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Abstract: Bone responds with increased bone formation to mechanical loading, and the time course of bone formation after initiating 
mechanical loading is well characterized. However, the regulatory activities governing the loading-dependent changes in gene expression 
are not well understood. The goal of this study was to identify the time-dependent regulatory mechanisms that governed mechanical 
loading-induced gene expression in bone using a predictive bioinformatics algorithm. A standard model for bone loading in rodents 
was employed in which the right forelimb was loaded axially for three minutes per day, while the left forearm served as a non-loaded, 
contralateral control. Animals were subjected to loading sessions every day, with 24hours between sessions. Ulnas were sampled at 
11 time points, from 4hours to 32days after beginning loading. Using a predictive bioinformatics algorithm, we created a linear model 
of gene expression and identified 44 transcription factor binding motifs and 29microRNA binding sites that were predicted to regu-
late gene expression across the time course. Known and novel transcription factor binding motifs were identified throughout the time 
course, as were several novel microRNA binding sites. These time-dependent regulatory mechanisms may be important in controlling 
the loading-induced bone formation process.
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Background
Mechanical loading affects signaling pathways and 
gene expression in bone,1,2 and bone responds to load-
ing by increasing bone formation. The time course of 
bone formation after initiating mechanical loading 
is well characterized. New osteoblasts appear on the 
bone surface 24 to 48hours after initiating mechani-
cal loading3 and bone formation is observed within 
96 hours of loading.4 Bone formation increases 
between 5 and 12 days after starting loading,4 but 
after 6 weeks of loading bone formation returns to 
baseline levels.5 These data indicate that applied 
mechanical loading to bone results in osteoblast 
recruitment followed by matrix production, which 
lasts for around five weeks before declining to baseline  
levels.6

We hypothesize that the regulatory mechanisms 
that govern loading-induced gene expression are 
time dependent. Although there are many regulatory 
mechanisms that affect the relationship between gene 
expression and protein expression, we are interested 
in studying transcription and microRNA regulation 
as a first step toward better understanding regulation 
of gene expression in a mechanical loading model. 
An important consequence of mechanotransduction 
in bone is transcription factor regulation, as 
transcription factors bind to motifs in the promoter 
regions of genes and directly affect gene expression.7 
MicroRNAs are non-coding, single stranded mol-
ecules that are approximately 22 base pairs in length. 
MicroRNAs act at the post-transcriptional level 
by binding to the 3′ untranslated region (UTR) of 
mRNA, inducing degradation, and downregulating 
gene expression. MicroRNA regulation is important 
in development and in many normal biological pro-
cesses, but has also been implicated in cancer, car-
diovascular diseases, immune function, and fetal 
alcohol syndrome.8–11 MicroRNA regulation has also 
been implicated in osteoblast differentiation,12 but it 
has not yet been studied in the context of mechanical 
loading in bone.

Techniques such as promoter motif analysis can 
be used to relate gene expression with biological 
function and begin to unravel the complexity of bio-
logical systems at the level of gene regulation. We 
studied regulatory mechanisms using MotifMod-
eler, which is a model-based algorithm that pre-
dicts which transcriptional regulatory mechanisms 

govern gene expression in response to a biological 
event.7,11,13 MotifModeler creates a linear model of 
gene expression based on fold change differences 
between control and experimental conditions, and 
regulatory factors (ie, transcription factor bind-
ing motifs [TFBMs] and microRNA binding sites 
[MBSs]) are scored based on how well they fit the 
model. MotifModeler has been used to study regu-
latory mechanisms in several biological conditions 
and disease states, including fetal alcohol syndrome11 
and androgen dependent and independent prostate  
cancer.13

The goal of this study was to identify the time-
dependent regulatory mechanisms that governed 
mechanical loading-induced gene expression in 
bone. We determined the time sequence of regulatory 
activities and predicted several TFBMs and MBSs 
that were important in controling the loading-induced 
bone formation process.

Methods
Animals
Adult female Lewis rats were purchased from Charles 
River Laboratories, Inc. The animals were fed standard 
rat chow and water ad libitum, and acclimated until 
20 weeks of age (average weight of 209.1g ± 12.5g). 
Animals were divided into eleven groups: 4 hours 
(4h, n=9), 12hours (12h, n=10), 1day (1d, n=9), 
2 days (2d, n = 10), 4 days (4d, n = 10), 6 days 
(6d, n=10), 8days (8d, n=8), 12days (12d, n=7), 
16days (16d, n=9), 24days (24d, n=11), and 32days 
(32d, n=12). All procedures were performed in accor-
dance with the Institutional Animal Care and Use 
Committee guidelines of Indiana University. 

