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A proper movement categorization reduces the complexity of understanding or
reproducing human movements in fields such as physiology, rehabilitation, and
robotics, through partitioning a wide variety of human movements into representative
sub-motion groups. However, how to establish a categorization (especially a quantitative
categorization) for various human lower limb movements is rarely investigated in literature
and remains challenging due to the diversity and complexity of the lower limb movements
(diverse gait modes and interaction styles with the environment). Here we present a
quantitative categorization for the various lower limb movements. To this end, a similarity
measure between movements was first built based on limb kinematic synergies that
provide a unified and physiologically meaningful framework for evaluating the similarities
among different types of movements. Then, a categorization was established via
hierarchical cluster analysis for thirty-four lower limb movements, including walking,
running, hopping, sitting-down-standing-up, and turning in different environmental
conditions. According to the movement similarities, the various movements could be
divided into three distinct clusters (cluster 1: walking, running, and sitting-down-standing-
up; cluster 2: hopping; cluster 3: turning). In each cluster, cluster-specific movement
synergies were required. Besides the uniqueness of each cluster, similarities were also
found among part of the synergies employed by these different clusters, perhaps related to
common behavioral goals in these clusters. The mix of synergies shared across the
clusters and synergies for specific clusters thus suggests the coexistence of the
conservation and augmentation of the kinematic synergies underlying the construction
of the diverse and complex motor behaviors. Overall, the categorization presented here
yields a quantitative and hierarchical representation of the various lower limb movements,
which can serve as a basis for the understanding of the formation mechanisms of human
locomotion and motor function assessment and reproduction in related fields.
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INTRODUCTION

The human lower limb shows extraordinary motor ability in daily
living, which is indispensable for humans in independent living.
Through flexible use of the lower limb, humans can move in
various gait styles and interact with diverse environmental
conditions to cope with different requirements of activities of
daily living. In the past, to understand, imitate, repair, or enhance
the motor ability of the human lower limb, a lot of research has
been done (Tucker et al., 2015; Young and Ferris, 2017; Koyama
and Yamauchi, 2018; Price et al., 2019; Yao et al., 2019; Sun et al.,
2020; Rodriguez-Fernandez et al., 2021). However, the enough
motor dexterity of the human lower limb, as indicated by the
diversity of their movement styles, brings challenges to the study
of the lower limb movements. In this context, it can be predicted
that the complexity of this challenging problem can be reduced by
building a categorization for the wide variety of lower limb
movements, which can partition the many lower limb
movements into a series of small, representative, and
homogenous sub-motion categories based on their similarities
or differences.

Partitioning or categorization of the lower limb movements is
useful in several fields (Papageorgiou et al., 2019; Schambra et al.,
2019; Stival et al., 2019). In physiology, it can provide new insights
into understanding the formation mechanisms of the lower limb
movements. The formation of a category consisting of many
different movements can uncover several similar control
strategies employed by these movements in the category,
which can help clarify whether there exist conserved control
strategies across the various movements. In contrast, some
potential mechanisms underlying the flexibility and plasticity
of the human motor system can also be uncovered by the
finding and comparison of different categories. In
rehabilitation, a categorization can facilitate the assessment of
motor function by subdividing the many movements into a few
meaningful andmanageable sub-motion categories and can avoid
the risk of neglecting some important categories that have an
impact on the assessment and subsequent rehabilitation
treatments. Meanwhile, such categorization can also allow us
to customize a standardized rehabilitation program for each
category in order to achieve better treatment outcomes. In
robotics, a categorization can promote the development of
artificial limbs imitating or enhancing human motor ability
(e.g., prostheses and exoskeletons). The categories and their
movement characteristics can provide references for
comparing the performance of the artificial limbs with the
human limb, thereby encouraging the development of better
mechanical or control systems. In practice, motivated by the
advantages of the categorization, researchers have built different
taxonomies or classification systems for different types of human
movements, such as the taxonomies of hand grasps (Feix et al.,
2016; Stival et al., 2019), whole-body support poses (Borras et al.,
2017), and activities of daily living of upper limb (Gloumakov
et al., 2020a; Gloumakov et al., 2020b), and the classification
systems of normal walking (Vardaxis et al., 1998; Simonsen and
Alkjaer, 2012), normal running (Liebl et al., 2014; Phinyomark
et al., 2015), and pathological walking or running (Kuntze et al.,

2018; Jauhiainen et al., 2020). However, to our knowledge, a
quantitative categorization for the various lower limb movements
has not been established to date. Given the diversity of human gait
modes and interaction styles with the external environment, there
are several questions that remain to be resolved for establishing
the categorization: which movements are similar to each other
and how to quantify the similarities among different types of
lower limb movements.

