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Abstract: Sjogren’s syndrome (SS) is a chronic autoimmune disease characterized by the infiltration
of exocrine glands including salivary and lachrymal glands responsible for the classical dry eyes and
mouth symptoms (sicca syndrome). The spectrum of disease manifestations stretches beyond the
classical sicca syndrome with systemic manifestations including arthritis, interstitial lung involve-
ment, and neurological involvement. The pathophysiology underlying SS is not well deciphered, but
several converging lines of evidence have supported the conjuncture of different factors interplaying
together to foster the initiation and perpetuation of the disease. The innate and adaptive immune
system play a cardinal role in this process. In this review, we discuss the inherent parts played by
both the innate and adaptive immune system in the pathogenesis of SS.
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1. Sjögren’s Syndrome

Sjögren’s syndrome (SS) is one of the most common autoimmune rheumatic diseases.
SS is characterized by the immune-mediated destruction of exocrine glands, including
lachrymal and salivary glands (SGs). Two types of SS have been defined: Primary SS (pSS),
which occurs in the absence of other autoimmune diseases, and secondary SS (sSS), which
is associated with other autoimmune disorders such as systemic lupus erythematosus
(SLE), rheumatoid arthritis (RA), and scleroderma [1,2]. SS is characterized by a high sex
preponderance with a ratio of nine female for one male. This sexual imbalance suggests an
involvement of estrogens and androgens in the development of the pathology [3,4] that
could account for an incidence increase of pSS during the post-menopausal stage, at the
age of 40–60 years old [5]. In general, the diagnosis is based on the combination of several
oral and ocular sicca symptoms, the presence of the autoimmune manifestations such the
production of autoantibodies anti-Ro/SSA, the labial biopsy showing a focal lymphocytic
infiltration (focus score ≥ 1 per 4 mm2) [6]. The pathophysiology of SS is very complex,
multifactorial, and consecutive to several genetic, hormonal, environmental, and immuno-
logical risk factors. Due to its complexity, the clinical course of the pathology can be divided
in several phases: An initiation phase consecutive to endogenous and exogenous factors, a
dysregulation of salivary glands epithelial cells (SGECs), and an immune system activation
and chronicity of inflammation induced by B cells hyperactivity [7]. The combination
of all these events culminates in the destruction of the salivary gland architecture, and
development of keratoconjunctivitis sicca and xerostomia. Each phase plays a significant
role in the disease. The transition from the innate immune system to the adaptive system
responses and the variety of cell types involved could explain the difficulties in developing
an efficient therapeutic strategy for pSS. This review highlights the role of immune cells
and the crosstalk between the innate and adaptive immunity in pSS pathogenesis.
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2. Innate Immune Cells Involved in Sjögren’s Syndrome

A growing body of evidence indicates that innate immunity plays a crucial role in
the pathogenesis of pSS, especially in the initiation and progression towards autoimmu-
nity [8]. We will discuss the role of each cell type implicated in this process often called
autoimmune epithelitis.

2.1. Dendritic Cells

Dendritic cells (DCs) are professional antigen presenting cells. They act as sentinels
capturing and processing antigens, migrating in T cell areas to initiate immunity and
differentiating in response to a variety of stimuli such as Toll-like receptor (TLR) ligands,
cytokines, innate lymphocytes, and immune complexes [9]. DCs play a key role in pSS as
they display an aberrant phenotype causing them to accumulate in SGs [10–12]. Saliva from
pSS patients is characterized by an upregulation of C-C chemokine receptor type 5 (CCR5)
and CCR5 ligands such as CC chemokine ligand type 3 (CCL3) and type 4 (CCL4) that play
an important role for the effective migration of DCs to inflamed tissues. In addition, lower
numbers of blood DCs in patients with pSS may be consecutive to the aberrant regulation
of apoptosis [13].

Plasmacytoid DCs (pDCs) are a specific subset of DCs that can be activated by self-
antigens through TLR-7 and TRL-9 [14,15] and to a lesser extent TLR-2, TRL-4, and TRL-
9 [16], leading to the production of type I interferon (IFN). Type I IFN acts through autocrine
and paracrine circuits sustaining a continuous reinforcing inflammatory loop. It also
induces the production of the B cell activating factor (BAFF) by monocyte circulating
cells and DCs contributing to the activation and differentiation of B cells into plasma cells
secreting antibodies [16,17].

Follicular DCs (fDCs) originate from fibroblast precursor cells and play an essential
part in the structure of ectopic germinal centers. FDCs promote B cells survival and
proliferation in the long run by retaining on their surface immune-complexes (IC), formed
by antigen-antibody-complement. Contrary to other DCs, fDCs do not display phagocytic
activity and lack lysosomes and lysozyme [18,19].

2.2. Macrophages

Macrophages are the main tissue resident leucocytes and are characterized by pleomor-
phic phenotypes. According to their microenvironment, they can display pro-inflammatory
or anti-inflammatory activities, immunogenic or tolerogenic activities, and tissue destruc-
tive or tissue regenerative activities [20,21].

In SGs specimens from patients with pSS, macrophages tend to appear early and
their number is positively correlated with the biopsy focus score [22]. Macrophages are
activated by interferon gamma (IFN-γ) and interleukin (IL)-17 secreted by type 1 T helper
cells (Th1) and type 17 T helper cells (Th17), respectively [23]. Activated macrophages pro-
duce inflammatory cytokines such as IL-1, tumor necrosis factor alpha (TNFα), IL-18, and
metalloproteases (MMPs) leading to epithelial cell damage [24,25]. Activated macrophages
can also act as antigenic peptide presenting cells through their major histocompatibility
complex class II (MHC-II) and interact with antigen-specific CD4+ T cells [23]. The lat-
ter, once activated, evolves in autoreactive clones that may perpetuate the activation of
macrophages, themselves sustaining a pro-inflammatory auto-maintained loop [25].

