator dynamics strongly affects the
particular averaged spin correlator χx

1L(t): the amplitude of the late-time fluctuations is
comparable to the height of an initial peak under operator-hopping, but is significantly
suppressed under operator growth. We believe that such a marked distinction can be used
to qualitatively detect quantum chaos in strongly correlated systems. A precise analysis of
the connection between the peaked structure that emerges in the dynamics of spin-spin
correlation functions χx

1L and the OTOCs is worth future investigation. In particular, it
would be extremely interesting to understand whether a quantitative evaluation of the
Lyapunov exponents can be extracted from χx

1L. Additionally, it would be intriguing to
analyze the evolution of averaged spin correlators in other chaotic systems, such as random
circuits [77,78], from the perspective of operator dynamics.

The proposed quench setup we explained in this paper does not require the necessity
to implement the time-reversal dynamics, the latter being a very challenging issue in the
experimental measure of the OTOCs. Therefore, like other approaches presented already
in the literature [45–49], it should provide an easier setup to experimentally detect signals
of quantum chaos in many-body systems.

Finally, we mention that there are intriguing cases, see for example [79], in which
the chaotic/integrable nature of the dynamics changes as the numerical values of some
coupling constants are varied. It is still an open problem to understand this kind of
transition from simple dynamical arguments as the ones presented in Section 4. We hope
that the quench protocols presented in this paper can be useful in that setup.

Author Contributions: Conceptualization, M.C., J.K. and D.R.; methodology, M.C., J.K. and D.R.;
software, J.K. and D.R.; formal analysis, J.K.; investigation, M.C. and D.R.; writing—original draft
preparation, J.K. and D.R.; writing—review and editing, M.C.; visualization, J.K. and D.R. All authors
have read and agreed to the published version of the manuscript.

Funding: JK acknowledges the support from the NSF grant PHY-1911298. DR is supported by
a KIAS Individual Grant PG059602 at Korea Institute for Advanced Study and by the Institute
for Basic Science in Korea (IBS-R024-D1). Most numerical computations were done thanks to the
computing resources provided by the KIAS Center for Advanced Computation (Abacus System)
and the Institute for Advanced Study. Some of the numerical results have been obtained by making
use of the Wolfram Mathematica package QuantumManyBody, freely available on GitHub (https:
//github.com/Dario-Rosa85/QuantumManyBody, accessed on 9 May 2021). The rendering of the
plots has been realized using the the Wolfram Mathematica package MaTeX, freely available on the
Wolfram Library Archive (https://library.wolfram.com/infocenter/MathSource/9355/, accessed on
9 May 2021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the numerical data used in this study are available upon reason-
able request.

Acknowledgments: We thank F. Haehl, T. Nosaka, V. Rosenhaus for related discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Bosonic Models

In this appendix, we investigate the real hard-core boson variants of the SYK models.
We study how their dynamics differ from their fermionic counterparts. We recall that the
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complex hard-core boson SYK model was introduced and studied in [80,81]. Despite the
same symmetry breaking pattern as in the fermionic models, the bosonic dynamics turns
out to be completely different. This difference can be understood again in terms of the size
of the operators involved.

To begin with, we define the real hard-core boson operators, χ̂i, with i = 1, . . . , 2L,
as the operators satisfying the following algebra:

{χ̂a, χ̂b} =
{

0 if (a, b) = (2i− 1, 2i) for 1 ≤ i ≤ L
1 if a = b[

χ̂a, χ̂b] = {0 otherwise.

(A1)

The hard-core bosonic operators can be mapped to operators defined on a spin lattice of
length L via the following JW-like map

χ̂2j−1 =
1√
2

σ̂x
j ,

χ̂2j =
1√
2

σ̂
y
j . (A2)

Similarly to the fermionic case, one can define the following SYK-like Hamiltonian for
the operators {χ̂i},

Ĥq
1, B = ∑

i1<···<iq

(i)s(i1,...,iq) Ji1 ...iq χ̂i1 . . . χ̂iq , (A3)

where the coupling constants Ji<j<k<l are sampled from the same Gaussian distribution as
in (4). The factor s(i1, . . . , iq) reads

s(i1, . . . , iq) ≡
q

∑
l=2

(1 + (−1)il ) δil−1+1, il , (A4)

and it must be introduced to ensure that Ĥq
1, B is Hermitian under the bosonic algebra (A1).

