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Abstract: Neuroinflammation is a crucial process associated with the pathogenesis of
neurodegenerative diseases, including Parkinson’s disease (PD). Several pieces of evidence suggest
an active role of lipid mediators, especially epoxy-fatty acids (EpFAs), in the genesis and control
of neuroinflammation; 14,15-epoxyeicosatrienoic acid (14,15-EET) is one of the most commonly
studied EpFAs, with anti-inflammatory properties. Soluble epoxide hydrolase (sEH) is implicated
in the hydrolysis of 14,15-EET to its corresponding diol, which lacks anti-inflammatory properties.
Preventing EET degradation thus increases its concentration in the brain through sEH inhibition,
which represents a novel pharmacological approach to foster the reduction of neuroinflammation
and by end neurodegeneration. Recently, it has been shown that sEH levels increase in brains of PD
patients. Moreover, the pharmacological inhibition of the hydrolase domain of the enzyme or the use
of sEH knockout mice reduced the deleterious effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) administration. This paper overviews the knowledge of sEH and EETs in PD and the
importance of blocking its hydrolytic activity, degrading EETs in PD physiopathology. We focus
on imperative neuroinflammation participation in the neurodegenerative process in PD and the
putative therapeutic role for sEH inhibitors. In this review, we also describe highlights in the
general knowledge of the role of sEH in the central nervous system (CNS) and its participation
in neurodegeneration. We conclude that sEH is one of the most promising therapeutic strategies
for PD and other neurodegenerative diseases with chronic inflammation process, providing new
insights into the crucial role of sEH in PD pathophysiology as well as a singular opportunity for
drug development.
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1. Parkinson’s Disease Outline

Due to the increase in population ageing, the incidence of both neurodegenerative diseases and
chronic inflammatory conditions are on the rise [1]. Neurodegenerative disorders are now the leading
cause of disability in the world, and Parkinson’s disease (PD) is a disabling neurological disease that has
the fastest growing index among neurological diseases. PD is a progressive neurodegenerative disease
that produces movement disorders. Indeed, it is the most common age-related neurodegenerative
motor disease, which implies a gradual loss of motor control that ends up with patients suffering
from resting tremors, muscle stiffness, bradykinesia, and postural instability [2]. PD is an insidious
onset disease, and the symptoms are subtle at the first stage, being sometimes overlooked, i.e.,
the lack of tremor during rest does not exclude the diagnosis because it can be absent in 30% of the
affected people. Other characteristic signs of PD are hypomimia–hypophonia, dysarthria, sialorrhea,
and respiratory difficulties. At the brain level, PD is characterized by the degeneration and loss of
neurons in the substantia nigra pars compacta (SNc), which causes a selective lack of dopamine (DA),
one of the neurotransmitters implicated in regular movements [3]. Lack of DA causes movement control
alteration, leading to typical motor symptoms, such as resting tremor or stiffness. Beside for the SNc
and the dopaminergic system, other neurotransmission systems can be affected by α-synuclein (α-syn)
deposition, including glutamatergic, noradrenergic, serotoninergic, cholinergic, and histaminergic
neurons [4]. In fact, the first brain area affected by α-syn deposition appears in the anterior olfactory
structures and the dorsal motor nucleus of the vagus nerve, which comprises stage 1 according to
Braak theory; afterwards the raphe system and the locus coeruleus can suffer of α-syn deposition
(stage 2) [5]. α-Syn reaches the SNc in stage 3, and finally, the hippocampus can also be affected (stage
4). The progression described by Braak shows that noradrenergic and serotoninergic systems are also
disturbed in PD. Additionally, specific clinical signs can be explained by noradrenergic dysfunction,
which can be significant and anticipate onset of motor symptoms [4]. It is mandatory to keep in mind
that the loss of DA in the nigrostriatal pathway is secondary to the axonal degeneration caused by
homeostatic disturbances in the SNc [6].

According to the increase in life expectancy of citizens, the number of patients suffering PD
duplicated in the last 25 years, and the prevalence will continue growing next years from about 1%
to 2% of the world population [7–9]. One of the utmost risk factors for developing PD is age [10].
Most commonly, the disease starts between the ages of 50 and 60. Thus, the prevalence increases
exponentially from the sixth decade of life. When the PD appears before the age of 50, it is called
an early-onset PD. The 95% of PD cases are sporadic; that is, they are not due to a specific genetic
alteration [10]. However, it is estimated that between 15% and 25% of people with the disease have a
previous familiar history of PD. Additionally, some studies cite as a risk factor continued consumption
over the years of well water or exposition to herbicides and pesticides [11].

Although the mechanisms leading to cell death and several of the symptoms of PD are
clearly understood, the fundamental question of the etiology of the pathogenesis remains unknown.
Furthermore, about the 5% of all cases present symptoms before the age of 60 years, mainly caused by
mutations in several genes such as SNCA, LRRK2, PARK, PINK1, and DJ-1 [12,13].