Manoussakis et al., studied MSG biopsies from pSS patients and demonstrated in-
creased infiltration by macrophages together with a marked expression of IL-18 by infiltrat-
ing macrophages. Moreover, IL-18 levels correlated with lymphoma risk factors such as
persistent C4 hypocomplementemia and SG enlargement [26].

Beside SGs, this process may affect other epithelia such as the eye epithelium leading
to the development of squamous metaplasia which represents the end stage of ocular
involvement in pSS patients [27,28].
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2.3. Mast Cells

Mast cells are immune cells mainly found in connective tissues. Their role in allergy
and anaphylaxis is well established. However, a great deal of evidence underlines their
possible involvement in tissue healing, angiogenesis, and autoimmune exacerbation [29].

In pSS patients, Leehan et al., confirmed that fibrosis of minor salivary glands (MSG)
is a pathological feature of pSS that positively correlates witha focus score and is not
age-related [30]. Another study identified that mast cells are strongly associated with the
fibrosis and fatty infiltration of SGs. It is hypothesized that they promote fibrosis through
interaction with local fibroblasts and through the production of enzymes cleaving and
activating MMPs, which are essential mediators of tissue injury [31].

Mast cells express TLR-2 and TLR-4, as well as receptors for IL-1 including interleukin-1
receptor type 1 (IL1R1) and suppressor of tumorigenicity 2 (ST2). Mast cells activation through
TLR-2 and TLR4 lead to the production of IL-1, TNF-α, IL-33, and chemokines such as C-X-C
motif chemokine ligand 1 (CXCL1) and C-X-C motif chemokine ligand 2 (CXCL2), which recruit
neutrophilic granulocytes and DCs. The activation of mast cells through IL1R1 and ST2
allows them to interact with T and B cells, interfering with antibody production [29]. The
activation of ST2 on mast cells through IL-33 leads to the production of pro-inflammatory
cytokines such as IL-1, IL-6, IL-13 [32], and induces a TH2 polarization of CD4+ T cells.

2.4. Salivary Gland Epithelial Cells (SGECs)

Salivary gland epithelial cells (SGECs) form the acinar secretory structure and the
ductal excretory structures in SGs [33]. SGECs constitute the main target of auto-immunity
in pSS, described as an autoimmune epithelitis [34]. Over recent years, it has become clear
that SGECs also fulfill an important role in the initiation of autoimmunity.

In pSS patients, the loss of polarity of SGECs plays a crucial part in the onset of the
local inflammatory process. Indeed, a decrease in occludin and zonula occludens 1 (ZO-1)
expression and a redistribution of claudin to the basolateral plasma membrane have been
observed in SGs from pSS patients. Furthermore, the exposure of isolated SGs cells from
healthy controls to pro-inflammatory cytokines such as TNF-α and IFN-γ reproduced
the alterations observed in pSS patients [35,36]. By altering the tight junction integrity
of SGECs, the local cytokine production may therefore account for the secretory gland
dysfunction observed in pSS patients, and subsequent decrease in saliva quality and
quantity [35].

In genetically susceptible subjects, environmental stimuli such as viruses may trigger
salivary gland epithelial cells (SGECs) through TLR activation [37,38]. More precisely, the
activation of TLR-2 and TLR-4 expressed on the surface of SGECs results in the expression
of mediators of immune activation (such as the intercellular adhesion molecule 1 (ICAM-1)),
CD40, and major histocompatibility complex 1 (MHC-1) [39], as well as in IL-15 secretion
inducing the proliferation of activated B and T cells and the generation and maintenance of
natural killer (NK) cells. Beside leading to the expression of ICAM-1, CD40, and MHC-1, the
activation of endosomal TLR3 leads to the secretion of BAFF that promotes the activation
and maturation of B cells. TLR3 activation also contributes to SGEC anoikis, a form of
apoptosis that is triggered by a loss of cell attachment to the extracellular matrix (ECM),
thereby releasing exosomes and apoptotic blebs containing autoantigens such as Ro/SSA
and La/SSB that drive autoimmunity in pSS by attracting both classical DC and pDC
within SGs [40–42].

Activated SGECs produce chemokines that attract immune cells and contribute to the
formation of germinal centers, including C-X-C motif chemokine ligand 9 (CXCL-9), C-X-C
motif chemokine ligand 10 (CXCL-10), C-X-C motif chemokine ligand 12 (CXCL12), C-X-C
motif chemokine ligand 13 (CXCL13) and C-C chemokine ligand 19 (CCL19), and C-C
chemokine ligand 21 (CCL21) [43,44]. An increased epithelial production of cytokines such
as IL-1, IL-6, and TNFα may also contribute to create a pro-inflammatory environment [45].

Activated SGECs develop the ability to act as non-professional antigen-presenting
cells [46] by expressing co-stimulation molecules (CD80 and CD86) [47] and MHC-I (HLA-
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ABC) and MHC-II (HLA-DR), adhesion molecules such as ICAM1, vascular cell adhesion
molecule 1 (VCAM-1) [46,48]. Thus, SGECs appear suitably equipped for the presentation
of antigenic peptides and the transmission of activation signals to T cells [44,49].

2.5. Endothelial Cells

Endothelial cells, expressing CD31, form a one-cell thick walled layer called en-
dothelium that upholster blood and lymphatic vessels. Beside bringing immunes cells to
inflammation sites, endothelial cells take an active and regulatory role in inflammatory
processes [50]. In response to IL-1 and TNFα, activated endothelium express adhesion
molecules such as ICAM-1, VCAM-1, and E- and P-selectins that allow the interaction and
migration of blood immune cells to inflamed tissues [51].

