$\mathrm{YCu}\left(\mathrm{TeO}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$: a novel layered tellurite

Stuart J. Mills, ${ }^{\text {a }}{ }^{*}$ Maja A. Dunstan ${ }^{\text {b }}$ and Andrew G. Christy ${ }^{\text {c }}$

${ }^{\text {a }}$ Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia, ${ }^{\mathbf{b}}$ School of Chemistry, University of Melbourne, Parkville 3010, Victoria, Australia, and ${ }^{\text {c }}$ Ocean and Climate Geoscience, Research School of Earth Sciences, Mills Rd, Australian National University, Canberra, ACT 2601, Australia. *Correspondence e-mail: smills@museum.vic.gov.au

A new hydrated yttrium copper tellurite nitrate, yttrium(III) copper(II) bis[trioxidotellurate(IV)] nitrate trihydrate, has been synthesized hydrothermally in a Teflon-lined autoclave and structurally determined using synchrotron radiation. The new phase is the first example containing yttrium, copper and tellurium in one structure. Its crystal structure is unique, with relatively strongly bound layers extending parallel to (020), defined by YO_{8}, CuO_{4} and TeO_{3} polyhedra, while the $\mathrm{NO}_{3}{ }^{-}$anions and one third of the water molecules lie between those layers. The structural unit consists of $\left[\mathrm{Cu}_{2}\left(\mathrm{TeO}_{3}\right)_{4}\right]^{4-}$ loop-branched chains of $\{\mathrm{Cu} \cdots \mathrm{Te} \cdots \mathrm{Cu} \cdots \mathrm{Te}\}$ squares running parallel to [001], which are linked further into layers only through $\mathrm{Y}\left(\mathrm{O}, \mathrm{H}_{2} \mathrm{O}\right)_{8}$ polyhedra. Weak 'secondary' Te bonds and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions, involving water molecules and layer O atoms, link the layers and interlayer species. IR spectroscopic data are also presented.

1. Chemical context

Recent discoveries of a wide range of novel tellurium minerals have prompted numerous structural studies of tellurium oxysalts (Kampf et al., 2013; Christy et al., 2016a). As well as the characterization of these naturally occurring minerals, various syntheses have also been undertaken as part of this ongoing study, yielding an array of new structures, including that of novel $\mathrm{Na}_{11} \mathrm{H}\left[\mathrm{Te}(\mathrm{OH})_{3}\right]_{8}\left[\mathrm{SO}_{4}\right]_{10}\left(\mathrm{H}_{2} \mathrm{O}\right)_{13}$ (Mills et al., 2016). Several tellurium oxide species with various yttrium oxide polyhedra present in the structure have been synthesized in the past, including compounds with both $\mathrm{Te}^{\mathrm{IV}}$ and $\mathrm{Te}^{\mathrm{VI}}$ atoms. Tellurium is stable in numerous oxidation states and shows large diversity in bonding (Christy \& Mills, 2013). Its +IV and +VI oxidation states are of greatest interest in relation to naturally occurring weathering products of minerals, and are able to form a wide variety of oxide polyhedra, with $\mathrm{TeO}_{3}{ }^{2-}$ most prevalent (Song et al., 2014). The $\mathrm{TeO}_{3}{ }^{2-}$ anion shows a wide variety of connectivities, with three oxido ligands and the $5 s^{2}$ electron lone pair occupying the vertices of the distorted polyhedra, and are found in a variety of layer and chain structures in inorganic compounds (Johansson \& Lindqvist, 1978). This is demonstrated in compounds such as $\mathrm{NaYTe} 4_{4} \mathrm{O}_{10}$ with YO_{8} and TeO_{4} polyhedra, $\mathrm{KY}\left(\mathrm{TeO}_{3}\right)_{2}$ and $\mathrm{RbY}\left(\mathrm{TeO}_{3}\right)_{2}$ with YO_{6} octahedra and trigonal-pyramidal $\mathrm{TeO}_{3}{ }^{2-}$ anions, $\mathrm{CsYTe}_{3} \mathrm{O}_{8}$ with YO_{6} and TeO_{4} polyhedra (Kim et al., 2014), as well as yttrium tellurium oxides with $\mathrm{Te}^{\mathrm{VI}}$ atoms (Kasper, 1969; Höss \& Schleid, 2007; Noguera et al., 2012). As a consequence of this range of chemistry, tellurium is the most anomalously diverse element found in minerals

Table 1
Bond-valence sums (in valence units) for $\mathrm{YCu}\left(\mathrm{TeO}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$.

	Y1	Cu1	Te1	Te2	N1	H11	H12	H21	H22	H31	H32	Σ	Σ (excluding H)
01	0.401	0.544, 0.047	1.128									2.12	2.12
02	0.478, 0.275		1.145	0.130								2.03	2.03
03		0.436	1.208	0.173					0.232			2.05	1.82
04	0.399	0.534, 0.046		1.148			0.041					2.17	2.13
05	0.481, 0.316	0.421	0.118	1.165								2.08	2.08
06			0.183	1.179			0.279					2.06	1.78
07			0.156		1.562							1.72	1.72
08				0.156	1.609			0.068		0.047		1.88	1.77
09					1.712						0.062, 0.036	1.81	1.71
OW1	0.384					0.755	0.755					1.89	0.38
OW2	0.389							0.771	0.769			1.93	0.39
OW3						0.224		0.110		0.743	0.761	1.84	0.00
$\boldsymbol{\Sigma}$	3.12	2.03	3.93	3.94	4.88	0.98	1.08	0.95	1.00	0.79	0.86		

compared to its scarcity in the earth's crust (Christy, 2015). Many copper-containing tellurium oxides have been successfully synthesized (Feger et al., 1999; Koteswararao et al., 2013; Sedello \& Müller-Buschbaum, 1996), and copper is also present in many tellurium-containing minerals; indeed, out of the unusually large inventory of tellurium secondary minerals at Otto Mountain, the majority contains copper (Christy et al., 2016a). Despite this, there are very few synthetic rare earth copper tellurium oxides known, and to the best of our knowledge a compound containing all three of copper, yttrium and tellurium has not been characterized so far. Although layered structures with interstitial ions are common for $\mathrm{Te}^{\mathrm{IV}}$ compounds, nitrate is found as an anion in very few, which motivates the use of metal nitrates in the synthesis of novel tellurium oxides. The only other compounds with simple tellurite and nitrate anions whose structures have been reported to date are the layered compounds $\mathrm{Ca}_{6}\left(\mathrm{TeO}_{3}\right)_{5}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Ca}_{5}\left(\mathrm{TeO}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Stöger \& Weil, 2013). Nitrates of polymerized $\mathrm{Te}(\mathrm{IV})$ complexes are also known. The compound $\mathrm{AgTeO}_{2}\left(\mathrm{NO}_{3}\right)$ (Olsson et al., 1988) contains an electrically neutral $\left[\mathrm{Te}_{2} \mathrm{O}_{4}\right]^{0}$ chain (Christy et al., 2016b), while $\left[\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{OH}\right]\left(\mathrm{NO}_{3}\right)$ contains a cationic $\left[\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{OH}\right]^{+}$layer (Anderson et al., 1980; Christy et al., 2016b).

2. Structural commentary

Bond-valence sums are given in Table 1. In general, the bondvalence data of Table 1 were calculated using the bondvalence parameters of Brown \& Altermatt (1985), except that the Te -O data were from Mills \& Christy (2013). However, Brown (2009) noted that no single pair of r_{0} and b values is adequate for $\mathrm{O}-\mathrm{H}$ bonds, since $\mathrm{O} \cdots \mathrm{O}$ repulsion increases the length of weak $\mathrm{O}-\mathrm{H}$ bonds relative to strong ones. Here, the parameterization of Yu et al. (2006) was used, with $r_{0}=$ $0.79 \AA$ for bond valence <0.5 valence units, $r_{0}=1.409 \AA$ for bond valence >0.5 v.u., and $b=0.37 \AA$ in both cases.

