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Abstract: Peroxisomes are highly dynamic and responsive organelles, which can adjust their morphol-
ogy, number, intracellular position, and metabolic functions according to cellular needs. Peroxisome
multiplication in mammalian cells involves the concerted action of the membrane-shaping protein
PEX11β and division proteins, such as the membrane adaptors FIS1 and MFF, which recruit the
fission GTPase DRP1 to the peroxisomal membrane. The latter proteins are also involved in mi-
tochondrial division. Patients with loss of DRP1, MFF or PEX11β function have been identified,
showing abnormalities in peroxisomal (and, for the shared proteins, mitochondrial) dynamics as
well as developmental and neurological defects, whereas the metabolic functions of the organelles
are often unaffected. Here, we provide a timely update on peroxisomal membrane dynamics with
a particular focus on peroxisome formation by membrane growth and division. We address the
function of PEX11β in these processes, as well as the role of peroxisome–ER contacts in lipid transfer
for peroxisomal membrane expansion. Furthermore, we summarize the clinical phenotypes and
pathophysiology of patients with defects in the key division proteins DRP1, MFF, and PEX11β as
well as in the peroxisome–ER tether ACBD5. Potential therapeutic strategies for these rare disorders
with limited treatment options are discussed.

Keywords: peroxisomes; mitochondria; organelle dynamics; division defects; dynamin-related
protein 1; mitochondrial fission factor; PEX11β; FIS1; ACBD5; membrane fission

1. Introduction

Organelle dynamics refers to the ability of subcellular, membrane-bound organelles to
alter their morphology, size, abundance, motility and interplay with other cellular compart-
ments. Dynamic changes in morphology enable the organelles to respond to alterations in
the cellular environment and to adapt to changing cellular needs. The dynamics of mito-
chondria are arguably best studied and are mediated by fusion and fission events, which can
result in the formation of complex interconnected networks or smaller entities. Mitochon-
drial dynamics are mediated by a growing number of membrane-shaping proteins, but also
involve other organelles and the cytoskeleton [1–5]. The dynamic changes in mitochondrial
morphology impact mitochondrial and cellular processes, such as apoptosis/cell death,
mitophagy, mitochondrial metabolism and ATP production, mitochondrial quality control
and mtDNA inheritance, cell fate decisions, cell cycle, and the transport/distribution of
mitochondria, to name a few [4,6,7].

Peroxisomes are also dynamic, highly plastic organelles that are able to adjust their
morphology, number, intracellular position, interactions with other organelles and metabolic
functions according to the needs of the cell or organism. Particular focus has been on dy-
namic processes involved in the growth and division/multiplication of peroxisomes [8,9].
Remarkably, peroxisomes and mitochondria share several key components of their divi-
sion/fission machinery, including the membrane adaptor proteins FIS1 (Fission 1) and
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MFF (mitochondrial fission factor), which recruit the large dynamin-like GTPase DRP1
(dynamin-related protein 1) to the organelle membrane (reviewed in [10–12]). Once associ-
ated with adaptor proteins, DRP1 forms an oligomeric ring around the organelle membrane.
The hydrolysis of GTP to GDP then causes a conformational change in the ring, which
executes membrane fission [13,14]. Interestingly, the sharing of key division components
between mitochondria and peroxisomes appears to be evolutionarily conserved amongst
mammals, fungi and plants [15]. However, in contrast to mitochondria, mature peroxi-
somes do not appear to fuse, at least not in a way similar to mitochondrial fusion [16,17].
Mitochondrial fusion involves the large GTPases Mitofusin 1 (MFN1) and Mitofusin 2
(MFN2) at the outer mitochondrial membrane, and the GTPase OPA1 (Optical Atrophy
1), which mediates fusion of the inner mitochondrial membrane [4,18]. In contrast to the
fission machinery, these key fusion components do not localize to peroxisomes [16]. There
are additional membrane-shaping and adaptor proteins, which appear to be organelle spe-
cific. The peroxisomal biogenesis factor (peroxin) PEX11β is a membrane-shaping protein
involved in multiple steps of peroxisomal growth and division (see Section 3.4). MiD49 and
MiD51 are mitochondria-specific adaptor proteins at the outer mitochondrial membrane,
which regulate mitochondrial division [19]. Peroxisomes can also form de novo under
certain conditions, which involves the ER and mitochondria [20,21]. This is mediated by
the formation of ER- and mitochondria-derived vesicles, which, however, does not depend
on DRP1 or PEX11β [21,22].

Peroxisomes are oxidative organelles with key functions in the β-oxidation of fatty
acids, synthesis of ether lipids/plasmalogens (important components of the brain white
matter) and reactive oxygen species (ROS) homeostasis [23]. They show a close inter-
play with mitochondria, including metabolic cooperation in fatty acid β-oxidation, ROS
homeostasis, and anti-viral responses [10,11,24,25]. Membrane contacts between mito-
chondria and peroxisomes have been identified, which link peroxisomal β-oxidation and
mitochondrial ATP production [26–28]. The interconnection of these metabolic activities
may have contributed to the sharing of division proteins, which allows for coordination of
peroxisomal and mitochondrial fission under specific metabolic conditions. Interestingly,
many of the membrane proteins shared by peroxisomes and mitochondria are tail-anchored
(TA) membrane proteins including the DRP1-adaptors FIS1 and MFF; GDAP1 (ganglioside-
induced differentiation-associated protein 1) [29], which may contribute to fission in neu-
rons; MAVS (mitochondrial antiviral-signaling protein) [30], which is involved in anti-viral
signaling; and MIRO1, which is an adaptor for microtubule-dependent motor proteins,
such as kinesin [31–33]. TA proteins have a single transmembrane domain (TMD) and a
short amino acid tail at the very C-terminus, which determine post-translational targeting
to different organelles [34]. Peroxisomal targeting of TA proteins is mediated by PEX19, the
receptor/chaperone for multiple peroxisomal membrane proteins [35], and is promoted
by a moderate hydrophobicity of the TMD and a high positive net charge of the tail [36].
Reducing the positive net charge results in additional targeting to mitochondria; on the
other hand, increasing the tail charge of mitochondrial TA proteins results in peroxisomal
localization [36,37]. These observations may explain why several TA proteins are shared
between peroxisomes and mitochondria: slight alterations in amino acid composition of the
tail region may have occurred during eukaryote evolution, which allowed dual targeting
to both organelles [25,36]. Due to the interconnection of peroxisomal and mitochondrial
functions, e.g., in the β-oxidation of fatty acids in both organelles in animals, the sharing of
TA adaptor proteins may have been an evolutionary advantage in coordinating organelle
dynamics and cellular metabolism.

Patients with mutations in DRP1 or MFF have now been identified, showing defects
in peroxisomal and mitochondrial dynamics (see Sections 3.1 and 3.2). The patients suffer
from developmental defects, neurological abnormalities and loss of sensory functions,
whereas metabolic functions of the organelles are generally not or only slightly affected.
This has hampered the diagnostics of those disorders, which are often based on metabolic
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biomarkers, but also highlights the importance of membrane dynamics for human health
and development.

Here, we provide a timely update on peroxisomal membrane dynamics with particular
focus on peroxisome formation by membrane growth and division. We address the role of
PEX11β in these processes, as well as the role of peroxisome–ER contacts in lipid transfer
for peroxisomal membrane expansion. Furthermore, we summarize the clinical phenotypes
and pathophysiology of patients with defects in the key division proteins DRP1, MFF, and
PEX11β as well as in the peroxisome–ER tether ACBD5. As these are rare disorders with
limited treatment options, we discuss potential therapeutic strategies.

2. Growth and Division of Peroxisomes

A model for peroxisome biogenesis by growth and division of pre-existing organelles
was first proposed in 1985 [38]. The identification and molecular characterization of peroxi-
somal division proteins, microscopic observations and the analysis of patient fibroblasts
have contributed to a refined model (Figure 1). In mammalian cells, peroxisome formation
by membrane growth and division represents a multi-step process involving the remodel-
ing of the peroxisomal membrane, membrane expansion/elongation (growth), membrane
constriction and final scission (fission) [8,9,39]. Peroxisomal growth and division results in
the formation of new peroxisomes (multiplication/proliferation), which import matrix and
membrane proteins to maintain functionality [40].

Figure 1. Growth and division of mammalian peroxisomes. Schematic of peroxisome proliferation
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from pre-existing peroxisomes, via the growth and division cycle. (1) The peroxisomal membrane
undergoes initial deformation, requiring the N-terminus of PEX11β to disrupt the lipid bilayer. Exten-
sion of this protrusion is supported by lipid flow from the ER at ACBD5-VAP-mediated membrane
contacts, via an unknown mechanism potentially involving lipid transfer proteins. (2) Elongation of
the protrusion also requires PEX11β, aided by pulling forces from the movement of the peroxisomal
MIRO1-motor protein complex along microtubules. (3) The nascent tubule undergoes constriction,
allowing oligomerization of the GTPase DRP1 and leading to a characteristic ‘beads-on-a-string’
morphology. DRP1 is recruited to the membrane by binding to its adaptors FIS1 and MFF, which
also interact with PEX11β (see cut-out). PEX11β facilitates DRP1-dependent GTP hydrolysis to drive
further constriction and ultimately membrane scission, dividing the tubule into multiple ‘daughter’
peroxisomes. (4) These newly formed peroxisomes import new matrix and membrane proteins to be-
come fully functional, mature organelles, and are distributed throughout the cell along microtubules
by the MIRO-motor protein complex.