In pSS patients, the expression of ICAM-1 positively correlates with a focus score of
salivary biopsies [52]. Both strong vascular endothelial growth factor C (VEGF-C) and
vascular endothelial growth factor receptor 3 (VEGFR-3) expression were reported in
MSGs from pSS patients [53]. As a result, increased and anatomically aberrant lymphatic
neovascularization leads to a persistent extravasation of immune cells. In another study,
defective lymphatic vessels were also characterized by the overproduction of CCL-21 that
increased the infiltration of immune cells into inflamed tissues [54].

2.6. Mucosal-Associated Invariant T (MAIT) Cells

Mucosal-associated invariant T (MAIT) cells are innate-like T cells and can therefore
be considered a bridge between innate and adaptive responses [55]. MAIT cells express
an invariant T cell receptor (TCR) α-chain (Vα7.2–Jα33 in humans) and CD161 which is
typically expressed by NK cells. They recognize vitamin B-related peptides through the
evolutionary conserved non-polymorphic MHC-I-related molecule (MR1) [56]. In response
to different stimuli, MAIT cells also have the capacity to express both CD4 and/or CD8
co-receptors. MAIT cells are characterized by a natural memory function and by their
capacity to rapidly produce Th1, type 2 helper cells (Th2), and Th17 cytokines [55,57].

Very little is known about the contribution of MAIT cells in the pathogenesis of pSS.
Wang et al. found that MAIT cells are decreased in peripheral blood circulation but are
increased in SGs from pSS patients compared to healthy controls. From a functional point
of view, MAIT cells from pSS patients were mainly CD4+ and naïve, in contrast with MAIT
cells from controls that were almost exclusively CD8+. In addition, MAIT cells of pSS
patients displayed lower levels of activation with a reduced expression of CD69 and CD154,
and lower levels of TNFα and IFN-γ. The aberrant phenotype of MAIT cells in pSS patients
may lead to the dysregulation of the local immune responses, which would trigger local
damage in SGs and auto-immunity [57].

2.7. Natural Killer (NK) Cells

Natural Killer (NK) cells are a cytolytic component of the innate immune system.
They have the ability to sense the pathological changes of self-cells and therefore take an
important part in the immune surveillance of tumor cells and virus-infected cells [58]. NK
cells express the NKp30 receptor that is recognized by DCs and lead to the production of
Th1 cytokines such as IFN-γ and IL-12 [59].

NK cells are enriched in MSGs from pSS patients and their presence correlate with the
focus score [60]. In addition, NK cells overexpress the NKp30 receptor and SGECs express
B7-H6, the ligand for NKp30. Taken together, this may explain the hyperactivity of NK
cells and the interrelation with SGECs and DCs that lead to a subsequent activation of
innate and adaptive immunity. The expression of B7-H6 by SGECs may also be involved
in the homing of NK cells in SGs [60]. Another study identified a subset of NK cells that
expresses NKp44 and produces IL-22 in SGs from pSS patients. This subgroup has however
been reclassified and is now part of Innate Lymphoid Cells (ILCs), which will be discussed
in the Section 2.9 of this article [61].
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2.8. Natural Killer T (NKT) Cells

NK T (NKT) cells are immune components that share features of both T cells and
NK cells. They discriminate self from non-self-antigens and produce prompt immune
responses against Gram-negative bacteria [62]. They are a major source of IL-4 and to a
lesser extent of IFN [63]. Invariant NKT (iNKT) cells are a special subset of NKT cells that
seems to play a pivotal role in the regulation of immunity. They express CD161 (typical
of NK cells) and a semi-invariant T cell receptor (TCR). By linking CD1d in B cells with
their invariant TCR, iNKT cells are able to suppress B cell auto-reactivity. In addition,
under certain circumstances, they can express both CD8+ and CD4+, which leads to the
production of Th1 and Th2 cytokines [62,64].

A decreased number of NKT cells was observed in the peripheral blood of pSS
patients, which could be explained by apoptosis or homing in SGs [65]. Another study
reported an increased number of iNKT in peripheral blood but a complete absence of
iNKT cells together with an increased number of auto-reactive B cells in SGs from pSS
patients [66]. These data were corroborated by showing that the lack of CD1d following
B-cells hyperactivation lead to a greater release of autoantibodies [67]. In spite of the
studies supporting the candidacy of NK cells in the SG of pSS patients, there is actually no
sufficient proof bolstering their role as participating actively in the pathology of SS.

2.9. Innate Lymphoid Cells (ILCs)

Innate lymphoid cells (ILCs) are the innate counterparts of T helper lymphocytes [68,69].
They are mostly concentrated at epithelial barriers and rapidly release cytokines in response
to environmental triggers. They can be classified into three subsets according to the
expression of specific transcription factors and the production of cytokines that mirror the
subsets of helper T. ILC1 express the T-Box Transcription Factor 21 (TBX21, also named
T-bet), produce IFN-γ, and respond to intracellular pathogens such as viruses. ILC2 express
the transcription factor GATA Binding Protein 3 (GATA-3), produce IL-4, IL-5 and IL-13,
and respond to extracellular parasites and allergens. ILC3 express the transcription factor
Retinoic acid-related orphan receptor gamma t (RORγt), produce IL-17A and IL-22, and
react to extracellular pathogens such as bacteria and fungi [68,70,71].

ILCs have been identified in the SGs from pSS patients [61,72] and may contribute
to the formation of germinal center-like structures [73]. Blokland et al. showed that the
presence of ILC1 was associated with a higher disease activity score (ESSDAI). ILC1 could
contribute to the pathogenesis of pSS through the massive production of IFN-γ, but the
underlying mechanisms remain largely elusive [74]. In addition, an increased IFN signature
and reduced frequencies of ILC2 and ILC3 was associated with a high expression of Fas
cell surface death receptor (Fas also named CD95) by ILC2 and ILC3. It was hypothesized
that the increased Fas expression on ILC2 and ILC3 may induce an apoptosis of these cells.
These observations corroborate previous studies in mice that reported a link between type
I IFN, pDC activation, and apoptosis of circulating ILC2 and ILC3 [75–77].