2. Therapeutic Strategies for Parkinson’s Disease

To date, there is no curative treatment for PD; therefore, the clinical strategy to treat patients
is focused on re-establishing the DA content in the brain to improve the symptoms and quality of
life of the patients [13]. The choice of a particular therapy depends on factors such as age, clinical
features, and severity of PD and associated disorders. Occasionally, a combination of drug therapy
is used for more effective control of symptoms [14]. At present, drugs authorized for PD treatment
include L-DOPA, which is a DA precursor, monoaminoxidase inhibitors (MAO)-B (e.g., selegiline,
rasagiline), catecol-O-methyltransferase (COMT, e.g., tolcapone, entacapone), as well as DA agonists
(e.g., pramipexole, rotigonine) and other anticholinergics or amantadine [15]. Recently, the FDA
approved pimavanserin, a serotonin receptor (5-HT2a) inverse agonist, showed decreased frequency
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and/or severity of hallucinations and delusions without worsening the primary motor symptoms.
Nevertheless, all treatments are merely symptomatic but neither modify the progression of the DA
associated neuronal loss nor reduce the underlining cellular process that allows the degeneration of the
SNc nor the loss of movements control. Pharmacological treatment, although effective, is characterized
by undesirable and discouraging motor complications associated with increased occurrence of motor
complications such as motor fluctuations (“on–off” phenomena, wearing-off) tremors, or shakes [16].
In parallel, there are practical, although limited, non-pharmacological symptomatic PD treatments
mainly effective in motor symptoms including deep brain stimulation of the subthalamic nucleus
(STN) or the internal part of the globus pallidus (GPi) that have complemented these pharmacological
approaches [17].

It is noteworthy that we are far from having a completed therapy that delays the progression of the
illness, reducing the disabling motor symptoms but also the psychiatric manifestations, like depression,
which impair quality of life. Indeed, the efficacy of L-DOPA, the most effective drug, decreases and
has unwanted side effects that appear over time. Thus, it is mandatory to face the increase in PD
prevalence not only for prevention (by changes in lifestyle such as exercise or diet) [18], reducing risk
factors related to the environment (e.g., smoking, pesticides, among others) [19–21], or improving
the symptomatic treatments, but also developing research programs based on the identification of
novel targets and drugs to target them. Likewise, therapeutic strategies that act depending on the
stage of the disease will be the optimal scenario to reduce or block its progression. As mentioned,
in PD, a progressive but heterogeneous pattern of degeneration occurs, causing a plethora of motor
and non-motor symptoms and non-motor alterations [22].

In the last years, a considerable number of drugs that do not have DA activity have emerged and
have been tested in clinical phases in an attempt to control the motor fluctuations (on–off phases) related
with PD (for a review see [23]) and importantly, to deliver novel disease-modifying therapies. On the
one hand, adenosine A2A antagonists (istradefylline, preladenant, and tozadenant (NCT02453386))
have been proposed because adenosine participates in the onset of motor misbalance [24–28].
Istradefylline is another A2A antagonist that has been approved as add-on therapy by the FDA
in 2019 (NCT01968031). Thus, caffeine, an A2A antagonist, was described as a putative compound
that ameliorates motor and non-motor symptoms of PD (NCT01738178). Noteworthy, the implication
of glutamate in the PD has been demonstrated through two classes of receptors: ionotropic
receptors (NMDA and his inhibitor amantadine) and metabotropic receptors. Metabotropic glutamate
receptors 4 (mGlu4) and 5 (mGluR5) are related to the motor symptoms of PD [24,29]. The use of
mavoglurant and diplaglurant (NCT01336088), named as negative allosteric antagonists of mGluR5,
and foliglurax (NCT03162874), named as a positive allosteric agonist of mGlu4, have been tested
in PD [30,31]. Other non-dopaminergic therapies in development for the symptomatic treatment of
PD are serotoninergic drugs, including the 5-HT1a/1b receptor agonist eltropazine (NCT02439125),
the 5-HT6/2a receptor antagonist SYN120 (NCT02258152), related with PD dementia, and buspirone
(NCT02803749), a 5-HT1a and alpha1-adrenergic receptor agonist. Lastly, several clinical trials
based on pharmacological treatments with nicotine (NCT00873392), inosine, a urate precursor
(NCT00833690) [32], and isradipine (a calcium channel blocker) started in the last years with different
degrees of development and success. For instance, the antihypertensive drug isradipine failed in
phase III clinical studies (NCT02168842) but restarted with a new phase III clinical trial design [33].
Creatine monohydrate is an example of repurposing drugs; however, it failed also to improve clinical
outcomes (NCT00449865), discouraging the use of creatine monohydrate in patients with PD [34].

The multifactorial pathophysiology of PD challenges the development of novel disease-modifying
therapies. Some of these approaches aim to address mutations in crucial genes for PD, including
α-synuclein (α-syn), PARKIN, and GBA [35]. Although most of the studies usedα-syn as a biomarker for
PD diagnosis and progression [36], α-syn is also a relevant therapeutic target [37] for PD. For instance,
α-syn-aggregation modulators (as the use of nilotinib, NCT02281474) or immunization (active or
passive) against α-syn is currently studied in clinical trials. An interesting revision on current and
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researched drugs in PD therapy can be found in Oertel and Schulz (2016) [23]. Several studies also
suggest that LRRK2 inhibition is not only useful for mutation carriers’ patients but also for sporadic
PD patients [38]. Following this therapeutic strategy, in 2019, Delani Therapeutics started a clinical
phase dosing PD patient with DNL151. The GBA mutation is closely related to α-synucleinopathy.
Thus, GBA inhibitors could also be of interest for patients with sporadic PD. As an example, Venglustat
(NCT02906020), a GBA inhibitor, is currently being tested in clinical trials.