Mechanical loading
A standard model for bone loading was employed 
in which the right forelimb was loaded axially for 
three minutes per day, while the left forearm served 
as a non-loaded, contralateral control.14–16 Prior 
to loading, animals were anesthetized with 3.0% 
isoflurane administered at a flow rate of 1.5 L/min. 
Compressive load was applied as an oscillating Hav-
ersine waveform for 360cycles at a frequency of 2Hz 
using a Bose ElectroForce 3200 Series electromechan-
ical actuator (EnduraTEC). The peak load achieved 
during loading was 13N, which has previously been 
shown to be anabolic.14 Rats were subjected to loading 
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sessions every day, with 24hours between sessions. 
The study groups listed above are referenced to the 
number of days (or hours) after the first bout of bone 
loading was applied. For example, animals in the 4h, 
12h, and 1d groups were loaded once and sacrificed 
4hours, 12hours, or 24hours later, respectively. Ani-
mals in the 2d group were loaded on two consecutive 
days and were sacrificed 24hours after the last loading 
session. Animals in all other groups were loaded for 
the indicated number of days and sacrificed 24hours 
after the last loading session. At the appropriate time 
point, animals were anesthetized with isoflurane and 
euthanized by cervical dislocation.

RA isolation
The shafts of the right and left ulnas were dissected, 
freed of all soft tissue, snap frozen in liquid nitrogen, 
and stored at -80 °C until RNA isolation. RNA was 
extracted using Trizol (Invitrogen) and RNeasy 
Mini Kits (Qiagen, Inc.). Frozen ulnas were placed 
into a mortar containing liquid nitrogen and crushed 
with a pestle. The crushed bones were immediately 
transferred into a 2ml tube containing 1ml of Tri-
zol, homogenized for 20 seconds using a Tissue 
Tearor homogenizer (Cole-Parmer), incubated on 
the bench top for 30minutes, and centrifuged. The 
supernatant was removed and used to isolate RNA. 
RNA was isolated using RNeasy Mini Kits accord-
ing to the manufacturer’s instructions, and RNA was 
treated with a DNA-free kit (Ambion) to remove 
any residual DNA. RNA quality and quantity were 
determined using a spectrophotometer (NanoDrop). 
A limitation of our model is that we used the whole 
ulna to extract RNA. Multiple cell types are included, 
including osteoblasts, osteocytes, and bone lining  
cells.

Quantitative real time PR
Three matched (control and loaded samples from the 
same animal) ulna RNA samples from each time group 
were used for quantitative real time PCR (qPCR) 
experiments. RNA was reverse transcribed using the 
SuperScript III kit with oligo(dT) primers (Invitrogen). 
cDNA was diluted to a concentration of 2.5ng/µl and 
used in qPCR reactions. A portion of the rat collagen 
type 1 alpha 1 (Col1a1) gene sequence was amplified 
using a Taqman® gene expression assay (assay ID: 
Rn01463848_m1, Applied Biosystems, Inc.). Serial 

dilutions of a single sample were amplified to calculate 
relative expression levels, which were then standardized 
to β-actin expression to facilitate comparison among 
samples. The reactions were performed on an ABI 
7900HT Fast Real-Time PCR System. A paired t-test 
was used to compare Col1a1 expression in loaded and 
control conditions. Average fold change and standard 
errors were reported, and a P-value,0.05 was con-
sidered statistically significant.

xon arrays and analysis
Quality control for RNA included a spectrum from 
A220 to A350 run on a NanoDrop spectrophotometer, 
a native 1% agarose gel stained with ethidium bromide 
to detect contaminating DNA, and electrophoresis 
using an Agilent Bioanalyzer to examine RNA. The 
quality of RNA samples was assessed using 260:280 
ratio, and a high quality sample was defined as having 
a minimum ratio of 2.00. Only four RNA samples 
had 260:280 ratios less than 2.00, and these samples 
were chosen to optimize the quantity of total RNA 
as well as the quality. The range of 260:280 ratios of 
all samples used was 1.96–2.31.