A subset of ILC3 that was originally classified as NK cells because of its expression
of NKp44 was identified in SGs from pSS patients. It was found to be a major source of
IL-22 together with Th17 cells. The frequency of ILC3 was positively correlated to the
focus score [61]. Additional studies are needed to further evaluate the ILC3 function in SGs
from pSS patients. Currently, their role in the pathogenesis of SS remains to be determined
and detailed. There is not enough data purporting their role as being active players in
SS pathology.

Figure 1 summarizes the action of the different players of innate immunity in the
pathogenesis of pSS.
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Figure 1. Innate immunity in Sjögren’s syndrome. SGECs constitute the main target of auto-immunity in pSS, described as
an autoimmune epithelitis. SGECs exhibit a subverted architecture mainly characterized by altered tight junctions. In genetic
susceptible subjects, environmental stimuli such as viruses may trigger salivary gland epithelial cells (SGECs) through TLR
activation. Activated SGECs secrete the BAFF that promotes activation and maturation of B cells. SGECs also produce chemokines
such as CXCR9, 10, 11, and 12 that attract immune cells and contribute to the formation of germinal centers. Activated SGECs
have the ability to act as non-professional antigen-presenting cells by expressing MHC-I, (HLA-ABC) and MHC-II (HLA-DR),
adhesion molecules such as ICAM1 allowing them to activate T cells. TLR activation also contributes to SGEC apoptosis, releasing
autoantigens that drive autoimmunity in pSS. Activated macrophages produce inflammatory cytokines such as IL-1, TNFα,
and MMPs leading to epithelial cell damage. They can also act as antigenic peptide presenting cells through their MHC-II and
interact with antigen-specific CD4+ T cells. pDCs lead to the production of type I IFN that acts through autocrine and paracrine
circuits feeding a continuous reinforcing inflammatory loop. It also induces the production of BAFF, production contributing
to the activation of B cells into plasma cells. fDCs play an essential part in the structure of ectopic germinal centers and retain
on their surface immune-complexes, formed by antigen-antibody-complement. Mast cells contribute to the fibrosis and fatty
infiltration of salivary glands (SGs). The aberrant phenotype of MAIT cells in pSS patients may lead to the dysregulation of the
local immune responses, which would trigger local damage in SGs and auto-immunity. NK cells express the NKp30 receptor
that is recognized by DCs and lead to the production of Th1 cytokines such as IFN-γ and IL-12. SGECs express B7-H6, the
ligand for NKp30. Taken together, this may explain the hyperactivity of NK cells and the cross-talk with SGECs and DCs that
lead to a subsequent activation of innate and adaptive immunity. A subset of ILC3 was found to be a major source of IL-22 in
SGECs. Abbreviations: APC: Antigen presenting cells; BAFF: B-cell activating factor; CXCL9: C-X-C motif chemokine type 9;
CXCL10: C-X-C motif chemokine type 10; CXCL12: C-X-C motif chemokine type 12; CXCL13: C-X-C motif chemokine type 13;
DCs: dendritic cells; fDCs: follicular dendritic cells; ICAM-1: intercellular adhesion molecule 1; IFN-γ: interferon gamma; IL-:
interleukin; ILC3: innate Lymphoid Cells type 3 MAIT: Mucosal-associated invariant T cells; MHC-I: major histocompatibility
complex class I; MHC-II: major histocompatibility complex class II; MMPs: metalloproteases; NK: natural killer cells; NKp44L:
NKp44 ligand; pDCs: plasmacytoid dendritic cells; SGECs: salivary glands epithelial cells; TCR: T cell receptor; TLR: Toll like
receptor; TNFα: tumor necrosis factor alpha; VEGF-C: vascular endothelial growth factor C.
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3. Adaptive Immunity: The Insidious Role of T Cell Subsets in SS

Although B cells are involved in the last chronic inflammation phase by producing
autoantibodies, pSS is mostly dominated by T lymphocytes in the early stages of the
disease. In the past, T cells have been considered the most abundant cells in the pathogenic
picture of SS and the Th1 subset was identified as the major cell type infiltrating MSGs.
Today, the discovery of other T cell subpopulations has unveiled new avenues revealing a
further understanding of the pathogenesis of pSS. The infiltrating cells observed in pSS
SGs biopsies are composed of about 45–50% of CD4+ T lymphocytes, 20% of CD8+ T
lymphocytes, and 20% of B cells [78]. One of most common clinical features of pSS is the
reduction of lymphocytic cells in peripheral blood. Several models have been proposed
to explain this phenomenon but the most accredited model attributes this phenomenon
to a selective migration of the CD4+ T-cell to the inflamed tissue. Although this model
remains speculative since the mechanism of cell migration still remains unclear, CD4+
T-cells represent one of the significant protagonists of pSS inflammation.

3.1. CD4+ T Cells
3.1.1. Th1-Th2 Cells

During the differentiation cascade of T CD4+, the proliferating helper T cells can
differentiate into two subtypes based on distinct cytokine patterns: Th1 and Th2 cells.

Upon T-cell activation, IFN-γ and IL-12 induce the expression of T-bet and the signal
transducer and activator of transcription (STAT)-4, which is involved in the differenti-
ation of naïve CD4+ T cells into Th1 lymphocytes. Th1 cells predominantly produce
pro-inflammatory cytokines such as IFN-γ [79] and IL-2. In contrast, IL-2 and IL-4 induce
the GATA-3 transcription factor and the consequent polarization of naïve T cells into Th2.
Th2 cells produce anti-inflammatory cytokines such as IL-4, IL-5, IL-9, IL-10, IL-13, and
IL-25 [80]. Several studies have suggested that pSS was related to abnormal Th1 activation
and SGs infiltration [81]. This evidence was supported by the presence of elevated levels
of IFN-γ in serum and Th1 cells in blood. Furthermore, T cells expressing high levels of
IFN-γ and STAT-4 mRNA have been found in SGs from SS patients while Th2-related
marker transcripts were observed only in GC-positive patient SGs biopsies with severe B
cell infiltration and organization. These data suggest that these two cell types operate in
different stages of the disease. Paradoxically, a Th2 cytokine profile (IL-6 and IL-10) was
observed in blood from pSS patients while the affected tissues were mainly characterized
by Th1 and/or Th17 cells. This Th1/Th2 imbalance, generally observed in various chronic
inflammatory disorders, is not easily understood because of a limited number of studies
(Figure 2) [82].