To measure the similarity between movements, a key question
is to select unified, informative, and quantitative movement
descriptors which can characterize the various lower limb
movements. In previous studies, to identify the subsets or
categories underlying human gaits, the nature of gaits is
usually described by some discrete gait parameters (Vardaxis
et al., 1998; Mulroy et al., 2003; Simonsen and Alkjaer, 2012;
Jauhiainen et al., 2020), such as phasic, spatiotemporal gait
parameters (e.g., speed, stride length, cadence, and duty
factor), or some critical kinematic and kinetic parameters (e.g.,
peak joint angles, moments, and powers, or joint angles,
moments, and powers at specific events or phases in walking
or running gaits). For example, walking and running, the
terminologies describing the two most common lower limb
movement modes, are usually differentiated by the duty factor
(the fraction of the stride duration when each foot is on the
ground) (Kram et al., 1997; Segers et al., 2006; Fihl andMoeslund,
2007). Likewise, through examining the similarity of kinematic
and kinetic parameters, more than one category requiring
different movement strategies has also been identified in
normal walking, rather than only a single normative template
of walking pattern as is often assumed (Vardaxis et al., 1998;
Simonsen and Alkjaer, 2012). Without a doubt, these gait
descriptors have provided a good basis for distinguishing
walking or/and running gaits. However, only partial
information is provided by these gait descriptors, which may
obscure many other subtle features underlying the human lower
limb movements (Kuntze et al., 2018; Sawacha et al., 2020).
Moreover, part of the movement descriptors are suitable for
characterizing walking and running but not for some other
lower limb movements achieved by humans (e.g., sit-to-stand
and turning in place) (Vardaxis et al., 1998; Etnyre and Thomas,
2007; Prakash et al., 2018).

In particular, studies in the field of motor control show that the
many joint motions in the process of the limb movements are not
independent of each other but constrained by the nervous system
(Borghese et al., 1996; St-Onge and Feldman, 2003; Grillner and
El Manira, 2020), which cannot be uncovered by the discrete and
independent gait parameters mentioned above. Specifically, to
generate a complex behavior, the joint motions are coordinated
by the nervous system to bend or stretch together as several basic
units or synergies. Then, the complex behavior can be
constructed rapidly and efficiently through the combination of
a small number of synergies. Inspired by the existence of the
synergies, it can be argued that it is necessary to consider the
coordination among joints when characterizing the lower limb
movements, rather than only considering the characteristics of
individual joints separately. More importantly, the joint synergies
have been found in different lower limb movements, including
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various cyclical and non-cyclical movements (e.g., squats,
walking, going up or down a step, and running) (St-Onge and
Feldman, 2003; Hicheur et al., 2006; Moro et al., 2012). Similarly,
a planar covariation law of intersegmental coordination is also
found in human locomotion (Borghese et al., 1996; Ivanenko
et al., 2007), where the temporal changes in the elevation angles of
lower limb segments (thigh, shank, and foot) are found to be
covariant along an attractor planar. This planar covariation law
has been observed in human running (Hicheur et al., 2006),
hopping (Ivanenko et al., 2007), crawling (MacLellan et al., 2017),
and various walking tasks, such as level walking (Borghese et al.,
1996; Bianchi et al., 1998; Lacquaniti et al., 1999; Dominici et al.,
2011; Catavitello et al., 2018; Gueugnon et al., 2019), walking on
slopes (Noble and Prentice, 2008; Dewolf et al., 2018), and
backward walking (Grasso et al., 1998). Therefore, the
synergies can be expected to provide a new, unified, and
biologically meaningful framework for describing different
types of lower limb movements and examining their
similarities. In addition, many studies suggest that the joint
synergies play a role in the motor function assessment (e.g.,
abnormal joint coordination) and treatment planning in
rehabilitation (Jarrasse et al., 2014; Ting et al., 2015). Likewise,
our previous work finds that the prostheses and exoskeleton
developed based on the joint synergies are able to reproduce
human-like motor ability (i.e., the reproduction of human-like
joint angle trajectories) (Chen et al., 2015; Xiong et al., 2016; Liu
et al., 2018). Taken together, it can also be expected that the
movement representation based on the synergies will provide new
and complementary insights into understanding, classification,
and reproduction of the lower limb movements in related fields,
compared with traditional gait descriptors.

This paper proposes a measure index of movement similarity
through synergy-based movement representation and presents a
quantitative categorization for a variety of human lower limb
movements. Taking into account the diversity of the human
lower limb movements, we collected motion data from the motor
tasks which to some extent represent the versatile motor ability of
the lower limb in daily living (Kuehne et al., 2011; Mandery et al.,
2016). Then, we applied cluster analysis to identify the primary
and representative categories underlying the various lower limb
movements according to synergy-based movement similarities.
Finally, we analyzed the coordination features of the movement
categories in the categorization, in order to uncover category-
specific control strategies in each category and the set of available
and typical synergies used by humans.