Finally, there are other disease-modifying strategies to face PD, but not directly with mutated genes.
Several GL1 agonists have entered clinical trials, demonstrating the clinical connection between PD
and diabetes mellitus type 2 (DM2) [39]. Exenatide (NCT03456687) and liraglutide (NCT02953665) are
GLP1 agonists assayed for the treatment of PD. Finally, the use of coenzyme Q10, a potent antioxidant,
failed to demonstrate an improvement in clinical trials [40]. Neither pioglitazone [41,42] nor genomic
strategies to increase neurturin (AAV-mediated gene therapy) succeeded in the clinical trials [43,44],
since disease-modifying activity was not demonstrated.

Despite all efforts, there is currently no disease-modifying treatment, and hereby it is an unmet
medical need that requires an intensification of the research with new strategies focused on disease
modification therapies, rather than only symptomatic therapies. As a consequence, this goal stresses
the search for new pharmacological targets that open new avenues far from the abovementioned
classical approaches to face PD.

3. Pathological Hallmarks of PD and the Role of Inflammation

The pathological hallmarks of PD are oxidative stress (OS), mitochondrial dysfunction, abnormal
α-syn accumulation, aggregation in Lewy bodies (LB) and other aberrant protein aggregation,
and importantly, inflammation [45,46].

Regarding the OS and reactive oxygen species (ROS), both are implicated in dopaminergic
neuron damage, which leads to the primary disease characteristic, namely motor dysfunction [45].
Some authors propose that increases of free radicals results from oxidation of cytosolic DA and
oxidative metabolism of the neurotransmitter [47]. However, others postulate that the overload of free
iron produces the primary cause for damage of SNc and DA neuron death in PD [48]. OS is mainly
associated with mitochondrial dysfunction because the mitochondria produces approximately 90% of
the cell ROS. Consequently, mitochondrial dysfunction plays an important role in the pathogenesis in
PD. Thus, the dynamic mechanisms to maintain the cellular mitochondrial pool and energetic activity
such as mitophagy and biogenesis are altered [49].

Deposition of α-syn is another pathological hallmark of PD in the brain, including the striatum.
Accumulation of aggregated α-syn is characteristic, and it has been shown in multiple brain regions
of PD patients, but its participation in the development of diseases is still poorly understood [50].
Following OS, mitochondrial dysfunction, and α-syn aggregation, neuroinflammation developed and
its role in producing neuronal death in PD has been investigated [51,52].

The role of neuroinflammation in PD has been described as an important event involved in
pathophysiology. The relevant role of inflammation in PD pathogenesis is evident from the observation
that the pro-inflammatory state is a typical hallmark in several age-related diseases, leading to
neurodegeneration. Most of the neurodegenerative diseases present inflammatory reactions by
activation of the innate immune response as well as the adaptive immune response factors. Concerning
brain immune response can be focused on activated astrocytes and microglia, both cell types are able
to develop the main neuroinflammatory features, leading to the exacerbation of DA neurons in the
SNc [53]. Both cell types release a diverse number of inflammatory mediators, including reactive
oxygen and nitrogen species, cytokines, chemokines, prostaglandins (PGs), or complement cascade
proteins. Uncontrolled release of those factors can disrupt the blood–brain barrier (BBB), allowing
the infiltration of immune cells into the brain. In fact, Braak’s hypothesis on the basic mechanisms
for PD onset postulated that a pathogen or environmental toxin provoke local gut inflammation and
oxidative stress initiating α-syn deposition in peripheral tissues that can be spread to the CNS, leading
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to neuronal death. Surviving neurons and microglial cells can then be implicated in a pro-inflammatory
mediator release, closing a neuroinflammation cycle processes [5,54].

Interestingly, in PD patients, human leucocyte antigen-DR-positive microglia increases, as well
as increases in tumor necrosis factor-alpha (TNF)-α, interleukin-1 beta (IL1-β), interleukin 6 (IL-6),
inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)2 in the striatum and the SNc, being
the first evidence of the participation of inflammatory pathways in disease pathogenesis [55]. Of note
in models of inflammation such as that given in lipopolysaccharide (LPS) pro-inflammatory lesion,
tyrosine hydroxylase (TH), a marker for DA neurons, was reduced in mice [56]. TNF-α was the chief
mediator of this neuronal loss because mice lacking TNF-α receptors or TNF-α blockers had delayed
PD progression in those mouse models [56,57].

In addition, a recent study has shown that female mice were spared from the same
neurodegenerative effects [58]. Microglia in mice pre-primed with LPS in vivo also caused more
significant DA neuron loss, as assessed by immunohistochemistry (IHQ), following an insult by an
environmental toxin. However, mutant mice that were lacking the gp91 phox subunit of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (an essential function of the enzyme) showed no
difference in IHQ visualization of DA neuron damage. With NADPH oxidase being a key mediator
of OS, these findings would support DA neuronal apoptosis via oxidative damage [59]. Finally,
other growing evidence supporting the role of neuroinflammation in PD include the implication of
inflammatory mediators in the nigrostriatal DA neuron death during the developing of PD [60].