2.1. Membrane Deformation and Elongation

The peroxisomal membrane protein PEX11β has key roles in many, if not all, of the
steps of the growth and division pathway (Figure 1). PEX11β possesses two membrane-
spanning domains with a very short C-terminus and a larger N-terminus, both facing the
cytosol [41,42] (Figure 2). The N-terminal domain contains amphipathic helices, which
allow interactions with membrane lipids [43,44]. Furthermore, the N-terminus is required
for the oligomerization of PEX11β [41,45,46]. Expression of PEX11β initially results in the
deformation of the peroxisomal membrane at a defined site on the “mother” peroxisome.
Subsequently, a membrane protrusion forms, which further elongates, before it constricts
at multiple sites [40] (Figure 1). It is suggested that both phospholipid binding via the
amphipathic helices and oligomerization of PEX11β are the driving forces for membrane
remodeling, deformation and elongation. In addition to a PEX11β protein scaffold, certain
membrane lipids, which promote changes in membrane curvature, may be required [9].
The role of the PEX11 isoforms PEX11α and PEX11γ in peroxisome division is less clear
(see Section 3.4).

Figure 2. Domain structure of human DRP1, MFF, ACBD5, PEX11β and known pathogenic mutations.
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ACB, Acyl-CoA binding domain; CC, coiled-coil domain; FFAT, two phenylalanines in an acidic
tract; GED, GTPase effector domain; Gly rich, glycine-rich region; H, helix; RR, repeat motifs; TMD,
transmembrane domain. For details, see text. For information about patients, see Appendix A.

2.2. Membrane Constriction and Assembly of Fission Sites

Although DRP1 can form ring-like structures around organelle membranes, the diam-
eter of the organelles is too large to allow ring assembly and requires constriction prior to
DRP1 assembly. As peroxisomes can still constrict after loss of DRP1 [47] (see Section 3.1),
other factors besides DRP1 are required. How peroxisomes constrict prior to fission is still
unknown, although PEX11β may play a role as it is found at constriction sites [48], its
manipulation blocks constriction [40], and it can constrict liposomes in vitro [49] (Figure 1).
Mitochondrial division is facilitated by contact with the endoplasmic reticulum (ER) to
form constriction sites by wrapping extended ER tubules around mitochondria [2]. DRP1
and its adaptors assemble at the mitochondria–ER contacts. These interaction sites may
be determined by replicating mtDNA, which is positioned at these sites [3]. Furthermore,
the ER-bound inverted-formin 2 (INF2) and the mitochondrial-anchored formin-binding
Spire1C proteins assemble actin filaments at the mitochondria–ER contact sites, which
mediate constriction prior to DRP1 ring formation [1,5]. Recent studies suggest that both
membrane bending (induced by constriction) and tension (e.g., by cytoskeletal forces)
contribute to mitochondrial fission at constriction sites [50,51]. If cooperative processes
between the ER and actin are also involved in peroxisome constriction is unclear, but
cannot yet be excluded. Peroxisomes are in close contact with the ER and form membrane
contacts [52,53]. However, the ER is mainly found at the mother peroxisomes, and not at
peroxisome tubules, which would need to constrict [54]. A major role of the peroxisome–ER
contacts is the supply of membrane lipids for peroxisomal membrane expansion [31,52,55]
(see Section 3.3). Mitochondrial constriction may be more complex than peroxisome con-
striction and require additional forces, as mitochondria need to coordinate division of their
outer and inner membranes and may link this to mtDNA replication. As peroxisomes do
not contain DNA and have only a single limiting membrane, constriction and division
processes may be less complex.

2.3. Membrane Scission

Constriction of the peroxisomal membrane goes along with the assembly of the divi-
sion machinery. It is composed of PEX11β and the adaptor proteins FIS1 and MFF, which
can recruit DRP1 to the peroxisomal (and mitochondrial) membrane (Figure 1). Both FIS1
and MFF have been shown to interact with PEX11β at peroxisomes [42,46,56,57]. PEX11β
is not believed to be an adaptor for the recruitment of DRP1, but can interact with DRP1
to promote DRP1 assembly and subsequent stimulation of its GTPase activity [58]. DRP1
activity depends on a supply of GTP, which may be locally generated by DYNAMO1
(dynamin-based ring motive-force organizer 1)/NME3 (nucleoside diphosphate kinase 3).
The Cyanidioschyzon merolae DYNAMO1 protein localizes to both the peroxisomes and mito-
chondria with a role in fueling membrane fission through local GTP generation [59]. NME3,
the mammalian orthologue, was also found to localize to peroxisomes. NME3-suppression
results in elongated peroxisomes, suggesting a role in peroxisome division by efficiently
loading DRP1 with GTP and thus facilitating its fission activity [60].

The role of FIS1 in peroxisome division has been controversial [56,61,62]. Whereas the
loss of MFF results in highly elongated peroxisomes (and mitochondria) due to a block in
peroxisome division (see Section 3.2), the loss of FIS1 does not appear to change peroxi-
some morphology. This has led to the assumption that MFF is the major adaptor protein
for peroxisomal (and mitochondrial) fission, whereas FIS1 may fulfill more specialized
functions [62]. However, we have recently shown that overexpression of PEX11β can
promote peroxisome division in MFF-deficient fibroblasts dependent on FIS1 [63]. Further-
more, overexpression of MFF in PEX11β-deficient fibroblasts restored the normal, spherical
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peroxisome morphology. These findings indicate that two independent mechanisms for
peroxisome division may exist, one via MFF and another via PEX11β/FIS1 (see Section 5).

2.4. Pulling Forces, ER Contacts and Lipid Transfer

After division, newly formed peroxisomes need to be distributed within the cell
(Figure 1). Peroxisomes move along microtubules in mammalian cells and can recruit
microtubule-dependent motor proteins, such as kinesin and dynein [64–66]. The Rho
GTPase MIRO1 has been shown to localize to peroxisomes and mitochondria [31–33]. Like
FIS1 and MFF, MIRO1 is also a C-tail anchored membrane protein with dual peroxisomal
and mitochondrial localization [33,36]. It can serve as an adaptor protein for the recruitment
of microtubule motor proteins [67]. The MIRO1/motor complex can exert pulling forces
at peroxisomes, which can lead either to peroxisome motility along microtubules and re-
positioning, or to the formation of membrane protrusions/membrane expansion [31]. The
latter process requires attachment of peroxisomes to a fixed point, e.g., to the cytoskeleton or
to the ER. Although the depolymerization of microtubules curiously promotes peroxisomal
elongation and does not inhibit fission [68,69], microtubule-dependent pulling forces via
MIRO1/motor proteins may facilitate peroxisomal membrane expansion and division [31].

Expression of a peroxisome-targeted MIRO1 (to avoid mitochondrial alterations) pro-
moted the formation of peroxisomal membrane protrusions in PEX5-deficient patient
fibroblasts [31]. PEX5 is a cytoplasmic import receptor for peroxisomal matrix proteins,
which can interact with the peroxisomal membrane to deliver cargo proteins [70,71]. Loss
of PEX5 function (or of other peroxins of the peroxisomal matrix protein import machin-
ery) causes Zellweger syndrome (ZS), a spectrum of peroxisome biogenesis disorders
with severe developmental and neurological defects [72]. It results in import-deficient
peroxisomes, which lack peroxisomal enzymes within the matrix and are metabolically
inactive [73]. However, peroxisomal membranes can still be formed, but peroxisomes are
reduced in number and enlarged, presenting as “ghosts” (empty peroxisomal membrane
structures) [74]. Interestingly, these peroxisomal “ghosts” are still dynamic, as they can
form membrane protrusions promoted by MIRO1/motor proteins and can also elongate
and divide, e.g., after PEX11β expression [31]. This indicates that these peroxisomal mem-
brane dynamics are mechanistically independent of peroxisomal metabolism. Patients
with a defect in peroxisomal β-oxidation, e.g., in acyl-CoA oxidase 1 (ACOX1), also exhibit
enlarged peroxisomes in skin fibroblasts. Remarkably, addition of docosahexaenoic acid
(DHA, C22: 6n-3) restored the normal peroxisome morphology in those cells [45]. The
synthesis of DHA requires the cooperation of peroxisomes and the ER; the precursor under-
goes one round of β-oxidation in peroxisomes before it is routed to the ER and may become
incorporated in phospholipids. This implies that peroxisomes contribute to the synthesis of
lipids, which are in turn required for their own biogenesis/membrane plasticity [8].

The C-tail anchored peroxisomal membrane protein ACBD5, a member of the acyl-CoA
binding domain protein family, is involved in the formation of peroxisome–ER contacts (see
Section 3.3). ACBD5 interacts with the C-tail anchored ER-resident membrane protein VAPB
(vesicle-associated membrane protein-associated protein B) to tether both organelles [52,53].
Protein interaction is mediated by the ACBD5 FFAT (two phenylalanines in an acidic tract)-
like motif, which binds to the MSP (major sperm protein) domain of VAPB (Figure 2). It
has been shown that the peroxisome–ER contact sites play a role in peroxisome position-
ing/motility, in cooperative metabolic processes (e.g., ether lipid synthesis) as well as in
peroxisome membrane expansion [75]. Loss of ACBD5 or VAPB results in a shortening
of the highly elongated peroxisomes in MFF-deficient cells, likely due to the interrupted
membrane lipid transfer from the ER [52]. A transfer of ER lipids is also suggested by
observations in MIRO1-expressing cells (see above). MIRO1/motor protein-mediated
pulling forces generate membrane protrusions, which have a much higher surface area than
the mother peroxisome they are generated from. It is likely that the mother peroxisome
does not possess sufficient amounts of membrane lipids to allow for the generation of such
elongated tubules [31]. How membrane lipids are transferred from the ER to peroxisomes
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is unclear. Although ACBD5 has acyl-CoA binding activity, it is suggested that this function
is used to sequester and deliver very long-chain fatty acids (VLCFA) to the peroxisomal
ABCD1 (ATP-binding cassette D1) transporter for uptake into peroxisomes and subsequent
β-oxidation [76] (see Section 3.3). Specific lipid transfer proteins at peroxisome–ER contact
sites may be involved in lipid transfer, such as oxysterol-binding proteins (ORPs), which
can shuttle individual phospholipids. Recently, a role for VPS13D (vacuolar protein sorting-
associated protein 13D) in peroxisome biogenesis was reported [77]. VPS13D can interact
with MIRO1 and VAPB to form a bridge between the ER and peroxisomes [78]. VPS13D is
a large protein with a hydrophobic groove, which could allow lipid channeling between
organelles [79]. Such a “bulk flow” of lipids would be consistent with the observed rapid
elongation processes of the peroxisomal membrane [31].