MATERIALS AND METHODS

Participants
The human lower limb can achieve diverse movements in daily
living. To build a comprehensive and representative
categorization for the lower limb movements and explore their
similarities and differences, a motion dataset from previous work
of the authors (Huang et al., 2021a; Huang et al., 2021b) was
analyzed in this study. Nine healthy male subjects (age: 23.0 ±
1.0 years; weight: 64.0 ± 6.1 kg; height: 173.1 ± 4.1 cm; mean ±

s.d.) participated in the experiment [no differences in the
kinematic coordination are found between men and women in
the past (Hicheur et al., 2006; Chow and Stokic, 2015)]. The
sample size was chosen based on previous studies (St-Onge and
Feldman, 2003; Ivanenko et al., 2007; Funato et al., 2010;
Catavitello et al., 2018; Dewolf et al., 2018). The experimental
protocol was approved by the Chinese Ethics Committee of
Registering Clinical Trails. All the subjects provided consent
prior to participation.

Experimental Procedure
In this experiment, five basic motor modes which can represent
the versatile motor ability of the lower limb were included:
walking (Nos. 1–15; Figure 1), sitting-down-standing-up
(chair height: 30.2 or 42.7 cm; Nos. 16 and 17), running (Nos.
18–28), turning in place (Nos. 29 and 30), and hopping (hopping
forward or in place on two legs or only the right leg; Nos. 31–34)
(Kuehne et al., 2011; Mandery et al., 2016). Moreover,
considering the effect of natural environment constraints on
the limb movements, the subjects were asked to walk or run
under five typical ground conditions: level ground (7 m walkway;
Nos. 7 and 22), cross slopes (incline angle with respect to the level
walkway: ± 14.5°; the “+” represented that the left side of the
walkway was higher than the right side: Nos. 2 and 19, the “–”
represented the opposite case: Nos. 1 and 18), longitudinal slopes
(incline angle: ± 2.6° and ±6°; the “+” represented upslope: Nos.
12, 13, 27, and 28, the “−” represented downslope: Nos. 3, 4, 20,

FIGURE 1 | Motor tasks explored in this study. Thirty-four motor tasks
are analyzed in this study (Nos. 1–15: walking tasks, Nos. 16 and 17: sitting-
down-standing-up tasks, Nos. 18–28: running tasks, Nos. 29 and 30: turning
in place tasks, and Nos. 31–34: hopping tasks). Adapted from Huang
et al., 2021a.
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and 21), obstacles (width: 30 cm; height: 10 or 20 cm; Nos. 8–11
and Nos. 23–26), and stairs (riser: 15 cm; tread: 30 cm; Nos. 5, 6,
14, and 15). In total, motion data from thirty-four different motor
tasks were used in this study. For all the motor tasks, the subjects
were asked to choose their preferred speeds and cadences in order
to perform these tasks in a natural way. Moreover, all the motor
tasks were recorded three times.

The Vicon Motion Capture System (Oxford Metrics,
United Kingdom) with 10 cameras was used to record human
kinematic data at a sampling frequency of 100 Hz. 20 reflective
markers (diameter: 14 mm) were attached to the body landmarks
of the lower limbs according to the Plug-in Gait model provided
by the Nexus software (Oxford Metrics, United Kingdom). Two
additional calibration markers were attached to the left and right
medial malleoli during a static trial, which had the subjects stand
still. During hopping, the ground reaction forces were recorded
by four AMTI force plates (60 cm × 40 cm; sampling frequency:
1,000 Hz; Advanced Mechanical Technology Inc., United States)
placed in the middle of the walkway and along the motion
direction.

Data Pre-processing
Kinematic data (i.e., hip, knee, and ankle joint angles) were
calculated by the Plug-in Gait model after the trajectories of
markers were filtered by a Woltring filter with a mean-squared
error of 20 mm2 (Woltring, 1986). The ground reaction forces
were low-pass filtered with a fourth-order Butterworth filter
(cutoff frequency: 25 Hz).