The important involvement of neuroinflammation in PD offers an attractive therapeutic strategy
to mitigate the disease. New molecular targets are being proposed that could potentially prevent or
delay nigrostriatal death. Those new targets create the opportunity for disease-modifying treatment to
what is currently an incurable disease.

4. The Role of Soluble Epoxide Hydrolase and Epoxy Fatty Acids in Neuroinflammation

Polyunsaturated fatty acids (PUFAs), namely theω-3 andω-6 families, are considered essential
components for keeping healthy physiology [61–63]. Importantly, these two families of acids have
opposite physiological functions; thereby, their ratios have implications in the pathophysiology for
some illnesses [64]. The primary actions of PUFAs in the brain include the maintenance of neuronal,
glial, and endothelial functions. PUFAs participate in the structure and the maintenance of neuronal,
glial, and endothelial cells function in the brain. In mammals, linoleic acid is theω-6 PUFA precursor
of arachidonic acid (ARA) and is provided by dietary vegetables [65]. On the other hand, α-linolenic
acid, aω-3 PUFA, is the precursor of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

ARA, located in the plasma membrane, is released by phospholipids after phospholipase A2 (PLA2)
activation. Then, it is metabolized into bioactive derivatives by three main enzymes: cyclooxygenases
(COXs), lipoxygenases (LOXs), and cytochrome P450s (CYPs) [63,66–72]. Prostaglandins (PGs)
and thromboxane are produced by COX, leukotrienes, lipoxins, and hydroxyeicosatetraenoic acids
(HETEs) by LOX, 20-HETE by CYP hydroxylases and finally epoxy fatty acids (EpFAs), such as
epoxyeicosatrienoic acids (EETs), by CYP450 oxidases, including epoxygenases (Figure 1). Concretely,
CYP450 epoxygenases produce four EETs regioisomers, i.e., 5,6-, 8,9-, 11,12-, and 14,15-EETs.

EETs and epoxydocosapentaenoic acids (EDPs), as well as some other EpFAs, are regulators of
inflammation processes and are particularly important in the brain. The potent anti-inflammatory
properties mediated by EpFAs are lost when they are metabolized by soluble epoxide hydrolase (sEH)
and the microsomal epoxide hydrolase (mEH) [73,74]. The anti-inflammatory effects of EETs are
described in different and diverse animal models. Moreover, EETs also exhibit antioxidant properties,
are effective in reducing mitochondrial dysfunction [75] and apoptosis and improve cerebral blood
flow [76].

The localization of EETs includes the heart, lungs, kidneys, gastrointestinal tract, and brain. Thus,
sEH is expressed in those organs [77]. Regarding the sEH expression in the human brain, the neuronal
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body, astrocytes, and oligodendrocytes present important levels of sEH [77]. sEH has also been
described in meningeal blood vessels and the choroid plexus of the human brain.

Figure 1. Arachidonic acid (ARA) metabolism tree. Epoxyeicosatrienoics acid (EET) generation and
action site of sEH.

sEH (sEH; EC 3.3.2.3) is encoded by a gene, EPHX2, localized on chromosome 8, with 45 kb
and 19 exons that encode a mature protein of 555 amino acid residues [78,79]. sEH was described
first in 1972, and its function is to transform epoxides (EETs) to their corresponding diols [80–83].
Structurally, human sEH is a bifunctional homodimeric enzyme, showing phosphatase and hydrolase
activity. Hydrolase activity is localized in the C-amino terminal domain, whereas the N-terminal
domain presents phosphatase activity [84]. The sEH C-terminal domain is in charge of metabolizing
endogenous EpFAs substrates [85] and modulating their activity and intracellular fate [86,87].

Of interest, inhibition of sEH improves the beneficial effects of EETs. As an example, in vascular
endothelial cells, arteriosclerotic injury causes inflammation by reducing the PPAR-γ activity that
is prevented by changes in vascular laminar flow processes. The presence of EETs into vascular
endothelial cell preparations leads to an anti-inflammatory effect by increasing PPAR-γ activity [88].
The sEH inhibition (sEHi) through (12-(((tricyclo(3.3.1.13,7)dec-1-ylamino)carbonyl)amino)dodecanoic
acid) (AUDA) enhanced PPAR-γ activity in vascular endothelial cells [89].

A few decades ago, it was described that sEHi could be a therapeutic strategy in some age-related
diseases through the increased availability of EETs (for revision see [89]). The beneficial effects of sEH
inhibitors in the peripheral systems suggest their potential in target neuroinflammation. Different
works have linked the anti-inflammatory effect of sEH inhibitors with increases in EET levels that
prevent the amplification of the pro-inflammatory cytokines and nitric oxide metabolite levels [89,90].
Given the potent anti-inflammatory effects of the EETs, their endogenous modulation in the brain
will be of great interest. Thus, sEHi constitutes a potent new strategy to maintain EES biological
activity during disease, being a novel and promising approach for different neurological diseases,
including PD.
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5. Soluble Epoxide Hydrolase in Central Nervous System Disorders