Affymetrix GeneChip® Rat Exon 1.0 ST Arrays 
were used to analyze gene expression in loaded and 
control ulnas. These particular exon arrays had over 
4million individual features and over 1million probe 
sets, which represent the transcribed rat genome. 
The Rat Exon 1.0 ST exon arrays use approximately 
four probe sets to represent a single exon, and 
approximately 40 probe sets to represent a gene.

Five matched (control and loaded samples from 
the same animal) ulna RNA samples from each 
time group were used for exon array analysis. One 
exception to this was the 12d group, where only four 
matched samples were used. The highest quality 
matched samples, in terms of 260:280 ratio, with the 
largest quantity of total RNA were chosen for analysis 
using exon arrays. A total of 108 exon arrays were 
used, as RNA from the control and loaded ulnas from 
54 individual animals were analyzed on separate  
arrays.

The exon array hybridizations were carried 
out using the facilities of the Center for Medical 
Genomics (CMG) at Indiana University School of 
Medicine. Samples were labeled and hybridized 
using the Affymetrix WT protocol (GeneChip® Whole 
Transcript [WT] Sense Target Labeling Assay Manual 
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Version 4, Affymetrix). All processing was done in 
balanced batches. Labeling was done in batches of 
22samples which included the RNA from a matched 
sample from each time group. The exon arrays were 
scanned using the GeneChip® Scanner 3000 using 
Affymetrix GeneChip® Operating System (GCOS). 
Data were exported for analysis in the Partek® 
Discovery Suite™ (Partek Inc.).17

Raw exon array data were obtained from the CMG 
and imported into Partek for further analysis. Core 
probe sets included RefSeq transcripts and full length 
mRNAs, and were chosen for analysis because they 
were annotated with the most confidence. Probe sets 
were normalized using the following settings recom-
mended by Partek for exon array analysis: robust multi-
array average (RMA) background correction, quantile 
normalization, log probes using base 2, and median 
polish probe set summarization.18–20 After normalization 
and summarization, the probe sets represented over 
8,000 genes. A list of differentially expressed genes 
and fold change values was created for each time 
point for input into MotifModeler. A differentially 
expressed gene was defined as having a P-value,0.01 
between loaded and control conditions using  
ANOVA.

Raw data and analyzed data were MIAME com-
pliant,21 were deposited in the National Center for 
Biotechnology Information (NCBI) Gene Expression 
Omnibus database,22 and are accessible through GEO 
Series accession number GSE22286 (http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE22286).

MotifModeler
Analysis of regulatory regions for differentially 
expressed genes was conducted using MotifModeler. 
MotifModeler is a model-based algorithm that 
predicts which regulatory mechanisms govern gene 
expression in response to a biological event.7,11,13 
MotifModeler repeatedly tests random subsets of all 
possible regulatory elements (ie, TFBMs and MBSs) 
of a fixed size in the regulatory regions of genes and 
identifies those that best fit a linear model of gene 
expression based on fold change. TFBMs and MBSs 
are included in the same linear model, and those with 
scores beyond three standard deviations of the mean 
were considered statistically significant.

MotifModeler determines if predicted regulatory 
elements are stimulatory or inhibitory and identifies the 

predicted regulatory elements by matching them with 
known sequence data. MotifModeler input included 
lists of differentially expressed genes at each time 
point, and MotifModeler output included predicted 
positive TFBMs that promoted transcription, negative 
TFBMs that inhibited transcription, transcription 
factor(s) that bound to each motif, and the target 
gene in which these motifs were present. In addition, 
MotifModeler identified MBSs that were predicted 
to regulate gene expression and the target genes in 
which they were present. Data on rat microRNAs is 
limited, so the miR2Disease database was used to infer 
function about the human microRNAs corresponding 
to the rat microRNAs predicted by MotifModeler.23 
miR2Disease is a manually curated database that aims 
to provide a comprehensive resource of microRNA 
deregulation in human disease.