The foot contact event was determined by the timing when the
speed of the heel marker was less than 0.4 m/s during walking and
running (Noble and Prentice, 2008) or when the vertical
component of the ground reaction forces was greater than 7%
of the body weight during hopping (Ivanenko et al., 2007). For
walking (except walking up and down stairs), running, and
hopping, the motion data over a gait cycle (the time period
between two successive foot contacts of the same foot) were
retained for each trial. For walking or running over an obstacle,
the motion data over a gait cycle that could cover the entire
process of stepping over the obstacle were retained. In other
words, the motion data between two successive left foot contacts
were retained when stepping over the obstacle starting with the
right leg, vice versa. For walking up and down stairs, sitting-
down-standing-up, and turning in place, the data from the
beginning time of the movement to the ending time were
retained. After the motion data were selected, the joint angle
sequences of each trial were resampled to 200 points using cubic
spline interpolation.

Here the coordination patterns among six joint motions of
the right lower limb were studied and used to describe the
characteristics of the lower limb movements: hip flexion/
extension (H f/e), hip adduction/abduction (H a/a), hip
rotation (H rot), knee flexion/extension (K f/e), ankle
plantarflexion/dorsiflexion (A p/d), and ankle rotation (A
rot). Flexion, adduction, internal rotation, and dorsiflexion
were defined as positive values in this study. The posture
during the static trial (standing still) was set as initial
posture so that the mean joint angles during the static trial

were subtracted from the joint angle values during each dynamic
trial. For each trial, the joint angles of the lower limb were
presented as a data matrix Q � [ q1/qi/q200 ], qi ∈ R6×1
represents the posture of the lower limb at the ith moment.
To comprehensively characterize the limb movement patterns
for a specific motor task, the data from all the three trials were
pooled together as a data matrix Qt ∈ R6×600 for each subject.

Similarity Between Movements
As suggested by the studies in the kinematic synergies, limb joint
motions in a motor task can be decomposed into a series of
kinematic synergies and reconstructed by their linear
combination. The kinematic synergies thus provided a
framework for characterizing the various lower limb
movements and were used to quantify the similarity between
the movements in this study. Following this, we first extracted the
kinematic synergies of each of the thirty-four tasks by using
principal component analysis on the data matrix Qt consistent
with previous studies (St-Onge and Feldman, 2003; Ivanenko
et al., 2007). In this way, original joint motions could be
represented as qi − �qi � ∑6

j�1cjisj. �qi is the average of qi. sj is
the jth synergy equal to the eigenvector of the covariance matrix
of the joint motions with the jth largest eigenvalue, and the
elements of sj (weightings) represent the contributions of the
joint motions to the synergy [the absolute value of a weighting
above 0.25 was defined as indicating significant contribution
(Gracia-Ibanez et al., 2020)]. The synergies are ordered
according to the variance explained by each synergy from
largest to smallest. Thus, the proportion of the total variance
explained by the jth synergy is PVEj � λj/∑6

r�1λr (λj is the
variance explained by the jth synergy and equal to the jth
largest eigenvalue of the covariance matrix of the joint
motions). cji (recruitment coefficient of the synergy)
represents the contribution of the synergy to the original joint
motion patterns at the ith moment.

Then, to measure the similarity between a pair of motor tasks,
the similarity between two synergies was first quantified by the
absolute value of their scalar product. Two synergies were
considered significantly similar if their similarity >0.7 (Tresch
et al., 1999; Torres-Oviedo and Ting, 2010). Then, based on the
synergy similarities and taking into account the different
contribution rates of the synergies, a similarity index (SI)
between twomotor tasks (e.g., themth and nth tasks) was defined:

SI � ∑
6

j�1
(1
2
(PVEm

j + PVEn
j)
∣∣∣∣∣smj · snj

∣∣∣∣∣)

Obviously, the similarity index ranges from 0 to 1, and a
smaller value indicates a higher difference between two tasks.

Identification of Movement Categories
Agglomerative hierarchical clustering method was used to
identify the categories of the lower limb movements
according to the movement similarities. Before the start of
cluster analysis, the similarities were measured among all the
tasks and averaged across the subjects. To form the clusters,
the similarity between two new clusters at each combination
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stage was determined by the average linkage algorithm
(Johnson and Wichern, 2007).

Hierarchical clustering method always results in a number of
possible cluster solutions. In this context, Mojena stopping rule
(lower-tail method) was applied to determine the number of
clusters in the final solution (Mojena, 1977; Simonsen and
Alkjaer, 2012). According to this stopping rule, the optimal
cluster solution is the solution corresponding to the first
cluster combination stage i, which satisfies the inequality
αi+1 < �α − ksα, where αi+1 is the fusion level in the stage i+1
with 33−i clusters (i.e., the similarity determined by the average
linkage algorithm); �α and sα are the mean and standard deviation
of the α distribution, respectively; k is the standard deviate and is
set to 1.25 according to the recommendation of a simulation
study (Milligan and Cooper, 1985).