The impressive anti-inflammatory effects of the natural EETs have been described in multiple
animal models of several pathologies. They have been tested against diabetes, cardiovascular
disease, stroke, traumatic brain injury, PD, epilepsy, cognitive impairment, dementia, depression,
and neuropathic pain [89]. Specifically, several reports demonstrated the beneficial effects of sEHi in
models of ischemia-induced brain injury [74,91]. Authors suggested that EETs are key regulators of
neuronal health and cerebrovascular flow under ischemic conditions, thereby pointing out that the
sEHi has a neuroprotective function under those pathological conditions [92–95]. Likewise, Ephx2 gene
deletion in mice and sEHi by AUDA reduced infarct size after ischemic stroke and had a neuroprotective
effect through non-vascular mechanisms [92,96] because EET degradation was prevented. In addition,
the beneficial effects of EETs and the sEH inhibitors were also described in animal models of protein
misfolding as scrapie [97]. This activity is of particular interest for other neurodegenerative diseases
such as PD or AD characterized by an accumulation of aberrant proteins in the brain [97].

Other studies suggest the improvement of cognitive decline induced by vascular alteration, apart
from ischemia, for example, the age-related vascular cognitive decline [98]. It is also well documented
that EETs produced by perivascular nerves mediated neurogenic vasodilation [95]. Participation of
EETs, and therefore sEH activity was reported in rodent models of seizures [99,100]. The beneficial
effects reported in those models included both anti-inflammatory properties of EETs or the treatment
with sEHi, as AUDA. Interestingly, sEH-KO mice and AUDA-treated mice displayed improved
behavior, decreased brain edema, reduced brain tissue damage and apoptosis, and reduced BBB
permeability post-traumatic brain injury [101].

It was reported that sEH plays a crucial role in depression [102,103] and in depressive symptoms
observed in PD patients and LBD patients [103,104]. Furthermore, there is evidence that confirms
the participation of the neuroinflammation, OS, and peripheral and brain lipid metabolism in the
pathophysiology of the depression [105,106]. In the case of depression, it has been demonstrated
that protein expression of sEH is higher in the prefrontal cortex, striatum, and hippocampus in mice
models of depression in comparison with control mice. Furthermore, the most important data are
that sEH levels in the parietal cortex from major depressive disorders patients are also higher than
in healthy patients. Deletion of the Ephx2 gene in mice increased the stress resilience after chronic
social defeat stress. Worthy of note, sEHi has beneficial effects in animal models of depression [102].
Of note, it was reported that astrocytic EET signaling in the prefrontal cortex is implicated in depressive
behaviors [107]. Published data up to now suggests the possibility to establish sEH inhibition as a new
approach to treat mood and cognitive symptoms of psychiatric disorders.

Considering that, the importance of neuroinflammation processes in those pathologies has not
ruled out thinking to develop experimental strategies to demonstrate the suitability of sEH as a putative
target for new treatments in Alzheimer’s disease (AD). The design of new compounds with high efficacy
and potency to inhibit sEH, but also with adequate pharmacokinetic properties to enter the CNS, is a
challenge that must be faced. Recent studies have been described, such as the use of sEH as a new
pharmacological target for neurodegenerative diseases such as PD [108] and AD [109,110]. Recently
it has been demonstrated in two mice models of early- and late-onset AD (5XFAD and SAMP8) that
treatment with several sEHi reduced neuroinflammation markers, OS and endoplasmic reticulum (ER)
stress, after modifying the oxylipin profile, including EETs, the levels of which increased. Interestingly,
sEHi impacted on AD hallmarks as amyloid plaques and tau hyperphosphorylation, preventing
cognitive decline after oral administration [110]. Additionally, Lee et al. (2019) [111] demonstrated
that sEH deletion in an AD mice model (APP/PS1) reduced and delayed the development of cognitive
impairment and specific markers of the disease such as β-amyloid deposition and apoE expression.

EET also regulates the neurotrophic role of astrocytes in neurodegenerative disease (Figure 2).
To this regard, it was reported that 14,15-EET increase astrocyte-derived brain-derived neurotrophic
factor (BDNF) release, increasing the neuroprotective role of astrocytes in ischemic injury [112] and
reduced glutamatergic toxicity through astrocytic mGluR5 [113].
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Figure 2. Crosstalk between glial cells, neuroinflammation process, synaptic function, and
phosphorylation of α-synuclein favoring aggregation described in PD models [111]. Dotted red
line and green line indicate putative regulation role for sEHi.

Of note, EETs are also related to paracrine signaling, and this means that they could be implicated
in the positive action of sEH inhibition [114,115]. sEH activity is associated with the metabolism of
EpFAs, altering the levels of EETs and EDPs. Indeed, the more sEH activity increases, the more EETs
diminish their paracrine action and can exacerbate the progress or onset of the illness. Thus, it is
proposed that the co-treatment with sEHi and ω-PUFAs could be a new approach to consider the
different neurological disorders in which a role for sEH and EETs are described.

As mentioned above, sEH has a wide distribution in the organism. Therefore, the increase of EETs
in peripheral tissues by systemic sEHi can reduce the systemic inflammatory mediator that could be
implicated in beneficial action observed in brain disorders after sEHi treatment [116,117]. The role
of EETs increases in peripheral tissues and its impact on CNS disorder development deserves an
in-depth knowledge of systemic anti-inflammatory activity mediated by sEHi. However, up to now,
an interesting contribution has been anticipated to the prevention and treatment of neurodegenerative
disorders with an intense inflammatory process.