2.5. Multiple Roles of PO Membrane Dynamics

As outlined above (see Section 2), peroxisome membrane expansion results in mem-
brane growth, which is linked to the multiplication/proliferation of peroxisomes by fission.
However, the formation of peroxisomal membrane protrusions has also been linked to or-
ganelle interaction and communication. Interestingly, PEX11β was found to be co-regulated
with proteins of the mitochondrial ATP synthase complex in a large-scale mapping ap-
proach, suggesting coordination of peroxisomal and mitochondrial functions [27]. Expres-
sion of PEX11β promotes peroxisome protrusions and is required for their formation [27,31].
These protrusions were observed to interact with mitochondria in mammalian cells and
may facilitate metabolite exchange (e.g., for cooperative fatty acid β-oxidation and ex-
change of cofactors) and/or contribute to redox homeostasis [27]. Similar observations
were made in plant cells, where light stress induced long peroxisomal membrane extensions
(peroxules) which interacted with mitochondria [80,81]. The formation of those protrusions
was dependent on plant AtPEX11a [82]. As peroxisomes in mammalian cells are often in
close contact with and tethered to the ER, such protrusions may support simultaneous
interaction and communication with a third organelle, e.g., mitochondria.

3. Disorders of Peroxisome Dynamics and Plasticity
3.1. DRP1 Deficiency

DRP1 (approx. 80 kDa) (also known as DLP1; Dmn1 in yeast) is a highly conserved
GTPase of the dynamin protein superfamily. Knockdown of DRP1, or overexpression of
a dominant-negative mutant lacking GTPase activity, causes an elongated mitochondrial
and peroxisomal phenotype in mammalian cells, consistent with a reduction in organelle
fission and demonstrating the importance of DRP1 for mitochondrial and peroxisomal
division [83–85]. It is primarily cytosolic, existing in this state as soluble dimers/tetramers,
but is recruited to organelle membranes at sites of constriction by adaptors including MFF
and FIS1 (see Section 2.2), forming higher-order oligomers to encircle the organelle in ques-
tion [86]. DRP1 consists of an N-terminal GTPase domain, which hydrolyzes GTP to further
constrict the membrane; a middle domain, mediating self-interaction; a less-conserved
variable domain, which prevents cytosolic aggregation but promotes oligomerization upon
membrane recruitment; and a GTPase effector domain (GED), which together with the
middle domain mediates intramolecular interactions that stimulate GTPase activity [86,87]
(Figure 2). DRP1′s ability to promote mitochondrial fission has been shown to be bidirection-
ally regulated by a number of post-translational modifications, including phosphorylation,
SUMOylation, ubiquitination, S-nitrosylation and O-GlcNAcylation [88–91].

Patients with at least 20 distinct mutations in the DMN1L gene, encoding DRP1, have
been described (OMIM: #614388, #610708) [92]. The majority are de novo heterozygous
missense mutations (Appendix A), mostly in the GTPase and middle domains of the pro-
tein, and often with a dominant-negative effect (Figure 2). These mutations would be
predicted to compromise both mitochondrial and peroxisome division since DRP1 is shared
between the two organelles; however, the relative contribution and possible interplay of
these two cellular defects to the pathology remains to be seen. Symptoms of patients with
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mutations in DRP1 are heterogeneous but predominantly neurological, typically including
seizures, developmental delay, optic atrophy and hypotonia [92]. Neurological defects are
common features of disorders with mitochondrial involvement, due to the high energetic
demands of neurons [93]. Phenotypes consistent with peroxisomal dysfunction, such as
hypomyelination, developmental abnormalities and nystagmus, are also sometimes present
in patients with DRP1 mutations [94,95]. Analysis of cells derived from these patients
normally show major perturbations to the mitochondrial network reflecting a fission defect,
including elongation of mitochondria and formation of a hyperfused network [94–101], or
swollen ‘balloon-like’ mitochondria [102–104], with abnormal cristae structure [102,105].
Where peroxisomal morphology has been investigated, an elongated phenotype is often
seen [96,100,101,103,104], which may be accompanied by constriction [95] (Figure 3); how-
ever, in other patients, peroxisomes are morphologically normal [106,107]. Notably, in
the unusual example of siblings with compound heterozygous frame shifts leading to no
detectable DRP1 expression, the mitochondrial morphology in the brain was cell-type
specific, with hippocampal and Purkinje neurons showing giant mitochondria, while the
mitochondria in glia and non-neuronal cells appeared normal [102]. Therefore, it is possible
that differences observed in peroxisome morphology between patients (and even between
different studies on the same patient cells [105,107]), may also arise from differences in the
cell type/cellular environment rather than the specific mutation.

Figure 3. Peroxisome morphology in DRP1, MFF, and PEX11β-deficient patient fibroblasts. Cultured
patient skin fibroblasts were processed for immunofluorescence and stained with antibodies to PEX14,
a peroxisomal membrane marker. Note the hyper-elongated peroxisomes in DRP1 and MFF-deficient
cells (dDRP1, dMFF). In contrast to dMFF cells, peroxisomes in dDRP1 cells are able to constrict.
Peroxisomes in PEX11β-deficient fibroblasts (dPEX11β) are mainly rod-shaped (A). Note that PEX14
is often mistargeted to mitochondria in dPEX11β cells (B). Peroxisomes in ACBD5-deficient patient
fibroblasts (not shown) are indistinguishable from controls. Higher magnifications of boxed regions
are shown. Scale bar, 20 µm.

Interestingly, despite the observed morphological changes, the metabolic functions
of mitochondria and peroxisomes are only mildly affected (if at all) in patients with DRP1
mutations. Lactate levels may be elevated in some cases [95,96,107], presumably as a
result of compromised mitochondrial respiration [98,105,106]; however, this feature is
not shared by all patients [99,103]. Unlike patients with peroxisome biogenesis disorders
(PBDs), those with DRP1 mutations do not typically show an increase in serum VLCFA
levels [103,106,108], nor do their fibroblasts show defects in peroxisomal β-oxidation [96],
indicating that the elongated peroxisomes can still perform their usual metabolic func-



Cells 2022, 11, 1922 9 of 32

tions. How, therefore, the DRP1-dependent defects in mitochondrial and peroxisomal
morphology lead to disease, without significantly altering cellular metabolism, remains
an intriguing question (see also Section 3.2). One possibility is that, in the absence of the
ability to divide, peroxisomes and mitochondria fail to dynamically adapt according to
cellular needs. Since DRP1-dependent fission is also required for normal mitochondrial
distribution within a cell [84], another contributing factor could be that, in the absence of
DRP1 function, organelles are aberrantly dispersed through the cell, leading to local disrup-
tion of metabolism. Accordingly, several studies have reported an abnormal distribution
of mitochondria and/or peroxisomes in patient fibroblasts [96,101,103] or cells expressing
DRP1 harboring patient mutations [108].

Global Dnm1l knockout (KO) is embryonically lethal in mice (at ~E11.5) [109], which
may explain why the vast majority of observed DRP1 patients have heterozygous missense
mutations. Interestingly, Dnm1l+/− heterozygous mice are viable and fertile with no gross
morphological abnormalities, despite expressing only 25% of the wild type DRP1 protein.
Global Dnm1l KO embryos are significantly smaller than wild type littermates, indicative
of developmental delay, while cerebellum-specific KOs, which survive marginally longer
until ~36 h after birth, show further defects in cerebellar development [109]. A contributing
factor to the compromised neural development may be the reduction in developmentally
regulated apoptosis seen in the neural tubes of Dnm1l KO embryos. Fibroblasts derived
from global Dnm1l KO mice embryos (MEFs) show elongated, highly connected mitochon-
dria with normal cristae, as well as elongated peroxisomes, as predicted for a defect in
fission of both these organelles. This phenotype is also seen in KO HeLa cells, arising from a
reduced number of fission events as determined by live cell imaging, and is reversible upon
re-expression of DRP1 [85]. Interestingly, despite the morphological changes in Dnm1l
KO MEFs, intracellular ATP production is unaffected [109], providing further evidence
that changes in organelle dynamics can lead to pathology in the absence of significant
metabolic disruption.

3.2. Mitochondrial Fission Factor (MFF) Deficiency

MFF (approx. 38 kDa) is a C-tail anchored membrane protein only found in metazoans,
with a short C-terminal tail reaching into the organelle (mitochondrial inner membrane
space; peroxisome matrix) and the N-terminus facing the cytosol (Figure 2) [61,110]. As
such, it is oriented to be an ideal membrane adaptor for DRP1 recruitment to constriction
sites (see Section 2). MFF contains two short repeat motifs and a coiled-coil domain, al-
lowing oligomerization [111,112], as well as several phosphorylatable serine and threonine
residues for regulation. MFF is a target of the energy-sensing adenosine monophosphate
(AMP)-activated protein kinase (AMPK), with MFF phosphorylation promoting mitochon-
drial division [113]. Dynamic MFF oligomerization is required for DRP1 activation and
division of mitochondria and peroxisomes [114]. MFF assembles in puncta on the organelle
membranes, which also depends on its oligomerization. Interestingly, mutation of the
coiled-coil domain appears to impact its peroxisomal localization [114]. MFF can promote
mitochondrial and peroxisomal division independent of FIS1 [111,115–117] and can in-
teract with PEX11β on peroxisomes [42,57] (Figure 1). Knockdown or knockout of MFF
inhibits mitochondrial and peroxisomal division and results in the hyper-elongation of
mitochondria and peroxisomes in multiple cell types, since DRP1 is no longer sufficiently
recruited to the organelle membrane, indicating that MFF is the central adaptor for DRP1
at mitochondria and peroxisomes [57,61,110,115,117,118].