The structure of the title compound is strongly layered. Layers parallel to (020) are defined by $\mathrm{YO}_{8}, \mathrm{CuO}_{4}$ and TeO_{3} polyhedra, while NO_{3}^{-}anions and one third of the water molecules (OW1) lie between those layers. Tellurite and nitrate anions (involving atoms O1-O9) are clearly distin-
guished from water molecules $\mathrm{OW} 1-\mathrm{OW} 3$ by their bondvalence sums (Table 1). Within the layers, Y is eightfold coordinated in a distorted snub disphenoidal (triangular dodecahedral) arrangement by $6 \times \mathrm{O}^{2-}$ and $2 \times \mathrm{H}_{2} \mathrm{O}$ at 2.290 (3)-2.497 (3) $\AA . \mathrm{Cu}$ is in square-planar coordination, with four close oxygen neighbours at 1.904 (3) -1.999 (3) \AA. Two more oxygen ligands at 2.811 (4) and 2.817 (4) \AA complete an octahedron that is very elongated due to the Jahn-Teller distortion. Te1 is trigonal-pyramidally coordinated by three oxygen atoms at 1.883 (3)-1.911 (3) \AA. Three 'secondary bonds' to O atoms at 2.657 (3)-2.837 (3) \AA complete a polyhedron that can be described as an octahedron that is very distorted due to the lone-pair stereoactivity. Te 2 has very similar coordination, with three primary $\mathrm{Te}-\mathrm{O}$ bonds of 1.893 (3) -1.905 (3) \AA and three secondary bonds of 2.681 (4)-2.798 (3) A. In each case, two of the secondary bonds provide additional bracing within the $\{\mathrm{Y} \cdots \mathrm{Cu} \cdots \mathrm{Te}\}$ layer, while the third is to a nitrate oxygen ($\mathrm{Te} 1-\mathrm{O} 7$ and $\mathrm{Te} 2-\mathrm{O} 8$, both $\simeq 2.72 \AA$), and thus provides weak bridging between the layers and interlayer species. The nitrate oxygen atom O 9 makes a seventh very distant ligand for both Te 1 [3.231 (4) \AA] and $\mathrm{Te} 2[3.350$ (4) \AA], further than the shortest $\mathrm{Te} \cdots \mathrm{Cu}$ distances and with bond valences <0.05 valence units, using the parameters of Mills \& Christy (2013).

The identification and classification of a strongly bonded 'structural unit' (Hawthorne, 2014) in the structure of this compound depends crucially on which bonds are regarded as strong enough to define such a unit. The classification of Te oxycompound structures by Christy et al. (2016b) in general used thresholds of about $2.45 \AA$ for $\mathrm{Te}-\mathrm{O}$ and $2.20 \AA$ for $\mathrm{Cu}-\mathrm{O}$ bonds, while no bonds to 8 -fold coordinated cations were considered to be part of the structural unit. The same criteria applied to the current structure would regard the CuO_{4} squares as isolated from one another, although inclusion of the long $\mathrm{Cu}-\mathrm{O}$ bonds would link CuO_{4+2} polyhedra to form trans edge-sharing chains parallel to [001]. Without the long bonds, CuO_{4} squares are linked to their neighbours most strongly via TeO_{3} pyramids, to produce loop-branched chains $\left[\mathrm{Cu}_{2}\left(\mathrm{TeO}_{3}\right)_{4}\right]^{4-}$ of $\{\mathrm{Cu} \cdots \mathrm{Te} \cdots \mathrm{Cu} \cdots \mathrm{Te}\}$ squares running parallel to [001] (Fig. 1). These chains are the structural units, since they are linked further into layers only through

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{OW} 1-\mathrm{H} 11 \cdots \mathrm{OW} 3$	0.89 (3)	1.96 (3)	2.854 (6)	174 (7)
$\mathrm{O} W 1-\mathrm{H} 12 \cdots \mathrm{O}^{\text {i }}$	0.89 (3)	1.88 (4)	2.729 (5)	157 (7)
$\mathrm{O} W 2-\mathrm{H} 21 \cdots \mathrm{O} 8^{\mathrm{i}}$	0.89 (3)	2.41 (6)	3.074 (5)	132 (6)
$\mathrm{O} W 2-\mathrm{H} 21 \cdots \mathrm{OW} 3^{\text {ii }}$	0.89 (3)	2.22 (5)	2.949 (6)	139 (6)
$\mathrm{OW} 2-\mathrm{H} 22 \cdots \mathrm{O}$	0.89 (3)	1.95 (5)	2.745 (5)	149 (7)
OW3-H31 . ${ }^{\text {O } 7}$	0.90 (3)	1.97 (4)	2.834 (7)	162 (9)
$\mathrm{OW} 3-\mathrm{H} 31 \cdots \mathrm{O} 8^{\text {iii }}$	0.90 (3)	2.53 (8)	3.141 (7)	126 (7)
OW3-H32 . $\mathrm{O}^{\text {9 }}{ }^{\text {iv }}$	0.89 (3)	2.49 (4)	3.360 (7)	166 (9)
OW3-H32 . $\mathrm{O} 9^{\text {v }}$	0.89 (3)	2.64 (9)	3.253 (8)	127 (8)

Symmetry codes: (i) $x-1,-y+\frac{1}{2}, z-\frac{3}{2}$; (ii) $-x,-y+1,-z$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (iv) $x-1, y, z$; (v) $-x,-y+1,-z+1$.
$\mathrm{Y}\left(\mathrm{O}, \mathrm{H}_{2} \mathrm{O}\right)_{8}$ polyhedra (Fig. 2). It is noteworthy that this chain is similar in topology but not in geometrical configuration to the structural unit of $\mathrm{Dy}\left[\mathrm{CuCl}\left(\mathrm{TeO}_{3}\right)_{2}\right]$ and its $\mathrm{Er}-\mathrm{Cl}$ and $\mathrm{Er}-\mathrm{Br}$ analogues (Shen \& Mao, 2005). However, in the current compound, the $\{\mathrm{Cu} \cdots \mathrm{Te}\}$ squares are non-planar, so that the chain periodicity is doubled, and Cu does not have chloride as an additional ligand. Furthermore, in the structures of the compounds of Shen and Mao (2005), rare earth cations link the chains into a three-dimensional framework rather than into layers.

H11, H12, H22 and H31 were found to make relatively strong hydrogen bonds (Table 2) to respectively OW3, O6, O3 and O7 at distances between 1.88-1.96 \AA. H12 and H31 have additional acceptor O atoms at greater distances, respectively O 4 at $2.59 \AA$ and O8 at $2.54 \AA$. The remaining H atoms each have two oxygen neighbours at greater distances, suggesting weak bifurcated hydrogen bonding: OW3 at $2.23 \AA$ and O 8 at $2.40 \AA$ for H 21 , and O8 at $2.44 \AA$, O9 at $2.64 \AA$ for H 32 .

Figure 1
View in polyhedral mode of the $\left[\mathrm{Cu}_{2}\left(\mathrm{TeO}_{3}\right)_{4}\right]^{4-}$ loop-branched chains running parallel to $[001] . \mathrm{CuO}_{4}$ polyhedra are cyan, TeO_{3} polyhedra are green

Figure 2
The crystal structure of $\mathrm{YCu}\left(\mathrm{TeO}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ viewed down [100]. O atoms are red, Y yellow, Cu cyan, Te green, N light-blue and O atoms of water molecules pink. Displacement ellipsoids are drawn at the 50% probability level.

The layers of the structure are linked by only weak bonds. The bridges Te1 $\cdots \mathrm{O} 7-\mathrm{N}-\mathrm{O} 8 \cdots \mathrm{Te} 2$ mentioned above have $\mathrm{Te} \cdots \mathrm{O} \simeq 2.72 \AA$, implying a bond of 0.15 valence units (Mills \& Christy, 2013). The hydrogen bonds in the bridges OW1$\mathrm{H} 11 \cdots \mathrm{OW} 3 \cdots \mathrm{H} 21-\mathrm{OW} 2$ are of comparable bond valence.