3.1.2. Th17

The inflamed SGs from pSS patients represent a perfect environment for the recruit-
ment and polarization of Th17 cells. Although their contribution to the pathogenesis of
pSS remains unclear, Th17 cells can fulfill several roles considered potentially pathogenic.
In healthy conditions, Th17 cells play a fundamental role in maintaining mucosal barrier
integrity by inducing the synthesis of tight junction proteins [83], proliferation of epithelial
cells [84], and playing a defense role against microbes [85–87]. Th17 cells differentiate from
naive CD4+ cells in the periphery in response to different signals and cytokines secreted
by antigen-presenting cells [88]. The critical cytokine involved in Th17 differentiation
is transforming the growth factor beta (TGFβ) in combination with IL-6 or IL-21 [88,89]
which induce the activation of several transcription factors such as signal transducer and
activator of transcription (STAT)-3 that induces the expression of RORγt, a member of
the retinoic acid–related orphan nuclear hormone receptor family [88]. RORγt in syn-
ergy with RORα promotes Th17 differentiation [90]. Th17 cells produce IL-17 and other
inflammatory cytokines such as TNF-α, IL-22, and IL-26. IL-17 also called IL-17A is a
member of six cytokines family which also includes IL-17F, another Th17 specific cytokine.
IL-17A and IL-17F are characterized by a 55% amino acid sequence identity and a common
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receptor [91]. These cytokines along with TNF-α are especially involved in inducing and
mediating pro-inflammatory responses. Regarding IL-22 and IL-26, much less is known.
Several studies carried out in different cohorts of sicca-SS and sicca-non SS have showed
the presence of an elevated level of IL-17 cytokines and IL-17 mRNA in tears [92,93] and
SGs from sicca-SS patients in association with lymphocytic infiltrates [94,95].

Figure 2. Th1-Th2 imbalance. Upon T-cell activation, IFN-γ, and IL-12 induce the expression of T-bet
and STAT-4, which is involved in the differentiation of naïve CD4+ T cells into Th1 lymphocytes. Th1
cells predominantly produce pro-inflammatory cytokines such as IFN-γ and IL-2. In contrast, IL-4
induces the GATA-3 transcription factor and the consequent polarization of naïve T cells into Th2.
Th2 cells produce anti-inflammatory cytokines such as IL-4, IL-5, and IL-13. Several studies have
suggested that pSS is related to abnormal Th1 activation and SGs infiltration. It is supported by the
presence of elevated levels of IFN-γ in serum and Th1 cells in blood. Furthermore, T cells expressing
a high level of IFN-γ and STAT-4 mRNA have been found in SGs from pSS patients. This Th1/Th2
imbalance, generally observed in various chronic inflammatory disorders, is not easily understood
because of a limited number of studies. Abbreviations: IFN-γ:interferon gamma; IL-: interleukin;
pSS: primary Sjögren’s syndrome; STAT: signal transducer and activator of transcription; T-bet: T-Box
Transcription Factor 21; Th1: type 1 helper cells; Th2: type 2 helper cells.

3.1.3. T Follicular Helper Cells

T follicular helper (Tfh) cells are a subset of CD4+ T that act in collaboration with B
cells to promote and regulate humoral responses. Tfh cell differentiation process requires
initial interaction with DCs [96] and B cells. Tfh are mainly situated in secondary lymphoid
organs and express a specific combination of cell surface molecules [97]. The best marker
that defines the Tfh cells is the C-X-C motif chemokine receptor type 5 (CXCR5) [98,99]
whose expression is regulated by a B-cell lymphoma 6 (Bcl-6) transcription factor. In the
first stage of development, the naive CD4+ T cells do not express CXCR5 but only the C-C
chemokine receptor type 7 (CCR7) that allow them to enter secondary lymphoid organs
and reach the T-cell zones. Following their activation, the Tfh cells downregulate CCR7
and upregulate CXCR5, which facilitates their migration from the T-cell zones into the
CXCL13-rich B-cell follicles [100,101]. In the follicles, Tfh cells provide a large panel of
survival signals to B cells such as CD40L, IL-4, IL-21, programmed death-ligand 1 (PD-1),
and BAFF [102] and contribute to the generation of most memory B cells and plasma cells.
In SS pathology, a significantly increased number of Tfh cells were observed in the anti-
SSA/SSB positive patients, as well as in patients with increased serum IL-12, IL-21 levels,
and high focus score values suggesting that increased Tfh cells may play an important role
in disease development and progression [103,104]. In conclusion, acting as a regulator of T
cell-dependent B cell hyperactivity, the Tfh cells can prove to be a new therapeutic target in
pSS disease [105].

Another particular type of T cells sharing similar characteristics as Tfh cells are CCR9+

Th cells [106]. The latter, similarly, to Tfh cells, express Bcl-6, IL-21, and ICOS but have the
specific hallmark of displaying CCR9 and a lessened expression of CXCR5 [107]. CCR9+ T
cells have a propensity of producing significantly higher levels of inflammatory cytokines



Int. J. Mol. Sci. 2021, 22, 658 9 of 21

such as IL-7, IL-21, IFN-γ, and IL-17. Both CCR9+ and CXCR5+ T cells correlate with
increased B cell activity [108].