Core Synergies of Each Category
After movement clusters were identified, the synergies for a
cluster representing the overall coordination characteristics of
the cluster (called core synergies of the cluster in the following
sections) were extracted from the motion data of all the motor
tasks within the cluster. The data from the motor tasks in the
cluster were pooled together as an entire data matrix in each
subject, and then the synergies for the cluster were extracted. In
this stage, to further examine the main differences between
clusters, we selected the minimum number of the primary
synergies which could capture the main movement variation
of the motor tasks in each cluster. To this end, two criterions
were used (global and local criterions). First, themain synergies of
a cluster could account for more than 90% of the overall
movement variance of all the motor tasks in the cluster
(Courtine and Schieppati, 2004). Second, the main synergies of
a cluster could account for more than 90% of the movement
variance of each motor task in the cluster. The stringent local
criterion ensured that the characteristics of each task in a cluster
could be well described. Following this, the differences between
the clusters were examined based on the core synergies using the
absolute value of the scalar product of the core synergies.

Statistical Analysis
To examine the subtle differences between two core synergies, the
difference in the weighting of a joint motion between two core
synergies is further compared using a two-tailed paired t-test.
Sample normality was verified using the Lilliefors test. The
significance level was set at α � 0.05. Similarly, for a specific
synergy, the difference in the weighting between two joint
motions was also compared. All statistical analyses were
performed using MATLAB R2017a (Mathworks, Natick, MA,
United States).

RESULTS

In brief, the speeds of all walking tasks (except for walking
upstairs and walking downstairs), all running tasks, and all
forward hopping tasks ranged from 1.06 ± 0.13 m/s (No. 11)
to 1.27 ± 0.13 m/s (No. 4; mean ± s.d. across all the trials

performed by all the subjects), from 1.94 ± 0.31 m/s (No. 19)
to 2.13 ± 0.25 m/s (No. 22), from 1.46 ± 0.32 m/s (No. 31) to
1.69 ± 0.30 m/s (hopping forward on the right leg; No. 32),
respectively. The hopping frequency ranged from 1.40 ± 0.29 Hz
(No. 31) to 1.96 ± 0.53 Hz (hoping in place on the right leg; No.
34). The duration of movement was 3.38 ± 0.44 s in walking
downstairs, 3.66 ± 0.31 s in walking upstairs, 3.85 ± 0.92 s in
sitting-down-standing-up, and 4.76 ± 0.59 s in turning.

Similarities and Categories of the Lower
Limb Movements
The similarities among the motor tasks were measured by using
the kinematic synergies (Figure 2). Three representative clusters
or categories (C1–C3) were identified in the diverse lower limb
motor tasks, consistent with the visual inspection of the
movement similarities. As shown in Figure 3, the largest
cluster (C1), composed of twenty-eight motor tasks, was
formed at a similarity level of 0.76, which included walking,
running, and sitting-down-standing-up. The other two small
clusters (C2 and C3) were also identified. Hopping tasks
(involving hopping forward and hopping in place) and turning
were the second (C2) and third (C3) clusters, respectively.

Synergistic Characteristics of the Clusters
The core synergies of a cluster representing the common
synergistic characteristics of all the motor tasks in the cluster
were further extracted. As the results showed, lower limb joint
motions could be reconstructed by combining a small number of
core synergies in each cluster (Figures 4, 5). The first three
synergies accounted for most of the overall movement variance of
all the tasks in each cluster (>90%; 97.34 ± 0.53%, 96.83 ± 0.99%,
95.70 ± 1.11% in C1, C2, and C3, respectively; Figure 4).
Meanwhile, in each cluster, the limb movement patterns of
each task could also be well reconstructed by the first three
core synergies (>90%; range: 95.57 ± 1.34% to 99.13 ± 0.51%
in C1, 94.93 ± 3.13% to 97.63 ± 1.15% in C2, 94.72 ± 1.69% to
96.41 ± 0.98% in C3; Figure 5).

The primary core synergies of the three clusters showed the
movement characteristics in each cluster (Figure 6A). The first
core synergies (CS1) of C1 and C2 were similar (>0.7; similarity �
0.82 ± 0.07; Figure 6B) and were characterized by the
coordinated movement between hip flexion and knee flexion
(or between hip extension and knee extension; average weightings
>0.25; Figure 6A). However, in C2, ankle plantarflexion/
dorsiflexion and rotation also had noticeable weightings in the
CS1 (average weighting � 0.58 and 0.30, respectively), different
from the CS1 of C1 (p < 0.001 and � 0.004, respectively). In C3, it
had a special CS1 compared with the other two clusters, which
was characterized by the coordinated movement among hip
rotation, knee flexion/extension, and ankle rotation.