6. sEH-Phosphatase Activity and Neurodegenerative Diseases

sEH is a bifunctional enzyme, with phosphatase as well as from hydrolase activity [84]. It has
been described that increased activity of sEH diminished the cell cholesterol content and lower plasma
lipidic levels. However, when hydrolase activity was inhibited, increases in cellular cholesterol and
lipid levels were found. The increase in cholesterol content can be linked to the C-terminal domain of
sEH, which means a link to the phosphatase catalytic core [118].
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Brain cells (neurons and glia) concentrate a quarter of the cholesterol in the body [119]. Isolation
of axons by oligodendrocyte myelin sheaths include most of the cholesterol in the brain. Cholesterol
is also a key molecule to maintain neuronal morphology and synaptic transmission. Importantly,
cholesterol within the brain is synthetized locally because cholesterol does not cross the BBB [120,121].
Consequently, the cholesterol level in the periphery is independent of that in the brain. Nevertheless,
there is a constant efflux of this lipid outside the brain, because neuronal cytochrome P450 oxidase
Cyp46a1 hydroxylates cholesterol to 24S-hydroxycholesterol (24-OHC), which can be delivered into
the circulation, being metabolized by the liver.

As mentioned, it is demonstrated that the sEH-phosphatase domain acts in cholesterol biosynthesis,
reducing plasma cholesterol [118,122]. Several neurodegenerative hereditary diseases are associated
with disturbances in cholesterol metabolism within the brain, such as Fabry disease, Niemann-Pick Type
C disease, Gaucher disease, and GM1 and GM2 gangliosides [123–125]. Additionally, the implication of
cholesterol metabolism in the ethiopathogenesis of stroke, schizophrenia, depression, and amyotrophic
lateral sclerosis, AD or PD, has been described. In the case of AD [126] as an example, it is known
that apolipoprotein E allele ε4 increases the risk of AD [127]. Therefore, understanding the effects of
the phosphatase domain of sEH on cholesterol levels should open new therapeutic opportunities for
disorders where cholesterol can play a role in the onset of the development of the diseases.

7. Soluble Epoxide Hydrolase in Parkinson’s Disease

Neuroinflammation is one of the pillars for onset and progression of PD [53]. An early investigation
of common polymorphisms of EPHX1 and EPHX2, the genes coding for sEH, in PD patients did not find
statistically significant differences in comparison with the healthy control. These first results seemed to
discard that sEH expression was important for modifying the risk of developing PD [128]. However,
experimental evidence published in the last decade pointed out the implication of sEH in the neuronal
processes implicated in the development of PD, opening an alternative for the pharmacological
modulation of this enzyme in the therapy of PD. In the same manner as that in depressive disorders,
sEH levels in the brain of PD patients were higher than in that of the control [82,96].

MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced parkinsonism is a well-established
preclinical in vivo model to study the nigral death (loss in TH-positive cells in the SNc reduced DA
and DA metabolites in the striatum) and the motor disabilities characteristics of the disease. However,
this model does not develop α-syn aggregates [129,130].

Preclinical testing demonstrated the efficacy of both sEH inhibitors and sEH gene knockout
against MPTP-induced Parkinsonism in mice [131]. In this model, sEH deficiency prevented DA
(TH-positive) neuronal loss and improved motor activity, measured by the rotarod performance test.
Similar results were obtained in a paraquat-induced mouse model of PD, where sEH gene deficiency
attenuated TH-positive cell loss [131]. Moreover, the natural anti-inflammatory substrate of sEH,
14,15-EET, protected TH-positive cells and alleviated the rotarod performance deficits of wild-type
mice but not sEH-knockout mice, indicating that in the absence of sEH, the endogenous levels of EETs
are high enough and then exogenous administration is not useful [131]. Of importance, sEH deficiency
neuroprotective effects were lost when 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), the 14,15-EET
antagonist, was administered to mice, linking the beneficial effects observed directly with this oxylipin
(14,15-EET). Furthermore, it has been demonstrated that deletion of the sEH gene protected against
MPTP-induced neurotoxicity in the mouse striatum [108,132], while overexpression of sEH in the
striatum significantly enhanced MPTP-induced neurotoxicity [108]. Moreover, the levels of the sEH
protein in the striatum from MPTP-treated mice were found to be significantly higher than in the
control group [108].

Regarding the aberrant aggregation of α-syn in DA neurons, a possible interaction between
ω3-acid DHA and α-syn has been postulated, with high levels of DHA found in human brain areas
with α-syn [133]. A positive correlation between phosphorylation of α-syn and sEH expression was
recently described in PD. Likewise, higher expression of sEH associated with a higher loss in striatal
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markers such as TH-positive neurons and DA acetyltransferase (DAT) protein levels were found [108].
Authors also suggested a role for sEH in the phosphorylation of α-syn in the mouse striatum because
8,9-epoxy-5Z,11Z,14Z-eicosatrienoic acid (8,9-EpETrE) was able to reduce levels in MPTP-treated mice
(Figure 2).