It is noteworthy that the IR spectrum shows three distinct $\mathrm{O}-\mathrm{H}$ bands at 3460,3145 and $2900 \mathrm{~cm}^{-1}$. According to Libowitzky (1999), this would be typical for $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ distances of $\sim 2.83,2.69$ and $2.63 \AA$. The first two of these are broadly consistent with the O . . O distances for the strongest hydrogen bonds indicated by the refinement: OW1$\mathrm{H} 12 \cdots \mathrm{O} W 3=2.85 \AA, \mathrm{O} W 2-\mathrm{H} 12 \cdots \mathrm{O} 3=2.74 \AA$ and $\mathrm{O} W 1-$ $\mathrm{H} 11 \cdots \mathrm{O} 6=2.73 \AA$. However, the band at $2900 \mathrm{~cm}^{-1}$ is lower in frequency than would be expected.

Table 3
IR band assignments $\left(\mathrm{cm}^{-1}\right)$ for $\mathrm{YCu}\left(\mathrm{TeO}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$.

Absorption bands	Assignment
$3460 w$	$\mathrm{O}-\mathrm{H}$ stretch
$3145 w$	$\mathrm{O}-\mathrm{H}$ stretch
$\sim 2900 w$	$\mathrm{O}-\mathrm{H}$ stretch
1755	$\mathrm{H}-\mathrm{O}-\mathrm{H}$ bend
1645	$\mathrm{H}-\mathrm{O}-\mathrm{H}$ bend
1605	$\mathrm{H}-\mathrm{O}-\mathrm{H}$ bend
1345	v_{3} antisymmetric stretch $\mathrm{NO}_{3}{ }^{-}$
1044	v_{1} symmetric stretch $\mathrm{NO}_{3}-$
734	$v_{1}\left(\mathrm{TeO}_{3}\right)^{2-}$ symmetric stretch
636	$v_{3}\left(\mathrm{TeO}_{3}\right)^{2-}$ antisymmetric stretch
547	$M-\mathrm{O}$ lattice modes
447	$M-\mathrm{O}$ lattice modes

3. Spectroscopy

The infrared spectrum was obtained using a Bruker Alpha FTIR with a diamond Attenuated Total Reflectance attachment (ATR), DTGS (Deuterated Triglycine Sulfate) detector, $4 \mathrm{~cm}^{-1}$ resolution and $4000-450 \mathrm{~cm}^{-1}$ range. The samples were placed on the ATR crystal and pressure exerted by screwing the pressure clamp onto the sample to ensure maximum contact with the ATR crystal. 128 scans were taken for each item and co-added. Band assignments are consistent with those given in Kampf et al. (2013). Numerical values of the spectrum and assignments of the vibration bands are given in Table 3; the spectrum is deposited as a supplementary figure.

4. Synthesis and crystallization

Dark blue prisms of $\mathrm{YCu}\left(\mathrm{TeO}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ were synthesized hydrothermally. For the synthesis, $\mathrm{Y}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Aldrich, 99.8%), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Sigma-Aldrich $\geq 99 \%$) and Te 200 mm mesh (Aldrich, 99.8%) were used as starting materials. A 1:1:1 molar ratio of the reagents in 20 ml water was reacted in a Teflon autoclave bomb at 473 K for 3 days. Crystals of $\mathrm{YCu}\left(\mathrm{TeO}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ were separated manually from a blue powder of undetermined composition in a few percent yield. Several unsuccessful attempts were made to synthesize $\mathrm{YCu}\left(\mathrm{TeO}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ from a stoichiometric mixture of the reagents, using the molar ratio 1:1:2. We also were unsuccessful in producing new compounds, with the same structure type or not, using $\mathrm{La}, \mathrm{Ce}, \mathrm{Nd}$ or Gd in place of Y.

5. Refinement

Single crystal X-ray diffraction experiments were carried out on the micro-focus macromolecular beam line MX2 of the Australian Synchrotron. Details of data collection and structure refinement are provided in Table 4. Hydrogen atoms H11, H 12 and H21 were located during refinement as difference peaks of about one e^{-} / \AA^{3} occurring at a distance of $c a .0 .9-$ $1.0 \AA$ from their nearest oxygen atom. In all cases, short $\mathrm{O}-\mathrm{H}$ bonds were directed towards another oxygen atom, indicating

Table 4
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{YCu}\left(\mathrm{TeO}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$
619.71

Monoclinic, $P 2_{1} / c$
100
7.2560 (15), 20.654 (4), 7.0160 (14)
94.63 (3)
1048.0 (4)

4
Synchrotron, $\lambda=0.71073 \AA$
13.06
$0.02 \times 0.02 \times 0.01$

ADSC Quantum 315r detector Multi-scan (SADABS; Bruker, 2001)
0.295, 0.433

20336, 2901, 2810
0.054
0.704
$0.033,0.074,1.14$
2901
173
6
Only H-atom coordinates refined $1.45,-1.56$

Computer programs: local program, XDS (Kabsch, 2010), XPREP (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), CrystalMaker (Palmer, 2009) and publCIF (Westrip, 2010).
the existence of hydrogen bonds. Positions were estimated for the remaining hydrogen atoms, assuming water molecule $\mathrm{O}-$ H distance near $0.9 \AA, \mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle near 104°, that $\mathrm{O}-\mathrm{H}$ vectors were directed to make hydrogen bonds to nearby oxygen atoms, if possible, and that the arrangement of $\mathrm{O}-\mathrm{H}$ and $\mathrm{O} \cdots \mathrm{H}$ around $\mathrm{O} W 3$ was approximately tetrahedral. In all cases, residuals of >0.6 electrons were found close to the expected positions, that could be identified with the H atoms. H positions were finally included in the refinement, assuming full occupancy, isotropic displacement parameters were fixed to $1.5 \times$ of their corresponding O atom and the $\mathrm{O}-\mathrm{H}$ distance was restrained at 0.90 (3) \AA.

Acknowledgements

This study has been funded by The Ian Potter Foundation grant 'tracking tellurium' to SJM, which we gratefully acknowledge.

References

Anderson, J. B., Rapposch, M. H., Anderson, C. P. \& Kostiner, E. (1980). Monatsh. Chem. 111, 789-796.

Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Bruker (2001). $S A D A B S$ and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Christy, A. G. (2015). Mineral. Mag. 79, 33-49.
Christy, A. G. \& Mills, S. J. (2013). Acta Cryst. B69, 446-456.

Christy, A. G., Mills, S. J. \& Kampf, A. R. (2016b). Mineral. Mag. 80, 415-545.
Christy, A. G., Mills, S. J., Kampf, A. R., Housley, R. M., Thorne, B. \& Marty, J. (2016a). Mineral. Mag. 80, 291-310.
Feger, C. R., Schimek, G. L. \& Kolis, J. W. (1999). J. Solid State Chem. 143, 246-253.
Hawthorne, F. C. (2014). Mineral. Mag. 78, 957-1027.
Höss, P. \& Schleid, T. (2007). Acta Cryst. E63, i133-i135.
Johansson, G. B. \& Lindqvist, O. (1978). Acta Cryst. B34, 2959-2962.
Kabsch, W. (2010). Acta Cryst. D66, 125-132.
Kampf, A. R., Mills, S. J., Housley, R. M., Rossman, G. R., Marty, J. \& Thorne, B. (2013). Am. Mineral. 98, 1315-1321.
Kasper, H. M. (1969). Mater. Res. Bull. 4, 33-37.
Kim, Y. H., Lee, D. W. \& Ok, K. M. (2014). Inorg. Chem. 53, 52405245.

Koteswararao, B., Kumar, R., Chakraborty, J., Jeon, B. G., Mahajan, A. V., Dasgupta, I., Kim, K. H. \& Chou, F. C. (2013). J. Phys. Condens. Matter, 25, 336003.
Libowitzky, E. (1999). In Correlation of OH stretching frequencies and $\mathrm{OH}-\mathrm{O}$ hydrogen bond lengths in minerals. Vienna: Springer.