The primary assumption of MotifModeler is that 
the combinatorial action of many regulatory factors 
regulates gene expression and determines whether or 
not a gene is transcribed.7,24 A limitation of MotifMod-
eler is that it evaluates small portions of the gene in 
the 5′ regulatory region and 3′ UTR. Enhancers, silenc-
ers, and other regulatory elements outside of these 
regions may be important in transcriptional regulation 
as well but cannot be identified. In addition, the posi-
tions of the regulatory elements might not be known in 
poorly annotated genes so MotifModeler may analyze 
a region of the gene that does not contain regulatory  
regions.

mmunohistochemistry
Immunohistochemistry was used to qualitatively vali-
date a MotifModeler prediction at the protein level. 
Five matched whole bone ulna samples (loaded and 
control ulna from the same animal) were used at 1d, 
and four matched whole bone ulna samples were used 
at 4d. We chose these time points to allow sufficient 
time for protein synthesis to occur after mechanical 
loading. The shafts of the right and left forearms 
with intact bones (ulna and radius), and muscle were 
dissected and fixed in 10% neutral buffered formalin 
(NBF) for 48hours. The fixed forearms were decal-
cified in a 70:30 solution of 10% ethylenediamine 
tetraacetic acid (EDTA) and 4% phosphate buffered 
formalin (PBF) for four weeks. After decalcification, 
forearms were embedded in paraffin and sectioned at 
the ulnar midshaft at 5µm. The sections were dried, 

46 Gene Regulation and Systems Biology 2012:6

http://www.la-press.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22286
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22286


Regulatory mechanisms in bone

deparaffinized, reacted for endogenous peroxidase 
activity, blocked, and incubated in primary antibod-
ies to detect STAT3 (product number 9132, Cell 
Signaling Technology). STAT transcription factors 
are known to be important in mechanotransduction. 
Several STAT motifs were predicted, and we chose 
to qualitatively validate expression of STAT3 as it is 
known to play an important role in bone formation.25 
Secondary antibody labeling and detection were 
accomplished using the Vectastain Elite ABC kit 
(Vector Labs, Inc.) with diaminobenzidine as the chro-
mogen. The immunolabeled sections were left without 
counterstain and coverslipped. Matched samples were 
included on the same slide. This experimental design 
limits the influence of staining/processing artifacts. 
Within a matched sample, the non-loaded ulna served 
as a control for comparison to the loaded ulna.

Results
Col1a1 expression
qPCR was used to measure Col1a1, a major bone 
matrix gene, to characterize matrix synthesis. 
Figure 1 shows that Col1a1 gene expression began 
to increase in loaded ulnas at 4days. Col1a1 expres-
sion peaked at 12d in loaded bones, and declined 
toward baseline levels at later time points. Col1a1 
expression was not changed in control ulnas. We 
used Col1a1 expression as a marker for matrix pro-
duction by osteoblasts during the time course of the 
experiment. Importantly, the Col1a1 expression time 
course was very similar to the time course of osteo-
blast recruitment and bone formation observed by  
others.3–5

Transcription mechanisms—TFBMs
MotifModeler was used to predict which TFBMs 
and MBSs might play important roles in regulating 
loading-induced gene expression. TFBMs are present 
in the promoter region of genes, and act to induce 
(ie, positive TFBMs) or inhibit (ie, negative TFBMs) 
transcription when their associated transcription 
factors bind. Although motifs can be positive or 
negative to act as inducers or inhibitors of transcription, 
respectively, Figure2shows that the majority of the 
44 predicted motifs were positive. Transcription fac-
tors may bind to multiple TFBMs, and MotifModeler 
predicted multiple TFBMs for certain transcription 
factors. For example, the STAT5B transcription fac-
tor can bind to the STAT5B and STATx motifs in the 
oncostatin M receptor (Osmr) promoter, while the 
STAT6 transcription factor can bind to the STATx 
motif of chemokine (C-C motif) ligand 2 (Ccl2) and 
also to the STAT6 and STATx motifs of chemokine 
(C-C motif) ligand 7 (Ccl7) (Table1).

The pattern of predicted motifs changed over 
time. Several STAT motifs were predicted to regulate 
chemokine target genes at 4h, 12h, and 1d, includ-
ing chemokine binding protein 2 (Ccbp2), Ccl2, and 
Ccl7. STAT motifs were predicted to regulate cytokine 
target genes as well, including Osmr, suppressor 
of cytokine signaling 3 (Socs3), Stat3, and tumor 
necrosis factor receptor superfamily member 12a 
(Tnfrsf12a). The genes, STAT motifs, and associated 
transcription factors are listed in Table 1. The data 
in Table1should be interpreted as follows, and the 
STAT motifs will be used to illustrate. The STAT5A, 
STAT6, and STATx motifs were present in the pro-
moter region of Ccl7. Therefore, Ccl7 was consid-
ered a target gene for transcription factors that bound 
STAT5A, STAT6, and STATx motifs. The STAT5A 
transcription factor can bind the STAT5A motif, the 
STAT6 transcription factor can bind the STAT6motif, 
and the STAT1, STAT2, STAT3, STAT4, STAT5A, 
STAT5B, and/or STAT6 transcription factors can bind 
the STATx motif to influence expression of Ccl7.