3.1.4. T Regulatory Cells

The self-tolerance maintenance is regulated by several processes such as the deletion
of self-reactive T cells. T-regulatory cells (Tregs) play a central role in this mechanism by
regulating the immune homeostasis and suppressing autoreactive lymphocytes through
cell-cell contact or the release of cytokines including IL-10 and TGF-β [109,110]. The role of
Tregs is explained by emerging evidences in which the suppression of immune responses
might be necessary, such as in autoimmune diseases [111–113]. Treg cells were firstly
identified as cells expressing the alpha chain of the IL-2 receptor (IL-2Rα, CD25) on their
cell surface and the ability to prevent autoimmunity in an experimental mice model [114].
The differentiation of naïve T lymphocytes into Tregs depends on the specific cytokine
microenvironment and the expression of the forkhead box protein transcription factor
P3 (FoxP3). In general, the presence of TGF-β and the absence of IL-6 promotes the Treg
phenotype instead of Th17. Thus, TGF-β is required in both cases, but the presence or
absence of IL-6 leads to the generation of Th17 or Treg cells, respectively [115]. It seems
clear that the perturbation of this process could induce the generation of pathogenic Th17
cells and the development of autoimmunity. To date, the role of Treg cells in SS still remains
controversial [116–123]. The observed discrepancies may, in part, have been due to the
strategies used to analyze Treg cells. In fact, in the past, the proportion of circulating Treg
cells was based on the expression of CD25 without taking into account the co-expression
of FoxP3. Some studies have shown a reduction in CD25highTreg cells [117,118,120,123],
but the association with clinical or serological manifestations was observed only in a few
studies [117,118]. Some other studies have observed a reduction of Treg cells in peripheral
blood in patients with a milder clinical picture without extra-glandular manifestations [120].
In contrast, other studies have reported an increase in circulating Treg cells in SS [121]
while still others have described that the Treg proportions were comparable between pSS
and controls [116,122]. Despite these conflicting evidences, a specific subset of CD4+ T
cells expressing Foxp3, TGF-β, and IL-10 but low levels of CD25 have been observed in
SS patients. This new subsets of CD4+ T cell is increased in patients with inactive disease
compared to the control and present a strong inhibitory activity against autoreactive
cells [123,124].

3.1.5. Follicular Regulatory Cells (Tfr)

Follicular regulatory T cells (Tfr) are a subtype of Treg specialized in the regulation
and suppression of Tfh and B cells activity [125]. Tfr express high levels of CXCR5,
inducible the T cell co-stimulator (ICOS) and PD-1 on the cell surface, which directs them
to follicles and GC regions [126]. In addition, Tfr cells express specific Treg markers such
Bcl6 [127], Foxp3, Nuclear Factor of activated T cells 2 (NFAT-2), Glucocorticoid-induced
TNFR-related protein (GITR), B lymphocyte-induced maturation protein-1 (Blimp-1), and
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). The Tfr differentiation program is
triggered by dendritic cells [128] and B cells [129] thanks to costimulatory signals such as
CD28 and ICOS [125,130]. NFAT-2 facilitates CXCR5 up-regulation in Foxp3+ T cells [131].
Following their differentiation, Tfr cells enter the circulation to become memory Tfr or to
migrate to the B cell zone [132]. In an experimental Bcl6fl/flFoxp3Cre (KO) mice model, the
deletion of Tfr cells makes them susceptible to the development of autoimmune diseases
and experimental Sjögren’s syndrome [133]. Periphery blood and SGs analysis from SS
patients shows an enrichment of Tfr cells with a Tfr/Tfh ratio increased if compared to
the control [134,135]. However, the involvement of Tfr cells in exacerbation of SS still
remains controversial.
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3.2. CD8+ T Cells

The histological analysis of SGs from pSS patients show that CD4+ T cells are the most
common cell type. However, recent studies have also observed the presence of activated
CD8+T cells that express a high level of human leukocyte antigen (HLA)-DR and positively
correlate with several disease features [136]. In addition, the expression of C-X-C motif
chemokine receptor type 3 (CXCR3) by CD8+ T cells in SS patients may be involved in the
migration of them to the inflamed SGs [137]. In non-obese diabetic (NOD) mouse model of
Sjögren’s syndrome, CD8+ T cells are activated and produce inflammatory cytokines. In
addition, the transfer of CD8+ T cells from NOD mice lymph nodes (LNs) into NOD-severe
combined immunodeficiency hosts induces the inflammation of the lacrimal glands. These
results demonstrate the pathogenic role of CD8+ T to induce exocrine gland autoimmunity
in NOD mice [138].

More recently, it has been suggested that CD4−CD8− (Double-Negative) T cells also
play a role in the pathogenesis of pSS. These cells are expanded in several inflammatory
situations and invade the inflamed tissues contributing to the tissue damage in autoimmune
disease such as psoriasis, SLE, and SS [139].

Innate T Cells

Different innate T cells are present in the peripheral blood and/or the SGs from pSS
patients. They include mainly gd, invariant NK T cells, and mucosal-associated invariant
T cells. These cells are activated rapidly upon stimulation and are not dependent on
MHC-II activation [140].

3.3. B Cells
3.3.1. B Cell Hyperactivity

B-cell hyperactivity represents one of the hallmarks of the SS and also plays a key
role in the autoimmunity and lympho-proliferative processes [141–143]. B cells originate
from the bone marrow from hematopoietic stem cells. During development, B cells go
through different stages of selection which exclude a substantial fraction of self-reactive
and polyreactive B cell [144]. In the first checkpoint, which takes place in the bone marrow,
polyreactive B cells are removed during a process known as central tolerance. In the second
checkpoint, in the periphery, only a small amount of self-reactive and polyreactive mature
naïve B cells could survive. The third tolerance checkpoint, known as the pre-germinal
center checkpoint, allows the exclusion of self-reactive naïve B cells from entering B cell
follicles [145]. A recent study has shown a deficiency in both early and late B cell tolerance
checkpoints in patients with SS. In addition, B cell depletion using antibodies against CD20
in the inhibitor of DNA binding 3 (Id3) KO mice model leads to a significant histological
recovery associated with an improvement of saliva secretory functions. This observation
corroborates the hypothesis that B cells could play a critical role in SS exacerbation [146].