Mills, S. J. \& Christy, A. G. (2013). Acta Cryst. B69, 145-149.
Mills, S. J., Dunstan, M. A. \& Christy, A. G. (2016). Dalton Trans. Submitted.
Noguera, O., Jouin, J., Masson, O., Jancar, B. \& Thomas, P. J. (2012). J. Eur. Ceram. Soc. 32, 4263-4269.
Olsson, C., Johansson, L.-G. \& Kazikowski, S. (1988). Acta Cryst. C44, 427-429.
Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.
Sedello, O. \& Müller-Buschbaum, H. (1996). Z. Naturforsch. Teil B, 51, 465-468.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Shen, Y.-L. \& Mao, J.-G. (2005). Inorg. Chem. 44, 5328-5335.
Song, S. Y., Lee, D. W. \& Ok, K. M. (2014). Inorg. Chem. 53, 70407046.

Stöger, B. \& Weil, M. (2013). Mineral. Petrol. 107, 257-263.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yu, D., Xue, D. \& Ratajczak, H. (2006). Physica B, 371, 170-176.

supporting information

Acta Cryst. (2016). E72, 1138-1142 [doi:10.1107/S2056989016011464]

$\mathrm{YCu}\left(\mathrm{TeO}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$: a novel layered tellurite

Stuart J. Mills, Maja A. Dunstan and Andrew G. Christy

Computing details

Data collection: local program; cell refinement: $X D S$ (Kabsch, 2010); data reduction: XPREP (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Yttrium(III) copper(II) bis[trioxidotellurate(IV)] nitrate trihydrate

Crystal data

$\mathrm{YCu}\left(\mathrm{TeO}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$
$M_{r}=619.71$
Monoclinic, $P 2_{1} / c$
$a=7.2560(15) \AA$
$b=20.654$ (4) \AA
$c=7.0160(14) \AA$
$\beta=94.63$ (3) ${ }^{\circ}$
$V=1048.0(4) \AA^{3}$
$Z=4$

Data collection

ADSC Quantum 315r detector diffractometer
Radiation source: synchrotron φ scan
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.295, T_{\text {max }}=0.433$
20336 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.074$
$S=1.14$
2901 reflections
173 parameters
6 restraints
Hydrogen site location: difference Fourier map
Only H-atom coordinates refined
$F(000)=1124$
$D_{\mathrm{x}}=3.928 \mathrm{Mg} \mathrm{m}^{-3}$
Synchrotron radiation, $\lambda=0.71073 \AA$
Cell parameters from 20243 reflections
$\theta=2.8-30.0^{\circ}$
$\mu=13.06 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, dark blue
$0.02 \times 0.02 \times 0.01 \mathrm{~mm}$

2901 independent reflections
2810 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-10 \rightarrow 10$
$k=-29 \rightarrow 29$
$l=-9 \rightarrow 9$
360 standard reflections every 1 reflections

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+11.0043 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.45 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.56 \text { e } \AA^{-3} \\
& \text { Extinction correction: SHELXL2014 } \\
& \quad(\text { Sheldrick, } 2015),^{\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}} \\
& \text { Extinction coefficient: } 0.0094(5)
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Te1	$0.21415(4)$	$0.34749(2)$	$0.49104(4)$	$0.00849(9)$
Te2	$0.71124(4)$	$0.15281(2)$	$1.03341(4)$	$0.00846(9)$
Y1	$-0.03880(6)$	$0.28786(2)$	$0.01247(6)$	$0.00865(11)$
Cu1	$0.46115(7)$	$0.24947(2)$	$0.76001(8)$	$0.00911(12)$
N1	$0.8271(7)$	$0.0010(2)$	$1.1795(7)$	$0.0209(9)$
O1	$0.2531(4)$	$0.26068(15)$	$0.5797(5)$	$0.0105(6)$
O2	$0.0133(4)$	$0.31345(15)$	$0.3301(5)$	$0.0106(6)$
O3	$0.3929(4)$	$0.34159(15)$	$0.3116(5)$	$0.0112(6)$
O4	$0.6704(4)$	$0.23870(15)$	$0.9406(5)$	$0.0114(6)$
O5	$0.9077(4)$	$0.18938(15)$	$1.1933(5)$	$0.0106(6)$
O6	$0.5292(5)$	$0.15853(15)$	$1.2113(5)$	$0.0099(6)$
O7	$0.0622(7)$	$0.45346(18)$	$0.3091(7)$	$0.0279(10)$
O8	$0.8860(6)$	$0.05534(18)$	$1.2373(6)$	$0.0233(8)$
O9	$0.3327(6)$	$0.49362(19)$	$0.3909(7)$	$0.0284(9)$
OW1	$-0.2697(5)$	$0.36731(17)$	$0.0483(5)$	$0.0134(6)$
H11	$-0.266(10)$	$0.4092(16)$	$0.080(10)$	0.020^{*}
H12	$-0.360(8)$	$0.364(4)$	$-0.046(8)$	0.020^{*}
OW2	$0.1872(5)$	$0.36858(17)$	$-0.0246(5)$	$0.0153(7)$
H21	$0.155(10)$	$0.407(2)$	$-0.070(10)$	0.023^{*}
H22	$0.279(8)$	$0.371(4)$	$0.066(8)$	0.023^{*}
OW3	$-0.2844(7)$	$0.5007(2)$	$0.1525(8)$	$0.0317(10)$
H31	$-0.182(9)$	$0.490(4)$	$0.225(12)$	0.048^{*}
H32	$-0.374(10)$	$0.503(4)$	$0.232(12)$	0.048^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Te1	$0.00827(14)$	$0.00782(13)$	$0.00912(16)$	$-0.00013(8)$	$-0.00084(9)$	$-0.00064(9)$
Te2	$0.00858(14)$	$0.00783(14)$	$0.00876(16)$	$0.00007(8)$	$-0.00061(9)$	$-0.00066(9)$
Y1	$0.00832(19)$	$0.00855(19)$	$0.0089(2)$	$0.00012(13)$	$-0.00055(14)$	$0.00008(13)$
Cu1	$0.0081(2)$	$0.0088(2)$	$0.0100(3)$	$-0.00025(17)$	$-0.00157(18)$	$0.00098(18)$
N1	$0.027(2)$	$0.0128(19)$	$0.022(2)$	$-0.0008(16)$	$-0.0056(18)$	$0.0026(16)$
O1	$0.0103(14)$	$0.0089(13)$	$0.0119(16)$	$0.0001(11)$	$-0.0018(11)$	$0.0007(11)$
O2	$0.0089(14)$	$0.0102(14)$	$0.0125(16)$	$-0.0020(11)$	$-0.0009(11)$	$0.0003(11)$
O3	$0.0080(14)$	$0.0096(13)$	$0.0163(17)$	$0.0003(11)$	$0.0032(12)$	$0.0002(11)$
O4	$0.0098(14)$	$0.0093(13)$	$0.0147(17)$	$0.0005(11)$	$-0.0018(12)$	$0.0038(11)$
O5	$0.0109(14)$	$0.0095(13)$	$0.0109(16)$	$-0.0014(11)$	$-0.0015(11)$	$-0.0007(11)$
O6	$0.0115(14)$	$0.0116(14)$	$0.0067(15)$	$0.0012(11)$	$0.0017(11)$	$-0.0014(11)$
O7	$0.038(2)$	$0.0108(16)$	$0.032(2)$	$-0.0057(16)$	$-0.0148(19)$	$0.0042(15)$