For the second and third core synergies (CS2 and CS3), the
three clusters further showed respective specific synergistic
characteristics. The CS2 of C1 was the coordinated movement
between hip flexion and knee extension (or between hip extension
and knee flexion), and hip flexion/extension had a larger
weighting (p < 0.001). The CS2 of C2 was mainly
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characterized by the coordinated movement among hip flexion,
knee flexion, and ankle plantarflexion. Similar to the CS1, ankle
plantarflexion/dorsiflexion had a significant weighting (0.68) in
the CS2 of C2, different from the CS2 of C1 (p < 0.001). In C3, the
CS2 was the coordinated movement among hip flexion, hip
internal rotation, and knee flexion, similar to the CS1 of C1

and C2 (similarity � 0.85 ± 0.11 and 0.75 ± 0.11, respectively;
Figure 6B). Obviously, a primary difference among these similar
synergies was the difference in the rankings of their contribution
rates in the three clusters (according to the order of the variance
explained by the synergies). For the CS3, C1 showed the
coordinated movement between hip extension and ankle

FIGURE 2 | Similarities among the motor tasks. The similarities are the averages across the subjects (n � 9) and are used as the input of cluster analysis.

FIGURE 3 | Dendrogram of the lower limb movements. Three clusters (C1–C3) are identified in the various lower limb movements based on the synergistic
characteristics of the limb movements.
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FIGURE 4 | The overall variance of all the tasks in each cluster explained by the core synergies. The core synergies of a cluster represent the common synergistic
characteristics of all themotor tasks in the cluster, and are extracted from the data of all the tasks belonging to the cluster. The lines and error bars indicate themeans and
standard deviations of the cumulative percentage of the overall movement variance explained by the synergies across the subjects (n � 9), respectively.

FIGURE 5 |Movement reconstruction of each task by the combination of the core synergies in the clusters (C1–C3). The bar graph depicts the percentage of the
total joint motion variance of each task (means and standard deviations across the subjects, n � 9) explained by the first (blue), the first two (orange), and the first three
(green) core synergies in the three clusters. The reconstruction quality is considered good if the variance explained >90% (black horizontal line).

FIGURE 6 | (A) Core synergies of the three clusters (C1–C3). The bars and error bars indicate the means and standard deviations across the subjects (n � 9),
respectively. Before averaging, the direction of the core synergies in a few subjects is adjusted (i.e., reversed) when these synergies are not consistent with corresponding
reference synergies in a reference subject (i.e., when the scalar product between the synergy needing to be adjusted and the reference synergy is less than zero). Flexion,
adduction, internal rotation, and dorsiflexion are defined as positive values. *p < 0.01, **p < 0.001 (two-tailed paired t-test). Abbreviations: CS1: the first core
synergy; CS2: the second core synergy; CS3: the third core synergy; H f/e: hip flexion/extension; H a/a: hip adduction/abduction; H rot: hip rotation; K f/e: knee flexion/
extension; A p/d: ankle plantarflexion/dorsiflexion; A rot: ankle rotation. (B) Similarity matrix of these core synergies (means across the subjects, n � 9). The similarity
between two synergies is quantified by the absolute value of their scalar product. Two synergies are considered significantly similar if their similarity >0.7. Each of the
abbreviations (from C1-CS1 to C3-CS3) represents a core synergy of a cluster. For instance, C1-CS1 represents the first core synergy of the cluster 1.
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dorsiflexion, and ankle plantarflexion/dorsiflexion had a larger
weighting (p < 0.001). The CS3 of C2 was the coordinated
movement among hip flexion, knee extension, and ankle
internal rotation, which was different from the CS3 of C1 and
C3 (similarity � 0.35 ± 0.21 and 0.46 ± 0.26, respectively;
Figure 6B), but similar to the CS2 of C1 (similarity � 0.80 ±
0.13). In C3, the CS3 was the coordinated movement among
hip flexion, hip external rotation, and ankle internal rotation,
which was also different from the other clusters.

DISCUSSION

In this study, we investigated the quantitative similarity measure
and hierarchical categorization of the diverse lower limb
movements. Different types of lower limb movements
(including cyclical and non-cyclical ones) were well described
by a unified movement descriptor, namely, the kinematic
synergies, which represent kinematic control strategy in the
execution of the limb movements. Based on synergistic
characteristics, the similarities among the lower limb
movements were quantitatively measured, and three primary
homogeneous clusters (C1–C3) were identified within the
diverse lower limb movements. The existence of the clusters
suggests a numerical categorization model for the human
lower limb movements. To our knowledge, this categorization
is also the first quantitative categorization for a variety of human
lower limb movements to date.