Some studies have posited an early activation of B cells in SS by the innate immune
system. The interferon signaling pathway, which is a key feature in SS, interacts with B
cells to trigger the production of autoantibodies [147]. A new subtype of neutrophils found
in the splenic marginal zone (MZ), favored the activation and proliferation of B cells by
inducing the secretion of BAFF, (a proliferation-inducing ligand) APRIL, and IL-21 [22,148].

3.3.2. B Cell Subpopulations

Different B cell populations have been found in SGs as well as in peripheral blood
from pSS patients [149]. There is a significant increase of IgD+CD38+ B cells expressing
CD19 in pSS patients. Moreover, there is also a substantial increase in Bruton tyrosine
kinase (BTK) in the B cells of pSS patients [150]. The resulting effect of these important
numbers of B cells is enhanced B cell signaling through B cell receptors. Besides the role of
memory B cells, plasmablasts and plasma cells have been implicated in the pathogenesis
of pSS. In pSS patients with lymphoma, increased numbers of CD27 highCD19 lowCD20−

plasmablasts have been identified [151]. The immunophenotyping study of pSS defined
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six different subcellular types including increased plasmablasts, activated CD4+ and CD8+
T cells, as well as decreased numbers of CD27+ B cells, CD4+ T cells, and pDC [152]. In the
SG of pSS, immunophenotyping revealed B cells, CD8+ T cells, and activated epithelial
cells. Moreover, the increased number of plasmablasts and plasma cells strongly correlated
with disease activity as well as serum IgG and the presence of auto antibodies [152]. In SG
from pSS patients, there was an important proportion of infiltrating B cells that were fully
differentiated plasma cells [152].

3.3.3. Marginal Zone B Cells

Marginal zone B cells are a subset of splenic B cells. Their involvement in the patho-
physiology of pSS has not yet been demonstrated. An increased number of marginal
zone-like B cells in the MSG of pSS patients has been observed [153]. In addition, studies
using mice models of pSS showed that the depletion of MZ B cells prevented the develop-
ment of pSS manifestations in mice [154–157]. Even if there is no current evidence of the
importance of MZ B cells in pSS patients, an increased percentage of CD27+ memory B cells
from the SGs of the latter were identified as IgM+ cells [153]. Furthermore, the fact that
pSS associated lymphoma stem from mucosa-associated lymphoid tissue (MALT) tissue,
fuels the role of this subtype of B cells in pSS [158].

3.3.4. Regulatory B Cells

Regulatory B cells are another type of B cell involved in pSS. These types of B cells
exert their regulatory function through the production of IL-10. As such, B regulatory cells
by inducing the expansion of Treg cells and by the actions of IL-10, are able to control the
proliferation of Th1 cells and restrain the actions of TNf-α, Th17 cells IL-12 producing
dendritic cells as well as CD8+ T cells. Beyond the production of IL-10, it has been recently
shown that some B cells can also secrete IL-35. IL-35 is a cytokine which is part of the
IL-12 family and has anti-inflammatory and immunosuppressive properties. In pSS, there
is a disequilibrium between IL-12 and IL-35 in favor of IL-12. There was a significant
decrease in serum IL-35 in pSS patients that was inversely correlated with disease activity.
It has been hypothesized that the IL-12/IL-35 axis could play a noteworthy role in disease
perpetuation in pSS [159].

3.3.5. BAFF

BAFF is a pivotal cytokine that promotes the maturation, proliferation, and survival
of B cells. In pSS, BAFF plays an important role in favoring the activation and proliferation
of B cells, thereby leading to the production of autoantibodies. In essence, BAFF is secreted
by dendritic cells, monocytes, and macrophages but in pSS both T and B cells as well as
epithelial cells have been shown to release BAFF.

In pSS patients, activated SGECs are able to produce BAFF, undergirding their role
in the pathogenesis of the disease as well as demonstrating the link between innate and
adaptive immunity. This is illustrated and strengthened by studies showing elevated
levels of BAFF in the sera of pSS patients as well as its correlation with anti-Ro/SSA and
anti/La-SSB and rheumatoid factor (RF) [160]. Furthermore, a strong correlation between
BAFF secretion by monocytes and type I IFN was found. A role for BAFF in the formation
of ectopic germinal centers (GC) has also been advocated [161] but nullified by further
studies implying that other pathogenic pathways might be involved [162].

3.3.6. Germinal Center-Like Structures

The presence of B cells in SGs is an important characteristic of pSS extending from a
discrete infiltrate to the formation of the ectopic germinal center (GC) completely invading
the glands. Ectopic GC-like structures play a major role in the pathogenesis of pSS by
favoring chronic B cell activation. They are present in 10–30% of pSS patients, are associated
with the presence of autoantibodies anti-SSA, as well as an increased risk of developing
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lymphoma [163]. CXCR5 and CXCL13 are mainly involved in the formation of GC-like
structures by recruiting Tfh and B cells [164].