Several patients with MFF deficiency, a rare autosomal recessive neurological dis-
order (OMIM#617086), have been identified. This is caused by various mutations in the
MFF gene, all of which (except one) lead to a truncated protein lacking the C-terminal
TMD and tail (Appendix A) [c.C190T:p.Q64* [119]; c.184dup:p.L62Pfs*13 combined with
c.C892T:p.R298* [120]; c.453_454del:p.E153Afs*5 [120]); c.C892T:p.R298* [121]; c.C433T:p.
R145* [122]; c.19_20delAGinsTT:p.S7F [123]]. MFF truncations with a loss of the C-terminal
TMD and tail will abolish the targeting and membrane localization of MFF, resulting in its
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absence at mitochondria and peroxisomes. Those patients show neurological abnormalities
with onset during the first year of life and may present with Leigh-like encephalopathy,
developmental delay, peripheral neuropathy, optic atrophy, and microcephaly [119–122]. A
recent case with an amino acid change from serine to phenylalanine at position 7 was re-
ported [123]. The 5-year-old male patient presented with cerebral palsy and encephalopathy,
but without seizures or vision abnormality. Surprisingly, the mother, who is phenotypically
normal, was determined to be homozygous for the same variant. Moreover, the last child
delivered was also tested to be homozygous but is phenotypically normal (at age of 11
months). It is currently unclear, therefore, if this variant is of unknown significance (VOUS)
or actually pathogenic.

Analysis of patient skin fibroblasts confirmed a loss of MFF function with mito-
chondrial and peroxisomal hyper-elongation [55,63,119–121] (Figure 3). Determination
of peroxisomal biochemical parameters for fatty acid α- and β-oxidation, plasmalogen
biosynthesis, or matrix protein import/processing did not reveal any deficiencies in these
fibroblasts [55,120,121]. Plasma lactate in patients was only occasionally increased, but mi-
tochondria in MFF-deficient patient fibroblasts showed no significant changes in oxidative
phosphorylation or mtDNA [120,121]. Loss of MFF did also not significantly affect the
mitochondrial membrane potential, ATP levels or the redox potential of the mitochondrial
matrix in neuronal cells [124]. These findings indicate that defects in the membrane dynam-
ics and division of mitochondria and peroxisomes rather than loss of metabolic functions
contribute to the pathogeny of MFF deficiency.

Similar to DRP1 deficiency (see Section 3.1), it is currently unclear if and how alter-
ations in both mitochondrial and peroxisomal dynamics contribute to the pathology of
MFF deficiency. Besides bioenergetics defects, altered mitochondrial dynamics have been
linked to neurodegenerative disorders [125]. A block in mitochondrial division, which
results in larger organelles, may impact their transport along axons, organelle motility
and positioning (e.g., at synaptic spines), and synaptic homeostasis [126–128]. Loss of
DRP1 has been linked to defects in apoptosis in KO mice (see Section 3.1), which impacts
brain development. It is likely that loss of MFF causes similar alterations, which may
explain the developmental delay and neuronal abnormalities in patients. In addition,
enlarged mitochondria may interfere with mitophagy, which involves engulfment of the
mitochondrion with an autophagosomal membrane. This may also apply to peroxisomes,
which are important for brain development and function [129]. However, recent studies
with MFF-deficient skin fibroblasts have revealed that the hyper-elongated peroxisomes
can still be degraded when autophagy/pexophagy is triggered [55]. Ultrastructural and
immunofluorescence analyses revealed that the tubular peroxisomes in MFF-deficient
fibroblasts originate from a spherical mother peroxisome, which is in contact with the
ER [54]. This is likely the site of membrane lipid transfer from ER to peroxisomes. Loss of
the peroxisome–ER tether proteins ACBD5 or VAPB in MFF-deficient cells leads to shorter
peroxisomes, indicating that a reduction in peroxisome–ER contacts decreases the lipid
transfer required for membrane elongation [52]. Electron-microscopy studies also revealed
that the hyper-elongated peroxisomes in MFF-deficient fibroblasts are not constricted,
which is in contrast to DRP1 deficiency (see Section 3.1) [47,55] (Figure 3). This indicates
that a defect in MFF affects peroxisome division earlier than a defect in DRP1, and results
in a defect in maturation. In line with this, only the mother peroxisomes, from which
the membrane tubules emerge, appear to be import competent for peroxisomal enzymes.
The tubules seem to represent pre-peroxisomal membrane structures, indicating that MFF-
deficient fibroblasts accumulate peroxisomal membranes, but are reduced in the number of
mature/fully functional peroxisomes. In addition, an unusual distribution of peroxisomal
marker proteins has been observed [55], e.g., PEX14, a membrane component of the matrix
protein import machinery, is enriched at tubular peroxisomes and may support interaction
with microtubules to stabilize the tubular structures. Furthermore, the MFF-deficient cells
display alterations in the peroxisomal redox state and intra-peroxisomal pH [55]. It is
possible that these alterations contribute to the pathophysiology of MFF deficiency. The
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reduced number of mature, functional peroxisomes may also be less able to cope with
environmental/metabolic changes, which require an increase in peroxisome numbers (e.g.,
an increase in dietary fatty acids, which require peroxisomal β-oxidation). This may ex-
plain the mild alterations of peroxisomal metabolism, which are occasionally detected in
patients with defects in peroxisomal dynamics and division [96,130,131]. Furthermore, per-
oxisomes in MFF-deficient cells may be less able to cope with a stimulation of peroxisome
proliferation and induced expression of peroxisomal matrix enzymes and/or membrane
proteins [55]. Those proteins may accumulate in the cytoplasm, where they are either
degraded or mistargeted to mitochondria, which may cause impairment of mitochondrial
function [132,133].

Mff KO mice have been generated to model MFF deficiency [134]. Mff KO mice die at
week 13 due to severe dilated cardiomyopathy, which results in heart failure, presumably
caused by mitochondrial abnormalities. This is in contrast to the neurological symptoms
diagnosed in MFF-deficient patients. Whereas mitochondria and peroxisomes in Mff-
deficient MEFs are highly elongated, they do not show a substantial change in length
in Mff-deficient mouse cardiomyocytes. Instead, differences in mitochondrial shape and
abundance were observed [134]. This may indicate that morphological alterations of
peroxisomes and mitochondria are cell-type specific (see Section 4) [55]. As morphological
studies have mainly been performed with patient skin fibroblasts, we do not currently
know much about peroxisomal and mitochondrial morphologies/dynamics in other cell
types of MFF-deficient patients. However, as biochemical markers are not or only slightly
altered in disorders affecting organelle dynamics, the morphological analysis of patient
fibroblasts is a valuable diagnostic tool.

3.3. ACBD5 Deficiency

The acyl-CoA binding domain-containing protein 5 (ACBD5) (approx. 60 kDa) is a
member of a family of seven human proteins, which can bind acyl-CoA and potentially
other hydrophobic hydrocarbon compounds in order to ensure their solubility and stability
in an aqueous environment. While ACBD1 and ACBD7 are small proteins consisting
largely of the acyl-CoA binding domain (ACB) alone, the other members exhibit several
different additional domains, which determine their individual function [135]. In particular,
ACBD5 and its smaller orthologue, ACBD4, possess a C-terminal transmembrane domain,
to anchor the protein in the peroxisomal membrane, while the ACB domain is closest to
the N-terminus and faces the cytosol (Figure 2). In addition, both proteins contain the
already described FFAT motif for the interaction with ER-resident VAP proteins, thereby
facilitating membrane contact between the ER and peroxisomes [52,53,136] and several
coiled-coil structure motifs, which might permit further protein interactions. According to
this domain structure, ACBD5-associated disorders will likely develop a mosaic phenotype
mirroring the combined loss of both protein functions: the binding of very-long chain
(VLC) acyl-CoAs and the formation of peroxisome–ER membrane contact sites. Here, we
will therefore discuss the pathological phenotype observed in human ACBD5-deficient
patients and a corresponding mouse model in light of these two independent or combined
ACBD5 functions.

The first two patients with an ACBD5 deficiency (OMIM: #618863) were identified
in a screen for candidate disease genes in retinal dystrophy patients [137] (Appendix A).
During the last five years, five further patients from four families with an ACBD5 de-
ficiency have been reported in the literature [76,138–140], documenting the increasing
alertness for this relatively newly described disorder (Appendix A). By contrast, no pa-
tients with a pathogenic mutation in the ACBD4 gene have been detected to date. All
ACBD5-deficient patients so far exhibit nonsense mutations in the ACBD5 gene, which
result in either premature truncation of translation or nonsense-mediated mRNA decay
and therefore lead to a complete absence of the protein. The disease-related alterations
observed in the patients point to a predominantly neurological pathology and include
a visual dysfunction with nystagmus, progressive and eventually severe motor dysfunc-
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tion with ataxia and dysarthria, which were reported for all patients, as well as cognitive
decline, dysphagia [138], intentional tremor and seizures [139]. Correspondent with the
neurological pathology, brain MRIs of the patients exhibited signs of hypomyelination
in the deep white matter of the telencephalon, brain stem long fiber tracts and cerebellar
peduncles [76,138,139]. Furthermore, in the oldest patient reported so far (age 36 years),
atrophic alterations, such as diffuse ventricular enlargement, widening of the cerebral
sulci and space between cerebellar folia were observed [138]. Concerning the visual im-
pairment, all patients from the literature exhibit a severe cone-rod dystrophy. Moreover,
an additional optic nerve pallor indicating a degeneration of ganglion cells was detected
in the 36-year-old patient, which might suggest a more advanced stage of the disorder.
At the biochemical level, the patients exhibit only moderately elevated plasma levels of
the VLCFA hexacosanoic acid (C26:0) if compared to, for example, the average of X-ALD
patients: ACBD5-deficient patients exhibit an average elevation of 1.2-fold over average
values obtained for healthy individuals, compared to an average of 4.5-fold for X-ALD
patients [141]. Of note, all parameters for other peroxisomal metabolites in blood plasma
were not significantly altered if compared to healthy individuals. In line with these ob-
servations, lipidomics of ACBD5-deficient patient fibroblasts revealed an accumulation
of VLCFA in most phospholipid classes [142,143]. All these data point to a function of
ACBD5 in the pathway of peroxisomal VLCFA β-oxidation, potentially as an acceptor for a
broad spectrum of VLC-acyl CoAs to be imported into peroxisomes [143]. Unexpectedly,
a decrease in ether phospholipids in cultured cells suggests that ACBD5 function is not
restricted to its supposed role in peroxisomal β-oxidation, since peroxisomal ether lipid
synthesis does not require enzymes from the β-oxidation pathway.