O8	$0.034(2)$	$0.0136(16)$	$0.020(2)$	$0.0006(15)$	$-0.0072(16)$	$-0.0014(14)$
O9	$0.026(2)$	$0.0194(18)$	$0.038(3)$	$0.0027(15)$	$-0.0085(18)$	$0.0027(17)$
OW1	$0.0137(15)$	$0.0128(15)$	$0.0128(17)$	$0.0022(12)$	$-0.0036(12)$	$-0.0031(12)$
OW2	$0.0176(16)$	$0.0140(15)$	$0.0137(18)$	$-0.0029(13)$	$-0.0016(13)$	$0.0024(12)$
OW3	$0.039(3)$	$0.025(2)$	$0.031(3)$	$0.0023(19)$	$0.000(2)$	$0.0002(18)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Te1-O3	1.883 (3)	$\mathrm{O} 2-\mathrm{Cul}^{\text {i }}$	3.571 (3)
Te1-O2	1.905 (3)	O3-Cul ${ }^{\text {i }}$	1.986 (3)
Te1-O1	1.911 (3)	O3-Te2 ${ }^{\text {i }}$	2.681 (3)
Te - $\mathrm{Ob}^{\text {i }}$	2.657 (3)	$\mathrm{O} 4-\mathrm{Y} 1^{\text {ix }}$	2.359 (3)
Te1-07	2.722 (4)	$\mathrm{O} 4-\mathrm{Cu} 1^{\text {iii }}$	2.817 (4)
Te1-O5 ${ }^{\text {ii }}$	2.837 (3)	O4- $\mathrm{Te} 2^{\text {i }}$	3.661 (3)
Te2-O6	1.893 (3)	$\mathrm{O} 4-\mathrm{Tel}{ }^{\text {iii }}$	3.801 (3)
Te2-O5	1.898 (3)	$\mathrm{O} 4-\mathrm{Y} 1^{\text {iv }}$	3.847 (4)
Te2-O4	1.905 (3)	$\mathrm{O} 5-\mathrm{Y}{ }^{\text {x }}$	2.290 (3)
$\mathrm{Te} 2-\mathrm{O}^{\text {iii }}$	2.681 (4)	$\mathrm{O} 5-\mathrm{Y} 1^{\text {ix }}$	2.445 (3)
Te2-O8	2.723 (4)	$\mathrm{O} 5-\mathrm{Tel}{ }^{\text {iv }}$	2.837 (3)
Te2-02 ${ }^{\text {iv }}$	2.798 (3)	O5-Cu1ii	3.543 (3)
Y 1 - 5^{*}	2.290 (3)	O6-Cu1ii	1.999 (3)
Y1-O2	2.292 (3)	O6- $\mathrm{Te} 1^{\text {iii }}$	2.657 (3)
$\mathrm{Y} 1-\mathrm{Ol}^{\text {i }}$	2.357 (3)	O6-Y1 ${ }^{\text {x }}$	3.801 (3)
$\mathrm{Y} 1-\mathrm{O} 4^{\text {vi }}$	2.359 (3)	O7- $\mathrm{Nl}^{\text {xi }}$	1.267 (6)
Y1-OW2	2.367 (4)	O7-Te2ii	3.798 (5)
Y1-OW1	2.373 (3)	O8- $\mathrm{Te}{ }^{\text {iv }}$	3.653 (5)
$\mathrm{Y} 1-\mathrm{O} 5^{\text {vi }}$	2.445 (3)	O8-Y1*	3.787 (4)
$\mathrm{Y} 1-\mathrm{O} 2^{\text {i }}$	2.497 (3)	$\mathrm{O} 9-\mathrm{Nl}^{\text {xi }}$	1.233 (6)
Cu1-O1	1.904 (3)	O9--Te2 ${ }^{\text {xi }}$	3.350 (4)
Cu1-O4	1.910 (3)	O9-- $\mathrm{Te} 2^{\text {i }}$	4.153 (4)
$\mathrm{Cu}-\mathrm{OB}^{\text {iii }}$	1.986 (3)	OW1-Te2 ${ }^{\text {ii }}$	3.442 (4)
Cu1-O6 ${ }^{\text {i }}$	1.999 (3)	OW1-Cu1i	3.508 (4)
$\mathrm{Cu} 1-\mathrm{O} 1^{\text {iii }}$	2.811 (4)	OW1-Te2 ${ }^{\text {v }}$	3.628 (4)
Cu1-O4 ${ }^{\text {i }}$	2.817 (4)	OW1-Cu1 ${ }^{\text {ri }}$	3.632 (4)
N1-O9 ${ }^{\text {vii }}$	1.233 (6)	OW1-H11	0.89 (3)
N1-O8	1.256 (6)	OW1-H12	0.89 (3)
N1-O7 ${ }^{\text {vii }}$	1.267 (6)	OW2-Te1 ${ }^{\text {xii }}$	3.447 (4)
$\mathrm{N} 1-\mathrm{Te1}{ }^{\text {vii }}$	3.394 (4)	OW2-Cu1 ${ }^{\text {xii }}$	3.574 (4)
$\mathrm{O} 1-\mathrm{Y} 1^{\text {iii }}$	2.357 (3)	OW2-Cu1 ${ }^{\text {i }}$	3.639 (4)
O1- $\mathrm{Cul}^{\text {i }}$	2.811 (4)	OW2-H21	0.89 (3)
$\mathrm{O} 1-\mathrm{Tel}{ }^{\text {iii }}$	3.679 (3)	OW2-H22	0.89 (3)
O1-Te2 ${ }^{\text {i }}$	3.811 (3)	OW3-Te1 ${ }^{\text {xiii }}$	4.018 (5)
$\mathrm{O} 1-\mathrm{Y} 1^{\text {viii }}$	3.881 (4)	OW3-Te2 ${ }^{\text {ii }}$	4.148 (5)
$\mathrm{O} 2-\mathrm{Y} 1^{\text {iii }}$	2.497 (3)	OW3-H31	0.90 (3)
$\mathrm{O} 2-\mathrm{Te} 2^{\text {ii }}$	2.798 (3)	OW3-H32	0.89 (3)
$\mathrm{O} 3-\mathrm{Te} 1-\mathrm{O} 2$	96.62 (15)	$\mathrm{Cu1}{ }^{\text {i }}$ - $\mathrm{O} 3-\mathrm{Te} 2^{\text {i }}$	86.04 (11)
O3-Tel-O1	93.73 (14)	Te1-O3-Cu1	60.91 (10)

$\mathrm{O} 2-\mathrm{Te} 1-\mathrm{O} 1$
$\mathrm{O} 3-\mathrm{Te} 1-\mathrm{O}^{\text {i }}$
$\mathrm{O} 2-\mathrm{Te} 1-\mathrm{O}^{\text {i }}$
$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O}^{\text {i }}$
$\mathrm{O} 3-\mathrm{Te} 1-\mathrm{O} 7$
$\mathrm{O} 2-\mathrm{Te} 1-\mathrm{O} 7$
$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O} 7$
O6i-Te1-07
$\mathrm{O} 3-\mathrm{Te} 1-\mathrm{O} 5{ }^{\text {ii }}$
$\mathrm{O} 2-\mathrm{Te} 1-\mathrm{O} 5{ }^{\text {ii }}$
$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O} 5{ }^{\text {ii }}$
O6 ${ }^{\text {i }}$ - $\mathrm{Te} 1-\mathrm{O}^{\text {ii }}$
O7-Te1-O5 $5^{\text {ii }}$
O6-Te2-O5
O6-Te2-O4
O5-Te2-O4
$\mathrm{O} 6-\mathrm{Te} 2-\mathrm{O} 3{ }^{\text {iii }}$
$\mathrm{O} 5-\mathrm{Te} 2-\mathrm{O} 3{ }^{\text {iii }}$
$\mathrm{O} 4-\mathrm{Te} 2-\mathrm{O} 3{ }^{\text {iii }}$
O6-Te2-O8
$\mathrm{O} 5-\mathrm{Te} 2-\mathrm{O} 8$
$\mathrm{O} 4-\mathrm{Te} 2-\mathrm{O} 8$
$\mathrm{O} 3{ }^{\text {iii- }}$ - $\mathrm{Te} 2-\mathrm{O} 8$
$\mathrm{O} 6-\mathrm{Te} 2-\mathrm{O} 2{ }^{\text {iv }}$
$\mathrm{O} 5-\mathrm{Te} 2-\mathrm{O} 2{ }^{\text {iv }}$
$\mathrm{O} 4-\mathrm{Te} 2-\mathrm{O} 2{ }^{\text {iv }}$
$\mathrm{O} 3{ }^{\text {iiil }}$ - $\mathrm{Te} 2-\mathrm{O} 2{ }^{\text {iv }}$
$\mathrm{O} 8-\mathrm{Te} 2-\mathrm{O} 2{ }^{\text {iv }}$
$\mathrm{O} 5^{\mathrm{v}}-\mathrm{Y} 1-\mathrm{O} 2$
$\mathrm{O} 5^{\mathrm{v}}-\mathrm{Y} 1-\mathrm{Ol}^{\text {i }}$
$\mathrm{O} 2-\mathrm{Y} 1-\mathrm{O} 1^{\mathrm{i}}$
$\mathrm{O} 5^{\mathrm{v}}-\mathrm{Y} 1-\mathrm{O} 4{ }^{\text {vi }}$
$\mathrm{O} 2-\mathrm{Y} 1-\mathrm{O} 4{ }^{\text {vi }}$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Y} 1-\mathrm{O} 4^{\text {vi }}$
O5 - Y 1-OW2
$\mathrm{O} 2-\mathrm{Y} 1-\mathrm{OW} 2$
$\mathrm{O} 1^{\text {i}}-\mathrm{Y} 1-\mathrm{OW} 2$
O4i--Y1-OW2
O5 ${ }^{\text {v- }} \mathrm{Y} 1-\mathrm{OW} 1$
$\mathrm{O} 2-\mathrm{Y} 1-\mathrm{OW} 1$
O1-Y1-OW1
O4 ${ }^{\text {vi}}-\mathrm{Y} 1-\mathrm{OW} 1$
OW2-Y1-OW1
O5v- ${ }^{\text {v }} 1-\mathrm{O} 5^{\text {vi }}$
$\mathrm{O} 2-\mathrm{Y} 1-\mathrm{O} 5^{\text {vi }}$
O1 ${ }^{\text {i }}$ - $\mathrm{Y} 1-\mathrm{O} 5^{\text {vi }}$
$\mathrm{O} 4{ }^{\text {vi}}-\mathrm{Y} 1-\mathrm{O} 5^{\text {vi }}$
OW2-Y1-O5 ${ }^{\text {vi }}$