Here, for sake of brevity, we focus on the q = 4 model. We contrast the temporal
evolution of averaged correlators under the quench protocol (1) with the Hamiltonian either
being the bosonic SYK4 (A3) or its fermionic counterpart (2). Notice that the symmetry
breaking pattern in the bosonic models is the same as in the fermionic systems; in the a = x
model the spin symmetry along the x axes is fully broken by the quench term, while in the
a = z model the spin symmetry along the z axes is partially broken to the chiral symmetry.

Let us start by considering the connected part of the two-point function, defined in (8).
As we have shown in the main text, the time evolution of χa(t), as well as individual
summands χa

ij(t) is controlled by the initial size of the operators in σa
i σa

j and σa
i . A rapid

inspection, by making use of the JW-like map (A2), shows that in the a = x case, the bosonic
σx

i σx
j operators have size 2, while the bosonic σx

i operators have size 1. For the a = z case,
however, the operator size is exactly the same as in the fermionic case: the bosonic σz

i σz
j

operators have size 4, while the bosonic σz
i operators have size 2.

Operator σ̂z
i σ̂z

i σ̂z
j σ̂x

i σ̂x
i σ̂x

j
Size 2 4 1 2

(A5)

It is important to note that, in the bosonic case, all the operator sizes are independent of i
and j.

The correlators χa(t), for bosonic/fermionic SYK4 models are compared in Figure A1.
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Figure A1. The function χa(t), with a = x, z for both the bosonic and fermionic models computed
for L = 15 and with q = 4. The ensemble averages are taken over 300 realizations.

We clearly observe that, for a = z, the evolution curves for both bosonic and fermionic
models are barely distinguishable; this shows a perfect agreement with the expectation
based on the size of the operators involved, since when a = z the size is independent of the
bosonic/fermionic nature of fundamental variables. On the other hand, the situation is
completely different for a = x case; the characteristics for the fermionic and bosonic models
are rather opposite, where the fermionic/bosonic models exhibit a huge/tiny value of
the peak, respectively. Such distinction is again in perfect agreement with the expectation
based on the operator size, because the fermionic a = x model is the only case for which we
have very large differences in the operator sizes between σx

i σx
j and σx

i . It is also interesting
to observe that the fermionic a = x model is the only model for which the height of the
peak, χx

max(L), scales quadratically as a function of L (Figure 1). We also display the height
Pa

ij of the peak for all bosonic/fermionic SYK4 variants in Figures A2 and A3.

Figure A2. The peak heights of Px
ij and Pz

ij in fermionic SYK4 models, as a function of the lattice sites i, j at L = 15 and
averaged over 100 ensemble realizations.
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Figure A3. The peak heights of Px
ij and Pz

ij in bosonic SYK4 models, as a function of the lattice sites i, j at L = 15 and
averaged over 100 ensemble realizations.

Appendix B. The Average over the Gaussian Coupling

Here we present an analytic argument, based on a short time expansion, to establish a
relation between the degree of k-locality and the decay rate of correlation functions. As a
product, we show that the numerical results presented in Figures 3 and 4 indicate that the
correlators 〈Ok(t)〉 are computing a return amplitude, as the effect of the average over the
Gaussian couplings.

Thanks to the Majorana representation, (11) and (12), of the spin variables, it is easy
to consider the time-evolution of spin operators. One needs to resolve the commutator
[Ĥ1,Ok(t)] that appears in the Heisenberg equation of motion (14) by repeated applications
of the following commutation relation:

[Ĥ(q)
1 , γ̂n] = iq/2 ∑

i1<···<iq−1
i1,··· ,iq−1 6=n

Ji1···iq−1n γ̂i1 · · · γ̂iq−1 (A6)

between the SYKq coupling (2) and a Majorana operator. For notational convenience, we

assume the quench Hamiltonian Ĥ1 to be the standard SYKq Hamiltonian Ĥ(q)
1 without

normalizing the bandwidth. Instead, the bandwidth normalization has been directly taken
into account as a proper rescaling of the time variable t in (A7).