Recently, an Acbd5 KO mouse model was used to further link cellular and biochemical
analyses with the organ-specific pathology of ACBD5 deficiency [144]. Like human patients,
the mice show moderate increases in VLCFA in blood plasma and tissues and develop
a neurologic pathology characterized by a progressive motor dysfunction and retinal
degeneration. Among other neurological symptoms, a very prominent feature of the mouse
phenotype is their severe spinal kyphosis, which is, however, not accompanied by major
changes in bone morphology (Figure 4). Hence, this phenotype is rather the result of
a neuromuscular pathology. Such misbalances in trunk muscle coordination as well as
the intentional tremor and nystagmus observed in human patients point to a cerebellar
contribution to the disease pathology.

In line with this, ACBD5-deficient mice show signs of neuronal degeneration, such
as axon swellings and moderate hypomyelination of cerebellar Purkinje cells, which lead
to significant decline in Purkinje cell number in one-year-old mice [144]. Moreover, the
activation of astroglia and microglia imply that inflammatory processes in the affected
neural tissue accompany the neuronal degeneration. To link lipid changes with the disease
pathology, tissue samples from cerebellum and liver, which exhibit no obvious pathologic
alterations at the organ level, were compared by lipidomics. As expected, phospholipids
contained increased amounts of VLCFA in both tissues [144]. Remarkably, the cerebellum
contained phosphatidylcholine (PC) species with increased amounts of polyunsaturated
fatty acids (PUFA) with a very high chain-length (up to C38). Such a profound increase in
fatty acid chain length was not observed for cerebellar phosphatidylethanolamines (PE)
nor for any lipid class from liver. These ultra-long chain fatty acids (ULCFA) can only
be synthesized by the elongase of very long chain fatty acids (ELOVL) ELOVL4, which
shows highest expression in the retina and cerebellum but is not found in the liver [145].
On the contrary, ether phospholipid classes (PC[O], PE[O]) were in general decreased in
the cerebellum but not in the liver and did not exhibit the shift in chain length observed
for the PC. These observations underline the importance of a highly defined phospholipid
environment in specialized tissues. Changes in a subset of lipid species, such as the ULCFA-
containing PC of the cerebellum, may contribute to the tissue-specific pathology observed
in peroxisomal disorders.
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Figure 4. Phenotype of an ACBD5-deficient mouse line. (A) General body morphology of a 1-year-old
wild type mouse compared to (D) an ACBD5-deficient mouse, which exhibits a prominent kyphosis
in the thoracolumbar spine. Computer tomography (CT) analysis of the bone morphology revealed
no obvious skeletal malformations in vertebrae of ACBD5-deficient mice (E) compared to wild type
mice (B). Likewise, other bone structures (e.g., bones of the skull) show a comparable morphology
in wild type (C) and ACBD5-deficient mice (F). Hence, the pathological kyphosis is not caused by
compromised bone development but is of a secondary nature. As the animals also show a motor
phenotype and degeneration of cerebellar Purkinje cells, the kyphosis is most likely caused by a
compromised spinocerebellum inducing an imbalance in the contraction of flexor and extensor
trunk musculature.

Since ACBD5 plays, in addition to its acyl-CoA binding function, a unique role as
a tethering protein connecting peroxisomes with the ER, it is tempting to speculate how
aspects of the pathology of the ACBD5 deficiency might originate from the reduction in
peroxisome–ER contact zones. Such organelle contacts between the ER and peroxisomes
have been supposed to be involved in the transfer of intermediates in pathways which
are shared by both organelles, e.g., the synthesis of ether phospholipids or the PUFA
DHA [146]. Measurements of DHA and ether lipid content in the membrane of ACBD5-
deficient human cells revealed inconsistent data, reporting either reductions [53,142] or
no major changes [143] for both parameters. Comparison of ether lipids in the liver and
cerebellum of ACBD5-deficient mice also revealed alterations that are more complex: while
ether phospholipid content in the cerebellum was reduced in ACBD5-deficient mice, no
significant changes were found in the liver. Unexpectedly, however, alkyl-diacylglycerides
were highly increased in the liver, suggesting that the loss in ER membrane contacts induces
a tissue-specific compensatory response in the peroxisomal part of the pathway [144]. With
respect to DHA, no significant changes could be detected in lysophosphatidylcholine
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(LPC) C22:6 species in either the liver or cerebellum. Additionally, by connecting ER
and peroxisome membranes at contact sites, pathways of fatty acid elongation (ER) and
degradation of VLCFA (peroxisomes) become linked as well. Hence, the physical proximity
of both pathways may create a reciprocal loop to avoid excess VLCFA incorporation into
membrane phospholipids (also being catalyzed at the ER). Indeed, fatty acid spectra in PC
and LPC from ACBD5-deficient mice exhibit a shift toward longer and more saturated fatty
acids in the liver and highly elongated PUFA in the cerebellum, which coincides with the
activities of ELOVL1 and ELOVL4 in the respective tissue. While ELOVL1, which elongates
saturated fatty acids above C22, is ubiquitously expressed [147], ELOVL4 is preferentially
expressed in brain and testis and accepts both saturated as well as unsaturated C28-C38
fatty acids as a substrate [148]. Thus, the tissue-specific fatty acid changes in phospholipid
composition may reflect an uncontrolled fatty acid elongation as a result of the loss of
counteracting peroxisomal β-oxidation at peroxisome–ER membrane contact sites.

In addition to their potential significance for specific lipid pathways, peroxisome–ER
contact sites appear to be involved in the general transfer of phospholipids from the ER, as
the site of synthesis, to peroxisomes in order to provide material for membrane expansion
in the process of peroxisome growth and division (see Section 2). As previously discussed,
silencing of ACBD5 or VAPB in MFF- or DRP1-deficient cells results in a decrease in
peroxisome tubule length, implying a decrease in the membrane lipid transfer required
for tubule elongation [52,53]. To substantiate the findings from division-defective mutant
cells, peroxisome elongation was induced by treatment with DHA in ACBD5-deficient
and wild type MEFs [144]. Confirming a reduced capacity for membrane expansion under
these more physiological conditions, peroxisomes from ACBD5-deficient MEFs showed
a refractory response to the DHA exposure, in contrast to wild type controls. However,
it should be noted that none of the ACBD5-deficient cell types investigated so far, which
all exhibit significant reductions in peroxisome–ER membrane contacts, exhibit a reduced
peroxisome abundance. Hence, any reduction in peroxisome growth and division as
a result of a disrupted transfer of membrane lipids from the ER to peroxisomes has to
be compensated for, for example, by lipid transfer through the remaining peroxisome–
ER contacts. Future studies are required to clarify, whether peroxisome maintenance is
fundamentally remodeled in ACBD5-deficient cells in order to cope with the quantitative
reduction in peroxisome–ER contact site numbers.

In polarized cells, such as neurons, kidney epithelial cells or retinal pigment epithe-
lium, peroxisomes are not evenly distributed across the cellular interior, but accumulate
at distinct cellular locations [149–151]. To guarantee peroxisome positioning, ER contacts
might be used to tether peroxisomes at distinct locations in order to avoid active trans-
port by microtubules. As described above, silencing of ACBD5 in fibroblasts and HeLa
cells increased peroxisomal motility [52,53], whereas ACBD5 overexpression decreased
long-distance movements in hippocampal primary neurons [152]. In the polarized neu-
rons, the decreased motility in response to ACBD5 overexpression was accompanied by
a peroxisome relocation from the dendritic compartment to the neuronal soma, implying
that an imbalance between microtubule transport and ER anchoring might affect organellar
positioning. Ultrastuctural observations from ACBD5-deficient mouse hepatocytes also
suggest that the loss of ACBD5 alters intracellular peroxisomal distribution [144]. However,
hepatocytes lacking ACBD5 showed in addition to a general increase in peroxisome num-
bers, focal accumulations of tightly associated/clustered peroxisomes. Such a distribution
pattern cannot be explained by the enhanced motility of the organelles as result of the
disrupted ER membrane contacts. Rather, uncontrolled peroxisome proliferation accompa-
nied by an imbalance in the hepatocyte organelle interaction network seems to induce this
cytomorphological phenotype as a result of the lost peroxisome–ER interaction, which in
hepatocytes often appear as so-called wrappER contacts with the rough ER [153]. Future
studies have to show whether these changes in organelle localization have an impact on
the metabolic alteration observed in mice and humans.
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In summary, the phenotype of ACBD5 deficiency, with its peculiar focus on the
degeneration of the central nervous system (including retina), appears to be based on a
unique pathological mechanism, which might combine alterations induced by the loss in
acyl-CoA binding and peroxisome–ER tethering. It will be challenging to unravel, in the
future, to what extent the disruption of the protein’s unique tethering function contributes
to the disease pathology, either by altering intrinsic cellular phospholipid flow required for
peroxisome maintenance/dynamics, shifting peroxisome distribution and motility within
the cell, or by dysregulation of metabolic networks of cellular lipid metabolism.