The LEF1motif was predicted to be positive at 12h, 
and is of interest because one of the transcription fac-
tors that binds to it is lymphoid enhancer binding factor 
1 (LEF1). LEF1 is part of the Wnt/β-catenin signaling 
pathway, which is known to be important in mecha-
notransduction and enhances the sensitivity of osteo-
blasts and osteocytes to loading.26 The LEF1 motif 
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was present in chemokine (C-X-C motif) ligand 13 
(Cxcl13) and the collagen cross-linking enzyme gene, 
lysyl oxidase (Lox) (Table1).

The CREB-related transcription factors are impor-
tant for bone formation, specifically ATF4, which 
is required for collagen synthesis by mature osteo-
blasts.27,28 The CREB motif was predicted to be posi-
tive at 2d, 4d, 6d, and 8d. The transcription factors that 
bind to the CREB motif include cAMP responsive ele-
ment binding protein 1 (CREB1), cAMP responsive 
element modulator (CREM), activating transcrip-
tion factor 1 (ATF1), ATF2, ATF3, ATF4, and ATF7. 
The CREB motif was present in the promoter of an 
important matrix gene, fibronectin 1 (Fn1), and in 

genes that promote collagen construction and cross-
linking, including Lox, prolyl 4-hydroxylase beta 
polypeptide (P4hb), and procollagen C-endopeptidase 
enhancer (Pcolce) (Table1). As the CREB motif is 
prevalent in many genes upregulated during matrix 
formation, it appears that CREB signaling is critical 
for matrix formation.

SMAD-related motifs are of interest because 
SMADs interact with the transforming growth factor 
beta (TGF-β) signaling pathway, which is important 
in osteoblast differentiation and bone formation.29 The 
SMAD-4motif was positive at 4d, and the SMAD4 
transcription factor can bind the SMAD-4 motif. 
The SMAD-4 motif was present in two genes 
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Figure 2. The pattern of predicted TFBMs changed over time. Different TFBMs were associated with different time points. More TFBMs were predicted at 
early time points, and fewer TFBMs were predicted at later time points. Positive TFBMs promoted transcription and are represented by solid black boxes, 
while negative TFBMs inhibited transcription and are represented by boxes with diagonal black lines.
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involved in matrix turnover, matrix metallopepti-
dase 14 (Mmp14) and Pcolce (Table1). Like CREB, 
SMAD-4signaling appears to be important for matrix  
formation.

The SREBP-1 motif is bound by the sterol reg-
ulatory element binding transcription factor 1 
(SREBP1). The SREBP-1 motif was predicted to 
regulate expression of genes related to matrix for-
mation and osteoblast differentiation at 4d and 12d, 
including bone gamma-carboxyglutamate (gla) pro-
tein (Bglap), collagen type 1 alpha 2 (Col1a2), and 
Sp7 transcription factor (Sp7), also called osterix  
(Table1).

Eight predicted motifs were negative, and seven 
of these were predicted at 32d, when the system was 
less responsive to loading and had shifted from bone 
forming to baseline bone maintenance. No nega-
tive motifs were predicted during matrix formation, 
which occurred primarily between 4 and 12days after 
starting loading (Fig.2). The GATA-2motif was pre-
dicted to be negative at 12h, and the GATA2 transcrip-
tion factor binds this motif to inhibit transcription. 
This motif was present in fibroblast growth factor 23 
(Fgf23) and gremlin 1 (Grem1) promoters (Table1), 
and both of these genes were downregulated during 
matrix formation.30

Transcription mechanisms—MicroRA
MicroRNAs were studied because they act at the 
post-transcriptional level and induce degradation by 
binding to the 3′ UTR of target mRNA. MotifModeler  
predicted that 29 MBSs regulated gene expression 
across the time course, and 27 of these were positive 
regulators of gene expression (ie, microRNA bind-
ing to these MBSs within target genes was inhibited 
by loading, and target gene expression increased) 
(Fig.3). No negative microRNAs were predicted dur-
ing matrix formation, and no MBSs were predicted to 
regulate gene expression at 32d.