Our categorization establishes a hierarchical structure for the
many lower limb movements and divides them into three
representative sub-motion categories. By this division, our
results provide new insights into the formation mechanisms of
the lower limb movements in physiology. The first category (C1),
as the largest one, is composed of walking and running under
various ground conditions and sitting-down-standing-up. The
existence of C1 suggests that similar control strategies are adopted
by humans when they perform these walking, running, sitting-
standing tasks. This finding supports that humans simplify the
generation of a variety of lower limb movements (including
diverse gait modes and interaction styles with the
environment) by reusing the same basic motor synergies,
without the need to develop new synergies de novo for each
movement. Through this conservation of the kinematic synergies,
the seemingly daunting task of achieving the many movements
with diverse motor task-related and environmental constraints
can be completed in an effective and simple manner. Likewise, the
control of motor tasks is also simplified by employing similar
synergies in each of the other two categories (C2 and C3). On the
other hand, the existence of the three different categories also
suggests the flexibility and plasticity of the human motor system.
In order to achieve some category-specific behavioral goals or
learn several novel skills, humans can also develop new motor
synergies. Overall, these findings suggest the coexistence of the
conservation and augmentation of the motor synergies
underlying the generation of the lower limb movements.

The limb movement patterns of the motor tasks in each
category can be effectively generated by the combination of

three core synergies. In C1, the coordination of hip and knee
flexion/extension plays an important role in the generation of the
limb movements, as indicated by the coordinated movements
between hip flexion and knee flexion (or between hip extension
and knee extension) in its CS1 and between hip flexion and knee
extension (or between hip extension and knee flexion) in its CS2.
Moreover, the CS3 with the maximum weighting in ankle
plantarflexion/dorsiflexion implies that the control of the ankle
joint motion is also critical in C1, consistent with the notion that
limb endpoint control requires accurate control of the ankle joint
motion in human locomotion (Ivanenko et al., 2007). For C2,
similar to C1, the coordination of hip and knee flexion/extension
also contributes to the formation of the limb movement patterns,
as indicated by the synergistic characteristics in the CS1–CS3 of
C2. However, different from C1, the main coordination manners
adopted by C2 is the coordination of ankle plantarflexion/
dorsiflexion with hip and knee flexion/extension. Ankle
plantarflexion/dorsiflexion has greater weightings in the CS1
and CS2 of C2 than in the CS1 and CS2 of C1 (Figure 6A).
In particular, the coordination among ankle dorsiflexion, hip
flexion, and knee flexion (or among ankle plantarflexion, hip
extension, and knee extension; the CS1 of C2) is in line with the
power transfer mechanism of biarticular muscles among the hip,
knee, and ankle joints in hopping (Junius et al., 2017; Schumacher
et al., 2020). Through the coordination of the joint motions and
the action of biarticular muscles (close to isometric contraction,
that is, almost zero contraction velocity), the power can be
effectively transported from the hip and knee joints to the
ankle joint (or from the ankle joint to the hip and knee
joints). In this way, the power demand on the ankle joint that

FIGURE 7 | Typical and available synergies employed by humans to
achieve the various behavioral goals of the clusters. Shared and specific
synergies exist in the three clusters and are used to meet cluster-independent
and cluster-dependent behavioral demands, respectively.
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may exceed the capability of ankle joint muscles can be met by the
power from the hip and knee joints in hopping. Likewise, this
power transfer may also exist between the hip and knee joints via
their coordination in walking and running tasks (i.e., C1)
(Neumann, 2010; Junius et al., 2017). For C3, the existence of
the category composed of only turning tasks is consistent with the
specific behavioral goal of turning. Different from the other lower
limb movements included in C1 and C2 with the aim to push the
body forward, upward, or downward, the goal of turning is to
rotate the whole body (Ivanenko et al., 2007; Akiyama et al.,
2018). This difference is also well characterized by the unique
synergistic characteristics of C3 (the coordinated movements
between hip and ankle rotations). Taken together, the three
categories employ their respective unique synergies.

Besides the uniqueness of each category, more interestingly,
high similarities are also found among some of the synergies of
the three categories. In total, there may be a total of six synergies
available for the three categories (Figure 7). Two of the six
synergies are shared across the categories, and each of the
other four synergies is exclusive to a category. Meanwhile, as
indicated by our results, the shared synergies also show subtle but
significant changes in the weightings of a few joint motions and
changes in importance in the three categories. For instance, the
second shared synergy (S2) is the second synergy in C1 (C1-CS2),
but the third synergy in C2 (C2-CS3). Overall, these findings
further suggest that humans can achieve various behavioral goals
rapidly and effectively by retaining, fine-tuning, and augmenting
the collections of pre-existing motor synergies.