A familial form of PD, named PARK2, is caused by a mutation in the PARKIN gene [134].
Interestingly, human induced pluripotent stem cell (iPSC)-derived neurons from PARK2 patients
showed a higher EPHX2 gene expression and apoptotic death compared with control neurons [108].
The sEH inhibitor 1-(1-propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (TPPU) was able to
reduce apoptosis in the human PARK2 iPSC-derived neurons, reinforcing the hypothesis that increased
sEH expression in the striatum may be implicated in the development of PD. Moreover, pharmacological
inhibition by the sEH inhibitor TPPU or sEH deficiency protected against MPTP-induced OS in the
mice striatum. MPTP induces several stressful signs in neurons, as ER stress, and inhibits beneficial
pathways such as the Akt pathway. MPTP reduces DA and DA metabolite levels in the striatum of
treated wild type (WT) mice, but these effects were prevented by TPPU and were undetectable in
sEH deficient mice [108]. Likewise, sEH deletion reduced MPTP-induced ER stress in the striatum,
and pre-treatment with TPPU had similar beneficial effects [108]. Moreover, Qin and collaborators [131]
determined that the sEH deficiency does not allow the inactivation of the Akt pathway induced by
MPP+ in neuronal cultures observed in WT cultures. They hypothesized that sEH deficiency increases
14,15-EET in MPTP-treated mice, which in turn activates the Akt neuroprotective pathway, preventing
TH-positive neurons loss and behavioral dysfunction.

There is a growing interest in the implication of systemic inflammation on the onset and progression
of neurodegenerative diseases, including PD [135]. Recent studies also highlight the role of the immune
system in the pathogenesis of PD. Environment and aging impact the immune system, and there is
strong evidence that the immune system is important in the onset and early phases of PD. Importantly,
the inflammatory process is more than a consequence of disease, contributing inexorably to the
progression of striatum degeneration [136,137]. GWAS studies demonstrated that several genes
related to higher susceptibility to develop PD are related to immune functions [138,139]. Furthermore,
genes mutated in familial or sporadic PD (such as PARK or LRRK2, DJ-1) are present in microglia and
astrocytes [140]. Finally, several polymorphisms in genes related to pro-inflammatory factors (such as
interleukins or human leukocyte antigen (HLA) complexes) have been demonstrated to increase PD
susceptibilities [141].

To sum up, the previously published results suggested that sEH inhibitors or deletion might be able
to protect DA neurons from death. Thus, giving the role that neuroinflammation, OS, and mitochondrial
dysfunction play in PD and the efficacy of inhibiting the activity of sEH in preclinical models, sEH is a
putative new pharmacological target for the treatment of PD and other α-syn-related pathologies such
as Lewis body disease (LBD) [142] (Figures 2 and 3).

Finally, as mentioned, there are neurodegenerative diseases for which a contribution of impaired
cholesterol metabolism to the disease has been proposed. For PD, several reports also indicated
lysosomal system dysfunction associated with the pathogenesis of PD [143]. Of note, alteration in
cholesterol metabolism has been found in PD patient-derived fibroblasts [144] and in the serum
lipid profile of PD patients [145,146]. As mentioned above, an inverse correlation among sEH
hydrolase and phosphatase activity on cholesterol synthesis has been described [118]. Therefore,
it should not be discounted that the use of sEHi for PD can have two-fold effects to treat disease,
namely on neuroinflammation, by increasing EETs, and in improving cholesterol trafficking in brain
cell membranes.
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Figure 3. Representative scheme of sEH implication in PD and hot spots of pharmacological activity
for sEH modulation. Dotted red line and green line indicated putative regulation role for sEHi.

8. Therapeutic Use of sEH Modulation in Parkinson’s Disease

sEH could likely represent a promising therapeutic target for neurological disorders such as
depression, PD, LBD, and AD [108,110,111,147]. In the recent past, several reports demonstrated
the usefulness of small molecules for inhibiting sEH activity, which was effective against several
illness conditions such as cancer, hypertension, heart diseases (ischemia, cardiac, and renocardiac
failures), obesity, and diabetic neuropathy [148–156]. Compounds with building blocks containing
ureas, thioamides, thioureas, acyl hydrazones, or carbamates, among others, presented a potent and
specific effect inhibiting sEH [157,158]. Such natural compounds as honokiol [153,159] or 1,3-bis
(4-methoxybenzyl) urea (MMU), an abundant component of Pentadiplandra brazzeana (P. brazzeana) was
also able to inhibit human sEH at nanomolar concentrations [159]. Interestingly, traditional medicinal
use of the root of P. brazzeana in patients with psychiatric and neurological disorders was reported [158].

It was demonstrated that EET release from astrocytes and DA neurons in co-culture increased
cellular defense and viability in the face of OS [160], suggesting that sEH inhibition can offer a
neuroprotectant role to DA neurons in PD. Indeed, the sEH inhibitor AUDA increases EET levels,
enhancing the neuronal viability, suggesting a neuroprotectant role of EET in the brain after an oxidative
environment in brain, as occurs in PD or other neurodegenerative diseases. Besides, use of EETs
in primary sensory and cortical neurons culture induces an increase in the axonal outgrowth [161].
This effect anticipates a possible action of sEH inhibitors as a nerve regenerating therapy [161].