The pattern of predicted MBSs changed over 
time, similar to the pattern of TFBM prediction. At 
4h, microRNAs associated with predicted MBSs 
included rno-miR-143, rno-miR-199a-3p, and rno-
miR-873. These microRNAs were predicted to reg-
ulate expression of chemokine target genes Ccbp2 
and Ccl7 as well as the AP-1 target gene fos-like 
antigen 1 (Fosl1) (Table 2). MicroRNAs predicted 
at 12h included rno-miR-148b-3p, rno-miR-323, 
and rno-miR-434, and were predicted to regulate 
expression of chemokine target genes Ccl2, Cxcl13, 
and chemokine (C-X-C motif) ligand 14 (Cxcl14) 
(Table2). At 4d, 6d, and 8d, rno-miR-29a, rno-miR-
29b, and rno-miR-29c were predicted to regulate 

Table 1. Predicted motifs and the associated transcription factors that bind and potentially influence expression of target 
genes at various time points.

Time point(s) Target genes Motif Motif  
Function

Transcription  
Factor(s)

4h, 12h, 1d Ccbp2 STAT6 Positive STAT6
Ccl2 STAT5B Positive STAT5B

STATx Positive STAT1, STAT2, STAT3, STAT4, STAT5A, 
STAT5B, STAT6

Ccl7 STAT5A Positive STAT5A
STAT6 Positive STAT6
STATx Positive STAT1, STAT2, STAT3, STAT4, STAT5A, 

STAT5B, STAT6
Osmr STAT5B Positive STAT5B

STATx Positive STAT1, STAT2, STAT3, STAT4, STAT5A, 
STAT5B, STAT6

Socs3 STATx Positive STAT1, STAT2, STAT3, STAT4, STAT5A, 
STAT5B, STAT6

Stat3 STAT6 Positive STAT6
Tnfrsf12a STAT6 Positive STAT6

12h Cxcl13, Lox LF1 Positive LF1
12h Fgf23, Grem1 GATA-2 egative GATA2
2d, 4d, 6d, 8d Fn, Lox, P4hb, Pcolce RB Positive RB1, RM, ATF1, ATF2, ATF3, ATF4, ATF7
4d Mmp14, Pcolce SMAD-4 Positive SMAD4
4d, 12d Bglap, Col1a2, Sp7 SRBP-1 Positive SRBP1
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expression of collagen type 3 alpha 1 (Col3a1), 
leucine proline-enriched proteoglycan (leprecan) 1 
(Lepre1), and matrix metallopeptidase 2 (Mmp2), 
which are target genes associated with bone formation  
(Table2).

mmunohistochemistry
Several STAT motifs were predicted to positively reg-
ulate cytokine target genes at 4h, 12h, and 1d. STAT3 is 
known to play an important role in bone formation and 
mechanotransduction,25 and immunohistochemistry 
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Figure 3. The pattern of predicted MBSs changed over time. Different microRAs associated with the MBSs were predicted at different time points. 
Positive MBSs promoted post-transcriptional activity by inhibiting microRA binding to target gene mRA and are represented by solid black boxes, while 
negative MBSs inhibited post-transcriptional activity and are represented by boxes with diagonal black lines.
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resentative matched sample at the 4d time point showed that STAT3 
positive osteoblasts and osteocytes (indicated by the brown stain) were 
present in the loaded ulna (right) but not in the control ulna (left).

Table 2. Predicted microRAs corresponding to MBSs 
that potentially influence target gene expression at vari-
ous time points.

Time point Target genes microRA
4h Ccbp2 rno-miR-199a-3p

Ccl7 rno-miR-199a-3p
rno-miR-873

Fosl1 rno-miR-143
12h Ccl2 rno-miR-323

rno-miR-434
Cxcl13 rno-miR-148b-3p
Cxcl14 rno-miR-148b-3p

4d, 6d, 8d Col3a1, Lepre1, Mmp2 rno-miR-29a
rno-miR-29b
rno-miR-29c
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was used to qualitatively validate STAT3 protein 
expression. Immunohistochemistry revealed a 
qualitative increase in STAT3 expression in a loaded 
bone at 4d compared to the non-loaded bone (control) 
from the same animal (Fig.4).