4. Cross Talk between the Innate and Adaptive Immunity

The pathophysiology underlying pSS is complex with different intricating players
from the innate immunity cells and the adaptive immunity T and B cells. Figure 3 illustrates
the orchestrating of these different tenants interacting together to trigger the initiation and
perpetuation of disease.
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Figure 3. Innate and adaptive crosstalk. Activated SGECs secrete BAFF that promotes the activation and maturation of B
cells into long-lasting memory B cells and plasma B cells producing auto-antibodies. SGECs also produce chemokines IL-1,
IL-6, IL18, and TNFα that attract immune cells and contribute to the formation of germinal centers. Activated SGECs have
the ability to act as non-professional antigen-presenting cells by expressing MHC-I (HLA-ABC) and MHC-II (HLA-DR)
adhesion molecules such as ICAM1, allowing them to activate T cells. TLR activation also contributes to SGEC apoptosis,
releasing autoantigens that drive autoimmunity in pSS. Activated macrophages can act as antigenic peptide presenting
cells through their MHC-II and interact with antigen-specific CD4+ T cells. pDCs lead to the production of type I IFN that
acts through autocrine and paracrine circuits feeding a continuous reinforcing inflammatory loop. It also induces BAFF
production, contributing to the activation of B cells into plasma cells. DCs also play an essential part in the structure of
ectopic germinal centers and retain on their surface immune-complexes, formed by antigen-antibody-complement.

In genetically susceptible individuals, together with the presence of a hormonal
disequilibrium as well as environmental factors such as viruses, there is an activation of
the epithelial cells. Following the activation of epithelial cells, there is an upregulation
of innate immune cells such as TLRs and ensuing pro-inflammatory cytokine production.
Furthermore, activated and injured SGECs release exosomes and apoptotic blebs containing
ribonucleoprotein autoantigens such as Ro/SSA and La/SSB that can attract both classical
DC and pDC within SGs.

The activation of DC and pDC can trigger the production of type 1 and type 2 In-
terferons. The production of IFN-α by pDC and the secretion of inflammatory cytokines
by conventional DC such as IL-12 and IFN-γ can induce tissue damage. The production
of IFN-α as well as IFN-γ can enhance the secretion of BAFF thereby fostering B cell
activation and proliferation as well as the secretion of auto antibodies. The production of
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autoantibodies can form immune complexes with the autoantigens (Ro/SSA and La/SSB)
and can further thrust the secretion of IFN-α, thereby constituting a vicious inflammatory
loop perpetuating disease progression.

It has to be stressed that the time of the differentiation factor expressions, different cell
activations, as well as chemokine signaling and homing of lymphocytes is, perhaps, the
most critical for the development, perpetuation, and severity of the clinical phenotype.

5. Conclusions

The innate and adaptive immunity are central in the pathogenesis of pSS, each of them
representing a multi-step process leading to the triggering and perpetuation of disease.
The salivary epithelial cells are at the heart of disease process, featuring as the main initial
triggers of the disease and maintaining the crosstalk with B and T cells, thereby further
relating to the production inflammatory cytokines and the production of autoantibodies.
Further knowledge on deciphering and dissecting the different intricate players of the
pathogenesis of pSS could pave the way for new avenues of therapies.
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Abbreviations

APRIL a proliferation-inducing ligand
BAFF B-cell activating factor
Bcl-6 B-cell lymphoma 6
Blimp-1 B lymphocyte-induced maturation protein-1
BTK Bruton tyrosine kinase t
CCL3 C-C chemokine ligand type 3
CCL4 C-C chemokine ligand type 4
CCR5 C-C chemokine receptor type 5
CCR7 C-C chemokine receptor type 7
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
CXCL1 C-X-C motif chemokine type 1
CXCL2 C-X-C motif chemokine type 2
CXCL9 C-X-C motif chemokine type 9
CXCL10 C-X-C motif chemokine type 10
CXCL12 C-X-C motif chemokine type 12
CXCL13 C-X-C motif chemokine type 13
CXCR3 C-X-C motif chemokine receptor type 3
CXCR5 C-X-C motif chemokine receptor type 5
CCL3 chemokine (C-C motif) ligand 3
CCL4 chemokine (C-C motif) ligand 4
CCL19 chemokine (C-C motif) ligand 19
CCL21 chemokine (C-C motif) ligand 21
DCs dendritic cells
ECM extracellular matrix
ESSDAI EULAR Sjögren’s syndrome disease activity index
fDCs follicular dendritic cells
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FoxP3 forkhead box protein transcription factor P3
GATA-3 GATA Binding Protein 3
GITR glucocorticoid-induced TNFR-related protein
HLA human leukocyte antigen
ICAM-1 intercellular adhesion molecule 1
IC immune-complexes
ICOS Inducible T-cell COStimulator
Id3 inhibitor of DNA binding 3
Baff Interferon
IFN-γ interferon gamma
IL Interleukin
IL1R1 interleukin-1 receptor type 1
IL-2Rα IL-2 receptor α
ILC innate Lymphoid Cells
iNKT invariant natural killer T cells
LNs lymph nodes
MAIT mucosal-associated invariant T cells
MALT mucosa-associated lymphoid tissue
MSGs minor salivary glands
MHC-I major histocompatibility complex class I
MHC-II major histocompatibility complex class II
MMPs Metalloproteases
MR1 MHC-I-related molecule 1
MZ marginal zone
NFAT-2 nuclear Factor of activated T cells 2
NK natural killer cells
NKT natural killer T cells
NOD non-obese diabetic
PD-1 programmed death-ligand 1
pDCs plasmacytoid dendritic cells
pSS primary Sjögren’s syndrome
RA rheumatoid arthritis
RORγt retinoic acid-related orphan receptor gamma t
SGs salivary glands
SGECs salivary glands epithelial cells
SLE systemic lupus erythematosus
SS Sjögren’s syndrome
sSS secondary Sjögren’s syndrome
ST2 suppression of tumorigenicity 2
STAT signal transducer and activator of transcription
TBX21 or T-bet T-Box Transcription Factor 21
TCR T cell receptor
Tfh T follicular helper
Tfr follicular regulatory T cells
TGFβ transforming growth factor beta
Th1 type 1 helper cells
Th17 type 17 helper cells
TLR toll-like receptor
TNFα tumor necrosis factor alpha
Tregs T-regulatory cells
VCAM-1 vascular cell adhesion molecule
VEGF-C vascular endothelial growth factor C
VEGFR-3 vascular endothelial growth factor receptor 3
ZO-1 zonula occludens 1
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