Since the post-quench Hamiltonian is static, the solution Ok(t) of the Heisenberg
equation can be written as:

Ok(t) = Ok +
it

∆
Ĥ(q)

1

[Ĥ(q)
1 ,Ok] +

(it)2

2!∆2
Ĥ(q)

1

[Ĥ(q)
1 , [Ĥ(q)

1 ,Ok]]

+
(it)3

3!∆3
Ĥ(q)

1

[Ĥ(q)
1 , [Ĥ(q)

1 , [Ĥ(q)
1 ,Ok]]] (A7)

+
(it)4

4!∆4
Ĥ(q)

1

[Ĥ(q)
1 , [Ĥ(q)

1 , [Ĥ(q)
1 , [Ĥ(q)

1 ,Ok]]]] +O(t5)

where Ok ≡ Ok(0). Let us replace all the iterated commutators in (A7) by using the
commutation relation (A6). Averaging over all Gaussian coupling constants, Ji1···iq , leads
to huge simplification. All odd-order moments of Gaussian couplings drop out, implying
Ok(t) is an even polynomial in t. The remaining even-order moments can be handled
with Wick’s theorem, enforcing the sum of surviving operators on the right-hand side
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to be proportional to Ok(0). This shows that the averaged correlator 〈Ok(t)〉 is indeed
a return amplitude, that is, it computes the amplitude that Ok(t) returns to itself, Ok(0).
Additionally, it manifests that the early-time scale, which determines the regime of validity
of the expansion (A7), is inversely proportional to the standard deviation J of the SYK
coupling constants.

We specialize to a simple case with q = 2 and k = 1 as an illustrative example.
The commutator action [Ĥ(2)

1 , · ] defined with SYK2 Hamiltonian preserves the size of an
operator. Considering only the terms that involve an even number of the commutator
action, we find

[Ĥ(2)
1 , [Ĥ(2)

1 , γ̂n]] = − ∑
a,b,c,d

a 6=b,c 6=d

Jab Jcdδbnδda · γ̂c, (A8)

[Ĥ(2)
1 , [Ĥ(2)

1 , [Ĥ(2)
1 , [Ĥ(2)

1 , γ̂n]]]] =

∑
a,b,c,d,e, f ,g,h

a 6=b,c 6=d,e 6= f ,g 6=h

Jab Jcd Je f Jghδbnδdaδ f cδhe · γ̂g, (A9)

and so on. The right-hand side expressions are further simplified by taking the coupling
constant average,:

Jab Jcd =
J2

2L
(δacδbd − δadδbc), (A10)

Jab Jcd Je f Jgh = Jab Jcd · Je f Jgh

+ Jab Je f · Jcd Jgh (A11)

+ Jab Jgh · Jcd Je f .

Just like (A11), the higher-order moments can be obtained by Wick contractions. Inserting
them back, the summations appearing in iterative commutators, for example, (A8) and
(A9), can be easily carried out.

[Ĥ(2)
1 , [Ĥ(2)

1 , γ̂n]] =
(2L− 1)J2

2L
γ̂n,

[Ĥ(2)
1 , [Ĥ(2)

1 , [Ĥ(2)
1 , [Ĥ(2)

1 , γ̂n]]]] =
(2L− 1)(4L− 1)J4

4L2 γ̂n
(A12)

The above expressions can be simply generalized to the followings that hold for spin
operators with k-locality k ≥ 1:

[Ĥ(2)
1 , [Ĥ(2)

1 ,Ok]] =
k(2L− k)J2

2L
Ok, (A13)

[Ĥ(2)
1 , [Ĥ(2)

1 , [Ĥ(2)
1 , [Ĥ(2)

1 ,Ok]]]]

= k(2L−k)((6k−2)L−(3k2−2))J4

4L2 Ok.
(A14)

and they constitute the solution (A7) of Heisenberg equation. In Figure A4 we compare
some representative correlation functions, 〈Ok(t)〉, against their analytical quartic predic-
tions based on (A8) and (A9). From the figure we clearly see that the short time agreement
is extremely good, thus confirming that the numerical average over the Gaussian couplings,
performed to get the numerical plots of 〈Ok(t)〉, is sufficiently precise to convince that
the numerical correlators 〈Ok(t)〉 are effectively computing the return amplitudes of the
operators Ok.
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Figure A4. The short time decay of the correlation functions, 〈Ok(t)〉, at various values of k, for the
SYK2 model (with a = x) and for the case L = 15, against its analytic quartic prediction, based on
(A8) and (A9).