77.24 (13)
155.35 (12)
70.67 (12)
90.77 (15)
75.93 (13)
161.92 (13)
127.41 (11)
157.99 (12)
66.69 (13)
71.75 (12)
111.64 (10)
98.40 (13)
96.67 (15)
94.00 (14)
85.42 (14)
76.45 (13)
153.70 (12)
70.03 (12)
91.15 (14)
71.82 (13)
157.11 (13)
132.81 (11)
159.67 (12)
67.71 (13)
72.56 (12)
111.52 (10)
95.81 (12)
154.82 (12)
111.21 (12)
80.12 (12)
78.52 (12)
112.44 (12)
129.31 (11)
79.18 (12)
83.29 (12)
72.67 (12)
153.52 (12)
84.04 (12)
78.45 (12)
154.67 (12)
72.15 (12)
91.49 (13)
131.04 (10)
73.01 (11)
73.74 (11)
64.91 (11)
141.57 (12)

$\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{Cu} 1$	69.36 (10)
Te2 ${ }^{\text {i }}-\mathrm{O} 3-\mathrm{Cu} 1$	58.36 (7)
Te1-O3-Y1	78.82 (10)
Cu1- $\mathrm{O} 3-\mathrm{Y} 1$	80.15 (10)
Te2 ${ }^{\text {i }}-\mathrm{O} 3-\mathrm{Y} 1$	165.46 (11)
$\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{Y} 1$	111.74 (8)
Te2-O4-Cu1	115.38 (17)
Te2-O4-Y1 ${ }^{\text {ix }}$	102.48 (14)
Cu1-O4-Y1 ${ }^{\text {ix }}$	137.81 (17)
$\mathrm{Te} 2-\mathrm{O} 4-\mathrm{Cu} 1^{\text {iii }}$	83.55 (12)
$\mathrm{Cu} 1-\mathrm{O} 4-\mathrm{Cu} 1^{\text {iii }}$	93.83 (13)
$\mathrm{Y} 1^{\mathrm{ix}}-\mathrm{O} 4-\mathrm{Cu} 1^{\text {iii }}$	108.82 (13)
Te2-O4-Te2 ${ }^{\text {i }}$	144.76 (16)
$\mathrm{Cu} 1-\mathrm{O} 4-\mathrm{Te} 2{ }^{\text {i }}$	61.40 (9)
$\mathrm{Y} 1^{\mathrm{ix}}-\mathrm{O} 4-\mathrm{Te} 2^{\mathrm{i}}$	77.07 (9)
$\mathrm{Cu} 1^{\text {iii }}-\mathrm{O} 4-\mathrm{Te} 2^{\text {i }}$	130.56 (10)
$\mathrm{Te} 2-\mathrm{O} 4-\mathrm{Te} 1^{\text {iii }}$	69.18 (9)
$\mathrm{Cu}-\mathrm{O} 4-\mathrm{Te} 1^{\text {iii }}$	57.63 (9)
Y1 ${ }^{\text {ix }}-\mathrm{O} 4-\mathrm{Te} 1^{\text {iii }}$	162.26 (14)
$\mathrm{Cu} 1^{\text {iii }}-\mathrm{O} 4-\mathrm{Te} 1^{\text {iii }}$	55.74 (6)
$\mathrm{Te} 2^{\text {i }}$-O4- $\mathrm{Te} 1^{\text {iii }}$	119.03 (9)
$\mathrm{Te} 2-\mathrm{O} 4-\mathrm{Y} 1^{\mathrm{iv}}$	93.11 (12)
$\mathrm{Cu} 1-\mathrm{O} 4-\mathrm{Y} 1^{\text {iv }}$	87.45 (12)
$\mathrm{Y} 1^{\mathrm{ix}}-\mathrm{O} 4-\mathrm{Y} 1^{\text {iv }}$	72.00 (9)
$\mathrm{Cu} 1^{\text {iii }}-\mathrm{O} 4-\mathrm{Y} 1^{\text {iv }}$	176.66 (11)
$\mathrm{Te} 2^{\mathrm{i}}-\mathrm{O} 4-\mathrm{Y} 1^{\text {iv }}$	52.71 (5)
Te1 ${ }^{\text {iii--O4- }}$ - $1^{\text {iv }}$	122.87 (9)
Te2-O5-Y1 ${ }^{\text {x }}$	136.03 (17)
Te2-O5-Y1 ${ }^{\text {ix }}$	99.64 (14)
$\mathrm{Y} 1^{\mathrm{x}}-\mathrm{O} 5-\mathrm{Y} 1^{\text {ix }}$	108.37 (12)
$\mathrm{Te} 2-\mathrm{O} 5-\mathrm{Te} 1^{\text {iv }}$	100.31 (13)
$\mathrm{Y} 1^{\mathrm{x}}-\mathrm{O} 5-\mathrm{Te} 1^{\text {iv }}$	117.78 (13)
$\mathrm{Y} 1^{\mathrm{ix}}-\mathrm{O} 5-\mathrm{Te} 1^{\text {iv }}$	78.46 (10)
$\mathrm{Te} 2-\mathrm{O} 5-\mathrm{Cu} 1^{\text {iii }}$	64.46 (9)
Y1 ${ }^{\text {x }}$-O5- $\mathrm{Cu} 1^{\text {iii }}$	83.26 (10)
$\mathrm{Y} 1^{\mathrm{ix}}-\mathrm{O} 5-\mathrm{Cu} 1^{\text {iii }}$	87.55 (9)
Te1 ${ }^{\text {iv }}-\mathrm{O} 5-\mathrm{Cu} 1^{\text {iii }}$	157.47 (12)
Te2-O6- $\mathrm{Cu} 1{ }^{\text {iii }}$	111.53 (16)
Te2-O6-Tel ${ }^{\text {iii }}$	103.11 (14)
$\mathrm{Cu} 1^{\text {iii }}-\mathrm{O} 6-\mathrm{Te} 1^{\text {iii }}$	86.06 (11)
Te2-O6-Cu1	61.11 (9)
$\mathrm{Cu} 1 \mathrm{iii}-\mathrm{O} 6-\mathrm{Cu} 1$	69.15 (9)
Te1 ${ }^{\text {iii- }}$-O6- Cu 1	58.27 (7)
Te2-O6-Y1 ${ }^{\text {x }}$	78.26 (10)
$\mathrm{Cu} 1^{\text {iiii- }}$ - 6 - $\mathrm{Y} 1^{\text {x }}$	80.34 (10)
Te1 ${ }^{\text {iii- }}$-O6- ${ }^{\text {1 }}{ }^{\text {x }}$	165.75 (11)
$\mathrm{Cu} 1-\mathrm{O} 6-\mathrm{Y} 1^{\text {x }}$	112.14 (9)
N1 ${ }^{\text {xi }}$-O7-Te1	111.3 (3)