3.4. PEX11β Deficiency

Mammals express three isoforms of the peroxisomal protein PEX11: α, β and γ. As
discussed in Section 2, PEX11β (28 kDa) is the major regulator of peroxisome growth
and division, being required for the deformation and elongation of the membrane as well
as the assembly of the fission machinery [8] (Figure 1), while the roles for PEX11α and
PEX11γ are less clear. Unlike the other fission factors discussed here, under physiological
conditions, PEX11β is only found at peroxisomes and not mitochondria [48]. In addition to
proliferation, the single yeast PEX11 homologue has been implicated in other peroxisomal
functions, including mediating membrane contact sites with the ER [154] and forming pores
in the membrane [155], though whether these are conserved in mammals is disputed [133].
As outlined in Section 2.1, PEX11β is a membrane-spanning protein with the N- and
C-termini facing the cytosol (Figure 2). Whereas the N-terminus with its amphipathic
helices is required for lipid interaction, membrane elongation and the oligomerization of
PEX11β [41,43,45,49], the conserved short C-terminus and glycine-rich internal loop appear
to be important for the interaction with FIS1 and promotion of peroxisome division [46,63].

To date, patients across five families have been identified to have mutations in the
PEX11B gene (Appendix A), leading to a disease categorized as peroxisomal biogenesis
disorder 14B (OMIM: #614920) [130,131,156]. In all but one of these cases (a compound
heterozygous nonsense mutation and deletion [131]), these are homozygous nonsense
mutations leading to a premature stop codon and, therefore, a truncated protein—where
determined, this leads to no detectable expression of PEX11β [130]. Patients with mutation
in PEX11A or PEX11G have yet to be described. The clinical profile of PEX11β-deficient
patients matches a mild PBD, with patients presenting with mild intellectual disability,
congenital cataracts, hearing defects and short stature. However, unlike PBDs, but similar
to the other defects in organelle dynamics described here, most of the PEX11β-deficient
patients described show no alterations in peroxisomal metabolism, including levels of
VLCFA and plasmalogens in the blood, suggesting no major effect on peroxisome metabolic
function [130,131,156]. Fibroblasts from one PEX11β-deficient patient have been charac-
terized and show a reduced number of elongated and enlarged peroxisomes but normal
peroxisomal α- and β-oxidation [130] (Figure 3). This peroxisomal morphology points to a
defect in fission, while elongation can still occur to some extent, suggesting another PEX11
isoform may partly compensate for the role of PEX11β in membrane expansion. In most
cells, in contrast to Zellweger syndrome PBDs (ZS), these aberrant peroxisomes are import
competent; however, in ~10% of cells, the matrix protein catalase is not imported and is
present in the cytosol instead [130]. Furthermore, PEX14 is mistargeted to mitochondria,
indicating that the reduction in peroxisome numbers results in an accumulation of nascent
peroxisomal proteins in the cytosol (Figure 3). Interestingly, culturing these patient-derived
fibroblasts at 40 ◦C exacerbates the peroxisomal dysfunction, with accumulation of VLCFA
and failure to import catalase in ~90% of cells. Of note, PEX11γ mRNA and protein levels
in fibroblasts are strongly reduced at 40 ◦C, which may explain this phenotype if PEX11γ is
partly compensating for the loss of the PEX11β function. Consistent with this, overexpres-
sion of PEX11γ, but not PEX11α, can partially rescue the catalase import defect and altered
peroxisome morphology in patient fibroblasts under these conditions, though not to the
extent of re-expressing PEX11β [130]. This indicates that a better understanding of the roles
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and regulation of the other PEX11 isoforms, particularly PEX11γ, may be therapeutically
useful for treating PEX11β deficiency in the future [157].

Much like PEX11β-deficient patients, homozygous Pex11b KO mice display some
pathological symptoms reminiscent of PBDs, but do not exhibit the same cellular or
metabolic phenotypes [158]. Pex11b+/− heterozygotes show no macroscopic phenotype,
but on a cellular level typically show an intermediate phenotype between wild type and
homozygous littermates [158,159]. Global KO of PEX11β in mice seems to result in a more
severe phenotype than in human patients, leading to death shortly after birth. Pex11b
KO pups show developmental defects at P0.5 relative to wild type littermates, including
being undersize and underweight, having underdeveloped liver and kidneys and a delay
in skull ossification. Both embryonic and neonatal Pex11b KO mice display neurological
abnormalities also seen in ZS models, including defects in neuronal migration and an
increase in the apoptosis of neocortical neurons [158], which may underpin the patients’
neurological symptoms. Neuronal cultures from Pex11b KO embryos show a decrease in
both networking/branching and expression of mature/synaptic neuronal markers relative
to wild type, as well as an increased production of ROS, which could also contribute to the
observed neurological phenotypes [159]. Pex11a KO mice, on the other hand, are viable
with no obvious pathological phenotypes under normal conditions [160], though they do
develop non-alcoholic fatty liver disease when fed a high-fat diet [161]. Basal peroxisome
abundance and morphology are unaltered in Pex11a KO MEFs and liver [160], with most
changes being seen in peroxisome metabolism rather than the dynamics [162,163]. This,
together with the inability of PEX11α to compensate for PEX11β deficiency in patient
fibroblasts, supports the notion that the α and β isoforms have distinct functions, with
PEX11α likely having a more prominent role in the metabolic functions of peroxisomes.

In contrast to ZS, and consistent with the results obtained from PEX11β-deficient
fibroblasts, both PTS1- and PTS2-dependent matrix protein import is normal in Pex11b
KO MEFs. Supporting a peroxisome-specific fission defect, peroxisomes are observed to
be elongated, clustered and reduced in number by electron-microscopy in hepatocytes
from Pex11b KO mice, with mitochondria displaying a normal morphology and, inter-
estingly, possibly showing some proliferation relative to the wild type, presumably as a
compensatory mechanism [158]. Despite the ZS-like symptoms, biochemical peroxisome
parameters are normal or only slightly affected in Pex11b KO mice, in a tissue-specific
manner—in the brain, VLCFA levels are normal while plasmalogens are mildly reduced,
whereas in the liver plasmalogen levels are normal while VLCFA slightly accumulate.
Similarly, measures of enzymatic activity in fibroblasts show normal plasmalogen synthesis
and phytanic/pristanic acid oxidation, and a small decrease in VLCFA β-oxidation [158].
Any alterations are of a much smaller magnitude than those seen in ZS patients/models,
recapitulating the predominantly unaffected peroxisome function seen in the PEX11β-
deficient patients. The shared symptoms between ZS and PEX11β-deficient patients (albeit
being less severe in PEX11β deficiency) thus suggest that, at least in part, these aspects of
the pathologies may not be a result of VLCFA toxicity or generalized loss of peroxisome
metabolic functions. This further supports the notion that loss of organelle dynamics can
lead to pathology independent of organelle metabolism. This is exemplified in certain
inherited forms of noise-induced hearing loss, which are a result of defective peroxisome
dynamics rather than metabolism. Under normal conditions, noise overexposure triggers
the production of ROS in auditory hair cells of the inner ear, and this oxidative stress
leads to peroxisome proliferation as an antioxidant defense. In patients where peroxisome
plasticity is compromised, peroxisomes cannot be sufficiently upregulated in response to
excessive ROS generation, so are unable to restore redox homeostasis, resulting in damage
to the auditory hair cells and, thus, hearing defects [164]. Since peroxisome dynamics are
defective in the absence of PEX11β, this mechanism could underlie the hearing problems
experienced by PEX11β-deficient patients [130,131].
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4. Modelling and Prediction of Peroxisomal Dynamics

As discussed, peroxisomes are highly dynamic and plastic organelles, which can adapt
their number and morphology to changes in the environment (see Section 1) (reviewed
in [39,165,166]). Those dynamic changes are often linked to a stimulation of peroxisome
proliferation by peroxisome proliferators (e.g., hypolipidemic drugs, plasticizers) or fatty
acids/lipids, which in mammals act via the peroxisome proliferator-activated receptor
(PPAR) signaling pathway (reviewed in [8,167–169]), or during liver regeneration [170].
Differences in peroxisome morphology have also been observed in different tissues and
cell types [68,171–175]. Similar peroxisomal morphologies and dynamic alterations were
observed in mammalian cell culture. Elongation of peroxisomes was stimulated by a variety
of experimental and culture conditions, including cell density, serum components/growth
factors, fatty acids, microtubule depolymerization, UV irradiation [68,176,177], expression
of PEX11β [48], or manipulation of the division machinery (e.g., of DRP1 or MFF) (see
Section 3). Although PEX11β appears to play a key role in peroxisomal growth and division
(see Sections 2 and 3.4), little is known about the signaling pathways and gene responses
regulating these processes in humans [157].

To explain the variation in peroxisome morphology and to make predictions with
respect to peroxisome dynamics in health and disease conditions, we developed a simple
mathematical model based on a stochastic, population-based modeling approach [31,55].
Briefly, peroxisome shape is determined by (i) membrane lipid flow into the peroxisome
body (e.g., from the ER), (ii) elongation growth, and (iii) peroxisome division rate (Figure 5).
Peroxisome turnover was also considered, and peroxisome parameters were based on
experimental data, where possible. The morphological alterations of peroxisomes in MFF-
deficient fibroblasts could be captured by simply reducing only one parameter, the division
rate, to almost zero. As the membrane lipid flow rate and elongation growth speed remain
unchanged, this results in a reduction in peroxisome numbers and a pronounced membrane
elongation, as observed in MFF deficiency. The observation that healthy control fibroblasts
usually display small, spherical peroxisomes, but form highly elongated peroxisomes
when division is blocked, suggests that the membrane lipid flow rate, elongation growth
speed and division rate are high in fibroblasts under normal conditions. This explains
why elongated peroxisomes are rarely observed in normal fibroblasts. On the other hand,
cell lines/cell types with a lower peroxisome division rate would display more elongated
peroxisomes, e.g., as observed in HepG2 cells [68,157]. Cells with a low membrane lipid
flow rate or elongation speed, but high division rate, would predominantly display small
peroxisomes and reduced numbers. Such a scenario can be experimentally generated
by the depletion of the peroxisome–ER tether ACBD5, which reduces peroxisome–ER
tethering and membrane expansion [52]. The model may also explain why peroxisomes
elongate after microtubule depolymerization in some cell types. The division rate may be
promoted by pulling forces via MIRO/motor proteins along microtubules (see Section 2.4).
Loss of microtubules may reduce (but not abolish) the division rate, which would in turn
result in peroxisome elongation as observed in HepG2 and COS7 cells, likely mediated
by PEX11β [68,69]. By altering the different parameters to recapitulate the peroxisomal
phenotype seen in different pathologies, the model is also applicable to other disease
conditions, e.g., the loss of PEX5 in Zellweger spectrum disorders [31].