The extension to the q > 2 case is also straightforward in principle. The main impedi-
ment for an actual q > 2 calculation is the rapid growth of the number of operators that
appear in iterative applications of the commutator action (A6). Since the right-hand side of
the commutator (A6) contains C(2L− 1, q− 1) distinct terms, the number of operators ap-
pearing in the n-times commutator action on Ok grows very quickly, for q > 2, as observed
in the following L = 5 example:

SYK2 SYK4
n 2 3 4 2 3 4

k = 1 81 657 5121 7518 406980 ?
k = 2 200 2176 21676 8568 482720 ?
k = 3 315 4011 46053 8148 499380 ?

Even after the Gaussian average has been performed, we find that the commutators (A13)
and (A14) for SYK4 model are

[Ĥ(4)
1 , [Ĥ(4)

1 ,Ok]] =
k(2L− k)J2

25L3

×
(
(k− 1)(k− 2) + (2L− (k + 1)(2L− (k + 2))

)
Ok,

(A15)

as well as

[Ĥ(4)
1 , [Ĥ(4)

1 , [Ĥ(4)
1 , [Ĥ(4)

1 ,Ok]]]] =
kJ4(2L− k)

210L6

×
(
25(3k + 1)L5 − 24(15k2 + 38k)L4 + 23(36k3

+ 122k2 + 207k− 99)L3 − 22(48k4 + 168k3 + 543k2

+ 352k− 510)L2 + 23(9k5 + 21k4 + 168k3 + 88k2

+ 156k− 304)L− 12k6 − 336k4 − 624k2 + 864
)

,

(A16)

which, compared with the analogous formulas for the SYK2 model, (A13) and (A14),
suggest how involved can be the dynamics of the model for q > 2. This is, of course,
a manifestation of the fact that for q > 2 the dynamics turns from operator-hopping to
operator growth, and this change is reflected in the cumbersome formulas, (A15) and



Entropy 2021, 23, 587 20 of 23

(A16). Anyway, we can make use of (A15) and (A16) to compare the short time decay of
the numerical correlators in the SYK4 model, against their analytical predictions based on
(A15) and (A16). The results are reported in Figure A5.

Figure A5. The short time decay of the correlation functions, 〈Ok(t)〉, at various values of k, for the
SYK4 model (with a = x) and for the case L = 15, against its analytic quartic prediction, based on
(A15) and (A16).

Also in this case, an excellent agreement is found at short times. In particular, it is
possible to note that already at the 4th perturbative order the averaged correlators at large
values of k do overlap with each other.

Appendix C. More on the Microscopic Origin of The Decay

We argued in Section 4 that two main features in the time evolution of the correla-
tors 〈Ôk(t)〉—namely the rate of the early-time decay and the strength of the late time
fluctuations—are controlled by two different physical mechanisms: the number of addi-
tional terms created at each iteration step controls the early time decay, while the dimension
of the effective Hilbert space that the operator can explore by time evolution controls the
strength of the late time fluctuations. One may wonder whether the interpretation above is
really correct or if other interpretations are possible. For example, one may suspect that
the dimension of the effective Hilbert space is the relevant quantity to consider, both at
early and late times. To rule out this possibility, and to confirm our interpretation, we can
study and compare the time evolution of the correlators of largest size, 〈ÔL(t)〉, for several
choices of the SYKq Hamiltonians, that is, for q = 2, 4, 6. Since we are taking the correlators
with the largest possible size from the very beginning, the dimension of the relevant Hilbert
space will be the same for all the three cases. Therefore, if the decay of the correlators
were determined by the dimension of the Hilbert space we should expect no differences
between operator growth and operator-hopping, in this particular case. The results of our
experiment are reported in Figure A6.
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Figure A6. The time evolution of the correlation functions, 〈ÔL(t)〉, for the case L = 15, for the case
of SYKq models with q = 2, 4, 6.

It is clear that the decay is not the same and it is faster when q gets larger, in agreement
with the intuition that the number of terms generated by each iteration step in the time
evolution is what controls the decay rate. On the other hand, as expected, we see that the
late time fluctuations are very well suppressed in all the three cases, in agreement with the
fact that the late time fluctuations are controlled by the dimension of the Hilbert space that
the operator can explore during time evolution.
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