Discussion
The TFBMs and MBSs predicted to regulate loading-
induced gene expression followed time-dependent 
patterns over the time course. Several known and 
potentially novel TFBMs and MBSs were identified.

MotifModeler predicted that 44 unique TFBMs were 
important in regulating loading-induced gene expression 
across the time course. The pattern of motif prediction 
changed over time, and the majority of predicted motifs 
were positive (ie, promoted transcription) rather than 
negative (ie, inhibited transcription). Many STAT motifs 
were predicted at 4h, 12h, and 1d. STAT transcription fac-
tors are known to be important in mechanotransduction; 
for example, signaling through STAT3 plays an important 
role in bone formation.25 The STAT motifs were all posi-
tive and were present in the promoter regions of several 
genes, including chemokines and cytokines (Table 1). 
To validate MotifModeler predictions, we used immu-
nochemistry to detect STAT3 expression at an early (1d) 
and later (4d) time point (Fig.4). Although STAT3 was 
predicted to be important at 4h, an increase in its expres-
sion was not detected until 4d. It is possible that the 1d 
time point was too early to detect a change in STAT3 
protein-level expression or that one loading session was 
not sufficient to increase STAT3 expression.

An interesting novel motif was SREBP-1, and its 
potential role in regulating bone formation is not clear. 
SREBP1 is a transcription factor that binds sterol reg-
ulatory elements (SREs) and is involved in insulin and 
leptin regulation, lipogenesis, adipocyte development, 
and cholesterol homeostasis.31–34 A specific isoform, 
SREBP1-c, plays a role in obesity by influencing fatty 
acid metabolism and peroxisome proliferator-acti-
vated receptor gamma (PPARG), which is an adipo-
genic transcription factor.32,35 Recently, it was shown 
that SREBP-1 transcription factors play a role in myo-
genesis, myoblast differentiation, and muscle atrophy 
through interaction with transcriptional repressors 
basic helix-loop-helix domain containing, class B, 
2 (BHLHB2) and BHLHB3.36 While our data showed 
that muscle-related genes were downregulated with 

mechanical loading,30 SREBP-1 was not predicted by 
MotifModeler to downregulate muscle genes.

MotifModeler predicted that 29 MBSs regulated 
gene expression at the post-transcriptional level, and 
27 of these were positive (ie, microRNA binding to 
these MBSs within target genes was inhibited by 
loading). MicroRNA regulation is important in devel-
opment and many normal biological processes, but has 
not yet been studied in the context of bone formation. 
We determined which MBSs might be important in 
regulating gene expression, and we identified the spe-
cific target genes in which the MBSs were present. 
For example, MBSs for rno-miR-29a, rno-miR-29b, 
and rno-miR-29c were predicted by MotifModeler at 
4d, 6d, and 8d to regulate Col3a1, Lepre1, and Mmp2. 
As these genes are all involved with the extracellular 
matrix, the rno-miR-29 variants may play a role in 
matrix formation. In vitro studies showed that miR-
29b is a key regulator of osteoblast differentiation.12 
The human isoform of miR-29a (hsa-miR-29a) is 
involved in many types of cancer, obesity, and vascu-
lar disease,23 but is not known to have a role in bone 
formation in humans. MBSs for rno-miR-143 were 
predicted to regulate Fosl1 at 4 hours. The human 
isoform of miR-143 (hsa-miR-143) is involved with 
many types of cancer as well but has no known 
role in bone formation.23 In addition, our data sug-
gest that microRNAs function in a stimulatory rather 
than inhibitory capacity in loading-induced bone 
formation. However, further research in this area is 
necessary to advance our understanding of the mech-
anisms whereby microRNA regulates bone formation 
in response to mechanical loading.

In conclusion, we determined the time sequence of 
regulatory activities in a bone subjected to mechani-
cal loading and predicted several TFBMs and MBSs 
that are important in controling the loading-induced 
bone formation process. To our knowledge, the role of 
microRNA regulation in bone formation has not yet 
been investigated and the list of predicted microRNAs 
could include several novel regulatory mechanisms 
for loading-induced bone formation.
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