The model parameters (i–iii) are likely to change during cellular growth and dif-
ferentiation, presumably via cellular signaling and expression levels/post-translational
modifications of tethering, membrane shaping and division components. We recently
demonstrated that the interaction of the peroxisomal tether ACBD5 with ER-resident VAPB
is regulated by phosphorylation [178], with phosphorylation in the core region of the
ACBD5 FFAT motif inhibiting interaction with the MSP domain of VAPB. Overall, we
suggest that peroxisome morphology is likely to be differently affected in various cell types
of patients suffering from organelle division defects. Environmental changes (e.g., in diet or
stress conditions) and associated signaling pathways that promote peroxisomal growth and
division can potentially trigger the hyper-elongation of peroxisomes in formerly unaffected
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cell types and contribute to the pathophysiology of those disorders. It is therefore important
to understand how organelle dynamics and peroxisomal growth and division are regulated
in humans and what intracellular signaling pathways are involved.

Figure 5. Mathematical model of peroxisome morphology and dynamics. Each peroxisome is
represented as a spherical body of radius r and a cylindrical elongation of length L and diameter w.
The model considers: (1) membrane lipid flow into the body (e.g., from the ER) (governed by rate
α and lipid flow constant γ), (2) growth of the elongation (governed by speed v), (3) peroxisome
division (with rate per unit length β), and (4) peroxisome turnover (“pexophagy”) (governed by
the peroxisome mean lifetime τ). Snapshot of the model simulation for wild type cells (normal
parameters), MFF-deficient cells (dMFF) (reduced division rate) and dMFF cells with reduced lipid
flow to simulate silencing of ACBD5 (adapted from [29,50]).

5. Potential Strategies for Treatment

Like many inherited disorders, there are currently no clinically approved cures for
patients with a defect in mitochondria and/or peroxisomal fission, and treatments are gener-
ally focused on alleviating symptoms, for example anticonvulsants to counter seizures [179].
Several MFF-deficient patients [121,122] and a PEX11β-deficient patient [130] have been
reported to respond positively to treatment with a mitochondrial drug cocktail, which
either offers mild improvement or at least halts deterioration. Such cocktails typically
consist of antioxidants, such as riboflavin, thiamine, carnitine and Co-enzyme Q10, which
also bolster mitochondrial function in patients where this might be compromised, e.g., by
promoting electron transport chain function (Co-enzyme Q10, riboflavin) or mitochondrial
β-oxidation (carnitine) [180]. The broad-spectrum PPAR agonist bezafibrate has shown
promise in fibroblasts from a patient with a DRP1 (p.G362S) mutation, restoring ATP
production to control levels and reducing mitochondrial elongation [181]. Since PPAR
activation upregulates mitochondrial and, to a lesser extent in humans, peroxisomal bio-
genesis [157,182], this suggests that enhancing the dynamics of these organelles may be
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a useful therapy for patients with defects in the fission proteins. Beyond small-molecule
modulators, gene augmentation therapy to reintroduce wild type copies of a mutated
protein into particularly affected tissues may be a possible therapeutic avenue in the future,
assuming that the dominant-negative effect of some of the mutant fission proteins can be
overcome. Proof-of-principle gene therapy in a mouse model of PEX1(p.G844D) ZS has
shown the feasibility of this approach in treating some symptoms of peroxisomal disorders,
with AAV (adeno-associated virus)-mediated expression of human wild type PEX1 through
sub-retinal injection preventing deterioration of peroxisome metabolism and cell function
in the retina, if administered at early enough time points [183].

Recently, we reported that the peroxisomal fission defect in MFF-deficient patient
fibroblasts can be rescued by overexpression of PEX11β, and vice versa [63]. This suggests
there are two parallel pathways of peroxisome fission that can act independently—one
requiring PEX11β (and, from our data, FIS1), and one requiring MFF—though the relative
contribution of each under physiological conditions remains to be seen. Importantly, this
demonstrates that the elongated peroxisomal phenotype in MFF-deficient and PEX11β-
deficient patient fibroblasts can be reversed by the upregulation of the division pathway
that is still intact. We anticipate, therefore, that pharmacological upregulation of MFF
in PEX11β-deficient patients, and PEX11β in MFF-deficient patients, may be a viable
therapeutic approach to restoring healthy peroxisome dynamics and thus treating the
symptoms of peroxisomal dysfunction in these patients. However, a better understanding
of how PEX11β and MFF expression are endogenously regulated would be necessary to
pursue this. In this study we also showed that, in fibroblasts from a PEX19-deficient ZS
patient (where peroxisome membranes are absent), overexpressed PEX11β instead inserts
into the mitochondrial membrane where it can drive mitochondrial fission, presumably
due to the dual localization of its division complex cofactors DRP1, MFF and FIS1 at
both peroxisomes and mitochondria [10,11,25]. This suggests, depending on the level
of endogenous PEX11β expressed in different tissues, that excess mitochondrial fission
could also be a contributing factor to ZS pathology. Indeed, it has been proposed that the
mislocalization of peroxisomal proteins to mitochondria in the absence of peroxisomes may
underlie the mitochondrial dysfunction observed in ZS patients, and removing them from
the mitochondrial membrane could be of therapeutic benefit [132].

Interestingly, aside from the inherited disorders with a genetic loss or mutation dis-
cussed above, dysregulated organelle dynamics are observed in a wide variety of patholo-
gies, including neurodegeneration, cardiovascular disease and cancer [184–186], though it
is not yet necessarily clear whether this is a cause or a consequence of the disease state. Usu-
ally, such diseases are associated with excess or pathophysiological fission, compromising
organelle quality control in the cell. FIS1 is amplified in certain cancers [184]; DRP1 and FIS1
levels are increased in post-mortem brain tissue from Alzheimer’s disease (AD), accord-
ing to some reports [187]; the DRP1–FIS1 interaction is enhanced in amyloid-beta treated
cells (modeling AD) and AD patient-derived fibroblasts [188]. As a result, compounds
that inhibit fission have been suggested as therapies for a range of diseases. Mdivi-1, a
small molecule considered (though controversially [189]) to act as a DRP1 inhibitor, has
been shown to restore healthy mitochondrial morphology and improve cognitive decline
in a mouse model of AD [190] and reduce neurotoxicity in Parkinson’s disease mouse
models [191]. Similarly, the peptide P110, which blocks the DRP1–FIS1 interaction and
therefore reduces DRP1 recruitment to mitochondria, rescued mitochondrial morphology
and function in AD patient-derived fibroblasts and attenuated cognitive decline in an AD
mouse model [188], and also reduced mitochondrial dysfunction and improved cardiac
function in rats with myocardial infarction-induced heart failure [192]. Typically, only
effects on mitochondria have been investigated, but since DRP1 and FIS1 also participate in
peroxisome division, it might be expected that peroxisome dynamics are also dysregulated
in these diseases and can be rescued using these compounds. It remains to be seen to what
extent excess peroxisomal fission might contribute to these pathologies, and whether the
inhibition of peroxisome division plays a role in the protective effects of these putative
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treatments. Regardless, it seems like the dysregulation of organelle division processes may
be a common feature seen in a wide variety of pathological conditions, whether directly
or indirectly. Indeed, an increase in DRP1 and FIS1 mRNA but a decrease in their protein
levels in peripheral blood mononuclear cells isolated from blood samples is reproducibly
seen in patients with the autoimmune disorder myasthenia gravis, prompting the proposal
to use these as biomarkers for this disease [193]. Altogether, this raises the possibility that
modulating organelle fission may be a future broad-spectrum treatment to improve cell
performance and organelle function in a host of conditions.
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Appendix A Overview of DRP1, MFF, PEX11β, and ACBD5-Deficient Patients

Table A1. Gene—DNM1L; Protein—dynamin 1-related protein (DRP1); Function—mediates mito-
chondrial and peroxisomal division. * Data from patient-derived cells or plasma unless otherwise
stated.

Clinical Features Genotype Mutation Organelle Alterations * Reference

Microcephaly, abnormal
brain development, optic
atrophy hypoplasia, lactic

acidosis,

c.1184C>A
(p.A395D) De novo

heterozygous

Missense mutation
in middle domain

Defective fission of mitochondria and
peroxisomes, slightly elevated VLCFA
and lactate levels but no alterations to

mitochondrial metabolism

[96]

(Mutant overexpression in HeLa/in vitro
assays)

Elongated mitochondria, reduced DRP1
levels at mitochondria, reduced formation

of higher-order structures and
compromised GTPase activity

[194]

Infantile encephalopathy,
lactic acidosis, poor

feeding, global
developmental delay,
hypotonia and status

epilepticus

c.1048G>A
(p.G350R) or
c.1135G>A
(p.E379K)
De novo

heterozygous

Missense mutation
in middle domain

(Expression in Drosophila DRP1-deficient
cells): (p.G350R):

Increase in peroxisomal size and
decreased number. Reduced

mitochondrial size and defect in
mitochondrial trafficking.

(p.E379K):
No notable alterations to peroxisomes or

mitochondria

[195]

Refractory epilepsy with
prolonged survival

c.1085G>A
(p.G362D) De novo

heterozygous

Missense mutation
in middle domain

Hyperfusion of the mitochondrial
network [97]
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Table A1. Cont.