It was also demonstrated that the promitogenic effect of directly injected EETs induced an
endothelial proliferation, being implicated in angiogenesis in cerebral vasculature [44,76,95,155]
Concretely, in a co-culture of astrocytes and cerebral microvascular endothelial cells, EETs were able
to increase the endothelium tube [162]. On the other hand, the beneficial role in the CNS of this
promitogenic activity induced by EETs was not completely demonstrated. On the other hand, reports
indicated that sEHi in specific areas of the brain, such as the brainstem, increased the blood pressure
and induced tachycardia in hypertensive animals but not in normotensive ones [163]. Likewise, sEHi
exerted a vasodilatory action [149].
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Lakkappa and coworkers demonstrated that the sEH inhibitor PTUPB provided neuroprotection
in a Drosophila melanogaster model of PD [142]. Moreover, AUDA pre-treatment reduced
TH-positive neuronal loss induced by MPTP, but this beneficial effect was not observed after AUDA
post-treatment [131]. This preventive but not reversing effect of MPTP neurotoxicity does not discourage
the use of sEH inhibitors as a therapeutic strategy but indicates that the putative treatment should be
implemented at the early stage of PD. Recently, Ren et al. [108] demonstrated that TPPU, in an oral
administration, prevented the loss of DAT, TH, and ER stress in the SNc and striatum after MPTP
treatment in mice, and prevented the apoptosis of PARK2 iPSC-derived neurons.

In conclusion, the use of sEHi in a PD in vivo model strengthened the cell culture clues about
the possible use of those compounds in the therapy of PD, both at an earlier stage and as an add-on
therapy. Table 1 lists the published works on sEH, sEHi, and PD, and Table 2 summarizes sEHi
tested in PD models and its chemical structures. Those works were the basis for this review. Several
authors also proposed sEH inhibitors as a prophylactic therapy to prevent the progression of the
disease. The antioxidant and, importantly, the anti-inflammatory role of sEHi are the keys to the
beneficial effects of sEHi in PD. It is noteworthy thatω3-PUFAs present neuroprotective effects in the
face of several neurological disorders. It was reported that the use of an EPA-enriched diet in mice
treated with MPTP, a model of PD, diminished the hypokinesia and improved memory induced by the
dopaminergic toxic [164]. In humans, the dietary supplementation with PUFAs diminished the risk of
developing PD [165,166]. The neuroprotectant role of dietary PUFAs can be associated with the fact
that those compounds must be incorporated through food intake. Linolenic acid is the predominant
ω-3 PUFA from the diet, and a precursor of EPA, DHA, and AA. A PUFA-enriched diet influences the
increase of EETs, which in turn exert their beneficial effects in CNS.

Table 1. Publications crosslinking sEH and PD or other central nervous system (CNS) disorders.

Outline Biological Substrate Reference

The protective effect of astrocyte-derived
14,15-epoxyeicosatrienoic acid on hydrogen
peroxide-induced cell injury in astrocyte-DA
neuronal cell line co-culture.

Implication of sEH in
PD pathology

Astrocyte-DA neuronal
cell line co-culture [160]

Soluble epoxide hydrolase deficiency or
inhibition attenuates
MPTP-induced parkinsonism

Implication of sEH in
PD pathology Mice [131]

Soluble epoxide hydrolase plays a key role in the
pathogenesis of Parkinson’s disease.

Implication of sEH in
PD pathology Human, mice [108]

Role of epoxy-fatty acids and epoxide hydrolases
in the pathology of neuro-inflammation.

Role of EETs in
neuroinflammation Review [167]

Evaluation of antiparkinson activity of PTUPB by
measuring dopamine and its metabolites in
Drosophila melanogaster: LC–MS/MS
method development.

Therapeutic profile for
sEHi in PD Drosophila melanogaster [168]

Humble beginnings with big goals: Small
molecule soluble epoxide hydrolase inhibitors for
treating CNS disorders.

Therapeutic profile for
sEHi in CNS disorders Review [89]

Soluble epoxide hydrolase inhibitor, APAU,
protects DA neurons against rotenone induced
neurotoxicity: Implications for
Parkinson’s disease.

Therapeutic profile for
sEHi in PD DA cell culture [169]

Role of soluble epoxide hydrolase in metabolism
of PUFAs in psychiatric and
neurological disorders.

Therapeutic profile
for sEH Review [158]

Cytochrome P450 derived epoxidized fatty acids
as a therapeutic tool against
neuroinflammatory diseases.

Role of EETs in PD Review [170]
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Table 2. Compounds tested in Parkinson’s disease models.

Compound Chemical Structure Reference

Honokiol (5,3′-diallyl-2,4′-dihydroxybiphenyl) [153,160]

12-(3-(adamantan-1-yl)ureido)dodecanoic acid (AUDA) [92,96]

1,3-bis (4-methoxybenzyl)urea (MMU) [159]

N-(1-acetylpiperidin-4-yl)-N-(adamant-1-yl)urea (APAU) [170]

(4-(5-phenyl-3-{3-[3-(4-trifluoromethyl-phenyl)-ureido]-propyl}-pyrazol-1-yl)-benzenesulfonamide)
(PTUPB) [143]

1-((1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy) phenyl)) urea (TPPU) [109]
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