OW1-Y1-O5 ${ }^{\text {vi }}$	112.16 (12)
$\mathrm{O} 5{ }^{\text {v }}-\mathrm{Y} 1-\mathrm{O} 2^{\text {i }}$	72.04 (11)
$\mathrm{O} 2-\mathrm{Y} 1-\mathrm{O} 2^{\mathrm{i}}$	132.19 (10)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Y} 1-\mathrm{O} 2^{\mathrm{i}}$	64.87 (11)
$\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Y} 1-\mathrm{O} 2^{\text {i }}$	72.51 (11)
$\mathrm{OW} 2-\mathrm{Y} 1-\mathrm{O} 2{ }^{\mathrm{i}}$	113.51 (12)
$\mathrm{OW} 1-\mathrm{Y} 1-\mathrm{O} 2^{\mathrm{i}}$	140.45 (11)
$\mathrm{O} 5^{\text {vi }}-\mathrm{Y} 1-\mathrm{O} 2^{\mathrm{i}}$	66.79 (12)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4$	179.67 (14)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{\text {iii }}$	92.32 (14)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O}^{\text {iii }}$	88.01 (14)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	87.95 (13)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$	91.72 (14)
O3 ${ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$	179.29 (14)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{\text {iii }}$	95.24 (13)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O}{ }^{\text {iii }}$	84.92 (13)
O3ii] ${ }^{\text {iii }} \mathrm{Cu} 1-\mathrm{O} 1^{\text {iii }}$	68.03 (12)
$\mathrm{O} 6^{\text {i }}-\mathrm{Cu} 1-\mathrm{O} 1^{\text {iii }}$	111.29 (12)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$	84.84 (13)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 4{ }^{\text {i }}$	94.99 (13)
O3 ${ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O} 4{ }^{\text {i }}$	112.68 (12)
$\mathrm{O} 6^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 4^{\text {i }}$	68.00 (12)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O} 4{ }^{\text {i }}$	179.28 (9)
$\mathrm{O} 9{ }^{\text {vii }} \mathrm{N} 1-\mathrm{O} 8$	121.6 (5)
$\mathrm{O} 9^{\text {vii }}-\mathrm{N} 1-\mathrm{O} 7{ }^{\text {vii }}$	120.0 (4)
$\mathrm{O} 8-\mathrm{N} 1-\mathrm{O} 7{ }^{\text {vii }}$	118.3 (5)
O9 ${ }^{\text {vii }} \mathrm{-N} 1-\mathrm{Te} 2$	77.9 (3)
O8-N1-Te2	48.7 (2)
O7vii-N1-Te2	151.4 (4)
O9 ${ }^{\text {vii }}-\mathrm{N} 1-\mathrm{Te} 1^{\text {vii }}$	71.9 (3)
O8-N1-Te1 ${ }^{\text {vii }}$	165.1 (4)
O7 ${ }^{\text {vii }}-\mathrm{N} 1-\mathrm{Te} 1^{\text {vii }}$	48.4 (2)
Te2-N1-Te1 ${ }^{\text {vii }}$	138.27 (15)
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{Te} 1$	114.77 (16)
Cu1-O1-Y1 ${ }^{\text {iii }}$	137.13 (17)
Te1-O1-Y1 ${ }^{\text {iii }}$	103.12 (14)
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{Cu1}{ }^{\text {i }}$	94.20 (13)
Te1-O1-Cu1 ${ }^{\text {i }}$	83.41 (12)
Y1 ${ }^{\text {iii }}-\mathrm{O} 1-\mathrm{Cu}{ }^{\text {i }}$	109.90 (13)
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{Te} 1^{\text {iii }}$	60.78 (9)
$\mathrm{Te} 1-\mathrm{O} 1-\mathrm{Te}{ }^{1 i i}$	143.74 (15)
Y1 ${ }^{\text {iiii }}-\mathrm{O} 1-\mathrm{Te} 1^{\text {iii }}$	76.93 (9)
Cu1 ${ }^{\text {i }}-\mathrm{O} 1-\mathrm{Te} 1^{\text {iii }}$	131.38 (10)
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{Te} 2{ }^{\text {i }}$	57.54 (9)
$\mathrm{Te} 1-\mathrm{O} 1-\mathrm{Te} 2^{\mathrm{i}}$	68.88 (9)
$\mathrm{Y} \mathrm{i}^{\text {iii }}-\mathrm{O} 1-\mathrm{Te} 2^{\text {i }}$	163.46 (14)
$\mathrm{Cu} 1{ }^{\mathrm{i}}-\mathrm{O} 1-\mathrm{Te} 2^{\text {i }}$	55.85 (6)
Te $1^{\text {iiii }}-\mathrm{O} 1-\mathrm{Te} 2^{\text {i }}$	118.32 (9)

$\mathrm{N} 1^{\text {xi }}-\mathrm{O} 7-\mathrm{Te} 2^{\text {ii }}$	149.8 (4)
Te1-O7-Te2 ${ }^{\text {ii }}$	66.47 (9)
N1 ${ }^{\text {xi }}-\mathrm{O} 7-\mathrm{Y} 1$	140.9 (4)
Te1-O7-Y1	67.08 (8)
Te2 ${ }^{\text {ii }}-\mathrm{O} 7-\mathrm{Y} 1$	67.94 (6)
N1-O8-Te2	111.0 (3)
N1-O8- $\mathrm{Te}^{\text {iv }}$	123.8 (4)
Te2-O8-Te1 ${ }^{\text {iv }}$	68.84 (9)
N1-O8-Y1 ${ }^{\text {x }}$	163.7 (4)
Te2-O8-Y1 ${ }^{\text {x }}$	71.18 (8)
$\mathrm{Te} 1^{\mathrm{iv}}-\mathrm{O} 8-\mathrm{Y} 1^{\mathrm{x}}$	72.46 (7)
N1 ${ }^{\text {xi }}$-O9- Te 1	86.8 (3)
N1 ${ }^{\text {xi }}-\mathrm{O} 9-\mathrm{Te} 2^{\text {xi }}$	81.0 (3)
Te1-O9-Te2 ${ }^{\text {xi }}$	148.43 (17)
$\mathrm{N} 1{ }^{\text {xi}}-\mathrm{O} 9-\mathrm{Te} 2{ }^{\text {i }}$	140.3 (3)
Te1-O9-Te2 ${ }^{\text {i }}$	56.63 (6)
Te2 ${ }^{\text {xi }}-\mathrm{O} 9-\mathrm{Te} 2^{\text {i }}$	138.25 (13)
Y1-OW1-Te2 ${ }^{\text {ii }}$	96.11 (11)
$\mathrm{Y} 1-\mathrm{OW} 1-\mathrm{Cu} 1^{\text {ii }}$	89.51 (11)
Te2ii-OW1-Cu1 ${ }^{\text {ii }}$	55.27 (6)
Y1-OW1-Te2 ${ }^{\text {v }}$	77.63 (10)
Te2iioow ${ }^{\text {iil }}$ - $\mathrm{Te}^{\text {v }}$	165.76 (11)
$\mathrm{Cu} 1^{\mathrm{ii}}$-OW1-Te2 ${ }^{\text {v }}$	111.41 (9)
Y1-OW1-Cu1 ${ }^{\text {vi }}$	80.22 (9)
Te2 ${ }^{\text {ii }}-\mathrm{OW} 1-\mathrm{Cu} 1^{\text {vi }}$	114.02 (10)
$\mathrm{Cu} 1^{\text {ii }}-\mathrm{OW} 1-\mathrm{Cu1}{ }^{\text {vi }}$	58.82 (6)
Te2 ${ }^{\text {v }}$-OW1-Cu1 ${ }^{\text {vi }}$	52.63 (5)
Y1-OW1-H11	134 (5)
Te2 ${ }^{\text {iii }}$-OW1-H11	83 (5)
Cu1i- ${ }^{\text {ii }}$ OW1-H11	125 (5)
Te2 ${ }^{2}-\mathrm{OW} 1-\mathrm{H} 11$	111 (5)
$\mathrm{Cul}{ }^{\text {vi}}-\mathrm{OW} 1-\mathrm{H} 11$	142 (5)
Y1-OW1-H12	110 (5)
Te2 ${ }^{\text {iii }}$-OW1-H12	129 (5)
$\mathrm{Cul}{ }^{\text {ii }}$-OW1-H12	82 (5)
Te2 ${ }^{\text {v }}$-OW1- ${ }^{\text {H12 }}$	45 (5)
$\mathrm{Cu1}{ }^{\text {vi- }} \mathrm{OW} 1-\mathrm{H} 12$	37 (5)
H11-OW1-H12	106 (6)
Y1-OW2-Te1 ${ }^{\text {xii }}$	96.56 (11)
Y1-OW2-Cu1 ${ }^{\text {xii }}$	88.60 (11)
Te1 ${ }^{\text {xii }}$-OW2-Cu1 ${ }^{\text {xii }}$	54.44 (6)
Y1-OW2-Te1	77.77 (10)
Te1 ${ }^{\text {xii - OW2-Te1 }}$	164.50 (12)
$\mathrm{Cu} 1{ }^{\text {xii }}$-OW2—-Te1	110.57 (10)
Y1-OW2-Cu1 ${ }^{\text {i }}$	79.66 (10)
Te1 ${ }^{\text {xii }}$-OW2-Cu1 ${ }^{\text {i }}$	112.61 (10)
Cu1 ${ }^{\text {xii }}-\mathrm{OW} 2-\mathrm{Cu} 1^{\text {i }}$	58.20 (6)
Te1-OW2-Cu1 ${ }^{\text {i }}$	52.42 (5)