Clinical Features Genotype Mutation Organelle Alterations * Reference

Postnatal microcephaly,
developmental delay and

pain insensitivity

c.1084G>A
(p.G362S) De novo

heterozygous

Missense mutation
in middle domain

Decreased respiratory chain complex
IV activity. Impaired fission with

elongated mitochondrial structure
[98]

Epileptic encephalopathy

c.1207C>T
(p.R403C) De novo

heterozygous

Missense mutation
in middle domain

(Expression in mouse embryonic
fibroblasts):

Dominant-negative effect, with
reduced DRP1 oligomerization and

mitochondrial fission activity

[196]

Mild developmental delay
and intellectual disability,

paroxysmal dystonia, acute
status epilepticus,

progressive global cerebral
atrophy

Normal mitochondrial and
peroxisomal metabolism, elongated

mitochondria
[99]

Hyperfused elongated mitochondria
with abnormal cristae, reduced

efficiency of oxidative
phosphorylation, increased

mitochondrial membrane potential,
elongated peroxisomes

[105]

Encephalopathy in infancy
c.1217T>C

(p.L406S) De novo
heterozygous

Missense mutation
in middle domain

Elongation of peroxisomes and
mitochondria [100]

Hypotonia and absent
respiratory effort.

Demyelination and
reduction of the number of

axons in the sural nerve

c.261dup
(p.W88MfsX) +

c.385_386del
(p.E129KfsX6)

compound
heterozygous

Frame shift,
truncation

No detectable DRP1
protein

Giant mitochondria with abnormal
cristae in hippocampal and Purkinje

neurons; normal mitochondrial
morphology in glial and non-neuronal

cells

[102]

Slowly progressive
infantile encephalopathy

c.106A>G (p.S36G)
+ c.346_347delGA

(p.E116KfsX6)
compound

heterozygous

Missense mutation
in GTPase domain

Elongated and constricted
mitochondria, elongated peroxisomes

with abnormal distribution
[101]

Isolated dominant optic
atrophy

c.5A>C (p.E2A) or
c.575C>A (p.A192E)

heterozygous,
dominantly

inherited

Missense mutation
in GTPase domain

Dominant negative effect with
elongated mitochondrial network [94]

Severe infantile
parkinsonism, global

encephalopathy,
hypomyelination

c.1337G>T
(p.C446F) De novo

heterozygous

Missense mutation
in middle domain

Elongated mitochondria, elongated
and constricted peroxisomes. Reduced

number of mitochondria and
peroxisomes. Increased lactate levels

[95]

Hypotonia, developmental
delay, seizures (p.C431Y),

optic atrophy (p.G32A)

c.1292G>A
(p.C431Y) or

c.95G>C (p.G32A)
De novo

heterozygous

Missense mutation
in middle domain

(p.C431Y) or
GTPase domain

(p.G32A)

(p.G32A): Dominant negative effect
with elongated, highly connected

mitochondrial network. No alterations
to peroxisomes

[107]

(p.G32A): Hyperfused elongated
mitochondria with abnormal cristae,

reduced efficiency of oxidative
phosphorylation, increased

mitochondrial membrane potential,
elongated peroxisomes

[105]
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Table A1. Cont.

Clinical Features Genotype Mutation Organelle Alterations * Reference

Hypotonia, developmental
delay, abnormal movement

c.305C>T (p.T115M)
homozygous

Missense mutation
in GTPase domain

Elongated mitochondria, reduced
mtDNA content, reduced

mitochondrial respiration, impaired
cell growth, reduced DRP1

oligomerization
Normal peroxisome morphology and

VLCFA levels

[106]

Static encephalopathy,
developmental delay,
seizures, nystagmus

c.2072A>G,
(p.Y691C) De novo

heterozygous

Missense mutation
in GTPase effector

domain

Normal peroxisomal metabolism
(Expression in Drosophila

DRP1-deficient cells):
Dominant negative effect with
enlarged peroxisomes showing

abnormal distribution, increased
mitochondrial connectivity and

abnormal distribution

[108]

Severe, early-onset
epileptic encephalopathy,

developmental delay,
progressive cerebral

atrophy

c.668G>T (p.G223V)
or c.1109T>G

(p.F370C) De novo
heterozygous

Missense mutation
in GTPase domain

(p.G223V) or
middle domain

(p.F370C)

(p.G223V): mixed population of
hyperfused and swollen/rod-shaped

mitochondria
(p.F370C): elongated mitochondria

Both: uneven mitochondrial
distribution, normal cellular

respiration, mixed population of
spherical and elongated peroxisomes

[103]

Psychomotor
developmental delay,

axonal sensory neuropathy
leading to global hypotonia

and severe ataxia

c.436G>A
(p.D146N) De novo

heterozygous

Missense mutation
in GTPase domain

Dominant negative effect with
hyperfused ‘balloon-like’

mitochondrial network, reduced
mitochondrial turnover; elongation of
peroxisomes, increase in peroxisomal

mass

[104]

Table A2. Gene—MFF; Protein—mitochondrial fission factor; Function—recruitment of DRP1 to
mitochondria and peroxisomes. * Data from patient-derived cells or plasma unless otherwise stated.

Clinical Features Genotype Mutation Organelle Alterations * Reference

Developmental delay, abnormal
intensity on brain MRI of globus

pallidus, motor and speech
deficits, mild hypertonia,

borderline microcephaly and pale
optic disc

c.190C>T
(p.Q64X)

homozygous

Nonsense mutation,
truncation before

TMD

Elongated peroxisomes and
mitochondria [119]

Elongated peroxisomes,
normal peroxisome
metabolism, altered

peroxisome redox environment

[55]

Developmental delay, peripheral
neuropathy, optic atrophy, and

Leigh-like encephalopathy

c.184dup
892C>T (p.L62PfsX13)
(p.R298X) compound

heterozygous

Nonsense
mutation/frame
shift, truncation

before TMD

Elongation of peroxisomes and
mitochondria, increased
mitochondrial branching,

normal mitochondrial and
peroxisomal metabolism

[120]
c.453_454del

(p.E153AfsX5)
homozygous

Frame shift,
truncation before

TMD
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Table A2. Cont.

Clinical Features Genotype Mutation Organelle Alterations * Reference

Epileptic encephalopathy,
neurological regression, severe

intellectual disability,
microcephaly, tetraparesis, optic

atrophy

c.892C>T (p.R298X)
homozygous

Nonsense mutation,
truncation before

TMD
Low levels of MFF

proteins and
truncated forms

detected

Elongation of peroxisomes,
constricted elongated
mitochondria, normal

mitochondrial and
peroxisomal metabolism

[121]

Developmental delay,
neuroregression, microcephaly,
optic atrophy, hearing defects

c.433C>T (p.R145X)
Nonsense mutation,

truncation before
TMD

Rounded, swollen
mitochondria in

lymphoblastoid cells
[122]

Spastic cerebral palsy, global
developmental delay, bilateral

thalamic lesions. (Homozygous
mother and sibling asymptomatic)

c.19_20AG>TT (p.S7F)
homozygous

Missense mutation
in cytoplasmic

N-terminus
Normal lactate levels in serum [123]

Table A3. Gene—PEX11β; Protein—Peroxin 11β; Function—regulator of peroxisome elongation and
division. * Data from patient-derived cells or plasma unless otherwise stated.

Clinical Features Genotype Mutation Organelle Alterations * Reference

Mild intellectual
disability, congenital
cataracts, progressive

hearing loss and
polyneuropathy

c.64C>T (p.Q22X)
homozygous

Nonsense mutation,
truncation

No detectable PEX11β
protein

Enlarged and slightly elongated
peroxisomes, normal peroxisomal
metabolism, matrix protein import

compromised in ~10% of cells.
Partial rescue of peroxisome

phenotype by PEX11γ expression

[130]

Mild intellectual
disability, congenital

cataracts,
developmental delay,
short stature, hearing

defects

c.235C>T (p.R79X)
homozygous or

c.136C>T (p.R46X)
homozygous or

c.595C>T (p.R199X)
heterozygous + ex1-3

del heterozygous

Nonsense mutation,
truncation

Normal peroxisomal metabolism
except

(p.R79X): very low plasmalogen
levels in blood plasma

(p.R46X): elevated C24:0/C22:0 in
blood plasma

[131]

Bilateral nystagmus,
congenital cataracts

with myopia,
strabismus, high

muscle tone, mental
retardation

c.277C>T (p.R93X)
homozygous

Nonsense mutation,
truncation Normal peroxisome metabolism [156]

Table A4. Gene—ACBD5; Protein—Acyl-CoA binding domain containing protein 5; Function—
involved in peroxisome–ER membrane association, VLCFA transfer into peroxisomes. * Data from
patient-derived cells or plasma unless otherwise stated.

Clinical Features Genotype Mutation Organelle Alterations
* Reference

Cone-rod dystrophy,
spastic paraparesis,

leukodystrophy

c.1205 + 1G>A
(p.G402DfsX5)
homozygous

Frame shift, truncation
No detectable ACBD5

protein

Impaired β-oxidation
of VLCFA in

peroxisomes, normal
plasmalogen synthesis

[137,143]



Cells 2022, 11, 1922 24 of 32

Table A4. Cont.

Clinical Features Genotype Mutation Organelle Alterations
* Reference

Retinal dystrophy,
progressive

leukodystrophy and
microcephaly, ataxia,

dysarthria,
hypomyelination with
diffuse abnormality in

deep white matter

c.626-689_937-
234delins936+1075_c.936+1230inv

(p.D208VfsX30)
homozygous

Exon 7/8 deletion
No detectable ACBD5

protein

Normal presence of
import-competent

peroxisomes. Increased
VLCFA levels, reduced

C26:0 β-oxidation,
reduced plasmalogen

biosynthesis

[76,140,142]

Leukodystrophy,
nystagmus, cone-rod

dystrophy, spastic
paraparesis,

psychomotor
developmental

regression

c.1467G>A, (p.W489X)
homozygous

Nonsense mutation,
truncation

Elevated C26:0,
C24:0/C22:0, and

C26:0/C22:0 in plasma,
decreased C22:0, C24:0

levels and phytanic
acid in plasma

[138]

Leukodystrophy,
retinal dystrophy,

nystagmus

c.1297C>T, (p.R433X)
homozygous

Nonsense mutation,
truncation

Very little detectable
ACBD5 protein

Elevated C26:0 in
plasma (patient 1),
elevated C24:0 and

C22:0 in plasma
(patient 2)

[139]
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