Our categorization also provides inspiration for the studies
related to the lower limb movements, such as the motor function
assessment and treatment planning in rehabilitation and the
development of artificial limbs in robotics (Papageorgiou et al.,
2019; Stival et al., 2019). In these studies, the complex question of
learning the characteristics of the various lower limb movements
can be solved by dividing the many movements into three small,
homogeneous, and manageable sub-motion categories. The
motor behaviors within one of the three categories which have
shared movement strategies can be modeled and analyzed in the
same manner. On the basis of the characteristics of each category,
customized and standardized rehabilitation programs can be
formulated for each of the three categories. The motor
function of the lower limb can also be effectively assessed in
the process of rehabilitation treatments. Similarly, in robotics, an
effective method that can be used to improve the functionality of
the artificial limbs reproducing the lower limb movements will be
to develop specific mechanical systems for each category or
modular/dynamic control systems based on the movement
categories. Meanwhile, the core synergies of each category also
provide references for the comparison between the human and
artificial limbs, which can further accelerate the development of
better artificial limbs. In addition, the existence of the three
different categories also suggests the strategy of prioritizing
part of the categories according to practical demands in
rehabilitation and robotics (e.g., feasibility of motor recovery
or functional requirements of the artificial limbs).

As a descriptor to characterize the lower limb movements, the
kinematic synergies represent the coordination strategy in the

movement process and provide a basis for measuring the
similarities among different types of lower limb movements in
this study. Based on this, a categorization composed of three
distinct movement categories is successfully built, and task-
independent and task-dependent synergies are also revealed in
human locomotion. In fact, in addition to the lower limb
movements, kinematic coordination has also been found in the
other limb movements, such as hand grasps (Xiong et al., 2016;
Jarque-Bou et al., 2019) and upper limb movements (Schuetz and
Schack, 2013; Liu et al., 2018). Consequently, this synergy-based
movement representation has the potential to be used to quantify the
similarity of the other limb movements. Moreover, synergies have
also been observed at kinetic ormuscular levels (Giszter, 2015; Scano
et al., 2017). This means that our measure method of movement
similarity can also be extended by taking into account the kinetic and
muscle synergies in the future, which will provide more detailed and
complementary information regarding the generation of the limb
movements.

There are some limitations to the study. First, to identify the sub-
motion categories underlying the diverse lower limb movements,
here we selected thirty-four typical motor tasks, which to some
extent represent the versatilemotor ability of the lower limb (Kuehne
et al., 2011; Mandery et al., 2016). However, it is well known that
humans can move in an infinite number of ways in daily living. In
this case, while it can be expected that our methodology will also be
able to provide beneficial guidance for the characterization of the
motor tasks that are not explored in this study, further analyses need
to be performed in the future. Likewise, in practical applications,
researchers may also pay attention to only part of themotor tasks we
have studied. For these tasks (e.g., only walking and running), our
methodology must be adapted in order to obtain a partial
categorization, and subtler movement characteristics may be
further uncovered. For example, the dendrogram in Figure 3
shows that walking downstairs may require somewhat different
kinematic synergies from the other walking tasks and trends to
form a single category. Second, the number of participants included
in this study was small (n � 9). In the future, the sample size should
be enlarged for further verification of our methodology. Third, only
healthy adults were considered in this study. Future work is
necessary to evaluate the efficacy and versatility of our
methodology in characterizing the other human gaits (including
gaits of children or older adults or diverse pathological gaits). Fourth,
here we only analyzed the joint kinematics without considering the
joint kinetics or muscle activities. As mentioned above, further
studies extending our methodology by considering the kinetic
and muscle synergies are necessary, which can provide new
insights into the formation mechanisms underlying the lower
limb movements.

CONCLUSION

This study proposes a general framework for measuring the
similarities among the limb movements based on the kinematic
synergies and establishes a quantitative and hierarchical
categorization for the lower limb movements. Three main
categories are identified. In each category, the motor tasks can be
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well reconstructed by combining three core synergies, and shared
synergies are also found across the three different categories. The
coexistence of synergies shared across the movements and categories
and synergies for specific categories thus suggests that there exists an
effective strategy for humans to simplify the formation of the various
lower limb movements by retaining, fine-tuning, and augmenting
initial collections of the kinematic synergies. Besides providing
inspiration for understanding human movements, the
categorization consisting of manageable and homogeneous
categories can also be expected to facilitate the motor function
assessment and treatment planning in rehabilitation and the
development of better artificial limbs in robotics, which deserves
to be investigated in the future. Moreover, our proposed approach
also provides a means to quantify the degree of similarity and build a
hierarchical description for the other human limb movements, even
the movements of other animals.
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