supporting information

Cu1-O1-Y1 ${ }^{\text {viii }}$	87.20 (12)	Y1-OW2-H21	121 (5)
Te1-O1-Y1 ${ }^{\text {viii }}$	92.47 (11)	Te1 ${ }^{\text {xii }}$-OW2-H21	78 (5)
$\mathrm{Y} 1^{\text {iii- }} \mathrm{O} 1-\mathrm{Y} 1^{\text {viii }}$	71.31 (9)	Cu1 ${ }^{\text {xii }}$-OW2- H 21	128 (5)
Cu1 ${ }^{\text {i }}$-O1-Y1 ${ }^{\text {viii }}$	175.87 (11)	Te1-OW2-H21	117 (5)
Te1 ${ }^{\text {iii- }}$ - $\mathrm{O} 1-\mathrm{Y} 1^{\text {viii }}$	52.60 (5)	Cu1-OW2-H21	157 (5)
$\mathrm{Te} 2^{\mathrm{i}}-\mathrm{O} 1-\mathrm{Y} 1^{\text {viii }}$	122.26 (9)	Y1-OW2-H22	117 (5)
$\mathrm{Te} 1-\mathrm{O} 2-\mathrm{Y} 1$	136.04 (17)	Te1 ${ }^{\text {xii }}$-OW2-H22	128 (5)
Te1-O2-Y1 ${ }^{\text {iii }}$	98.37 (14)	Cu1 ${ }^{\text {xii }}$-OW2- H 22	86 (5)
$\mathrm{Y} 1-\mathrm{O} 2-\mathrm{Y} 1^{\text {iii }}$	106.57 (12)	Te1-OW2-H22	47 (5)
Te1-O2-Te2 ${ }^{\text {ii }}$	101.48 (14)	$\mathrm{Cu1}{ }^{\text {i }}$-OW2- H 22	46 (5)
$\mathrm{Y} 1-\mathrm{O} 2-\mathrm{Te} 2^{2 i}$	118.61 (13)	H21-OW2-H22	112 (7)
$\mathrm{Y} 1^{\text {iii }}-\mathrm{O} 2-\mathrm{Te} 2^{\text {ii }}$	77.90 (9)	Te1 ${ }^{\text {xiii }}$-OW3- $\mathrm{Te}^{\text {2ii }}$	101.69 (12)
Te1-O2-Cu1 ${ }^{\text {i }}$	63.55 (9)	Te1 ${ }^{\text {xiii-OW3-H3 }}$	77 (6)
$\mathrm{Y} 1-\mathrm{O} 2-\mathrm{Cu} 1^{\mathrm{i}}$	82.11 (10)	Te2ii-OW3-H31	59 (6)
$\mathrm{Y} 1^{\text {iii }}-\mathrm{O} 2-\mathrm{Cu} 1^{\mathrm{i}}$	86.71 (9)	Te1 ${ }^{\text {xiii-OW3-H32 }}$	69 (6)
Te2 ${ }^{\text {iii }}-\mathrm{O} 2-\mathrm{Cu} 1^{\text {i }}$	156.91 (12)	Te2 ${ }^{\text {iii -OW3-H32 }}$	66 (6)
$\mathrm{Te} 1-\mathrm{O} 3-\mathrm{Cu} 1^{\text {i }}$	112.24 (16)	H31-OW3-H32	106 (9)
Te1-O3-Te2 ${ }^{\text {i }}$	102.52 (15)		

Symmetry codes: (i) $x,-y+1 / 2, z-1 / 2$; (ii) $x-1,-y+1 / 2, z-1 / 2$; (iii) $x,-y+1 / 2, z+1 / 2$; (iv) $x+1,-y+1 / 2, z+1 / 2$; (v) $x-1,-y+1 / 2, z-3 / 2$; (vi) $x-1, y, z-1$; (vii) $-x+1, y-1 / 2,-z+3 / 2$; (viii) $x, y, z+1$; (ix) $x+1, y, z+1$; (x) $x+1,-y+1 / 2, z+3 / 2$; (xi) $-x+1, y+1 / 2,-z+3 / 2$; (xii) $x, y, z-1$; (xiii) $-x,-y+1,-z+1$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} W 1-\mathrm{H} 11 \cdots \mathrm{O} W 3$	0.89 (3)	1.96 (3)	2.854 (6)	174 (7)
$\mathrm{O} W 1-\mathrm{H} 12 \cdots \mathrm{O}^{\text {v }}$	0.89 (3)	1.88 (4)	2.729 (5)	157 (7)
$\mathrm{O} W 2-\mathrm{H} 21 \cdots \mathrm{O} 8^{\mathrm{v}}$	0.89 (3)	2.41 (6)	3.074 (5)	132 (6)
$\mathrm{O} W 2-\mathrm{H} 21 \cdots \mathrm{O} 3^{\text {xiv }}$	0.89 (3)	2.22 (5)	2.949 (6)	139 (6)
$\mathrm{O} W 2-\mathrm{H} 22 \cdots \mathrm{O} 3$	0.89 (3)	1.95 (5)	2.745 (5)	149 (7)
$\mathrm{O} W 3-\mathrm{H} 31 \cdots \mathrm{O} 7$	0.90 (3)	1.97 (4)	2.834 (7)	162 (9)
$\mathrm{O} W 3-\mathrm{H} 31 \cdots \mathrm{O} 8^{\mathrm{xi}}$	0.90 (3)	2.53 (8)	3.141 (7)	126 (7)
$\mathrm{O} W 3-\mathrm{H} 32 \cdots \mathrm{O} 9^{\mathrm{xv}}$	0.89 (3)	2.49 (4)	3.360 (7)	166 (9)
$\mathrm{OW} 3-\mathrm{H} 32 \cdots \mathrm{O} 9^{\text {xiii }}$	0.89 (3)	2.64 (9)	3.253 (8)	127 (8)

Symmetry codes: (v) $x-1,-y+1 / 2, z-3 / 2$; (xi) $-x+1, y+1 / 2,-z+3 / 2$; (xiii) $-x,-y+1,-z+1$; (xiv) $-x,-y+1,-z$; (xv) $x-1, y, z$.

