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SUMMARY

Gait and posture are often perturbed in many neurological, neuromuscular, and neuropsychiatric 

conditions. Rodents provide a tractable model for elucidating disease mechanisms and 

interventions. Here, we develop a neural-network-based assay that adopts the commonly used 

open field apparatus for mouse gait and posture analysis. We quantitate both with high precision 

across 62 strains of mice. We characterize four mutants with known gait deficits and demonstrate 

that multiple autism spectrum disorder (ASD) models show gait and posture deficits, implying 

this is a general feature of ASD. Mouse gait and posture measures are highly heritable and fall 

into three distinct classes. We conduct a genome-wide association study to define the genetic 

architecture of stride-level mouse movement in the open field. We provide a method for gait and 

posture extraction from the open field and one of the largest laboratory mouse gait and posture 

data resources for the research community.
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In brief

Sheppard et al. present a method for gait and posture analysis in the common open field apparatus 

using neural-network-based pose estimation. They apply this high-throughput method to dissect 

the genetic architecture of mouse movement.

INTRODUCTION

In humans, the ability to quantitate gait and posture at high precision and sensitivity 

allows the determination of the proper function of numerous neural and muscular systems 

(Nutt et al., 1993; Sanders and Gillig, 2010). Many psychiatric, neurodegenerative, and 

neuromuscular illnesses are associated with alterations in gait and posture (Verghese et 

al., 2002; Allan et al., 2005; Licari et al., 2020; Green et al., 2009; Flyckt et al., 1999; 

Walther and Strik, 2012; Baldaçara et al., 2008; Hausdorff et al., 2004; Scherder et al., 

2007; McIntosh et al., 1997). This is because proper gait, balance, and posture are under 

the control of multiple nervous system processes (Takakusaki, 2013, 2017), which include 

critical sensory centers that process visual, vestibular, auditory, proprioceptive, and visceral 

inputs. Regions of the brain that directly control movement, such as the cerebellum, motor 

cortex, and brainstem, respond to cognitive and emotionality cues. Thus, gait and posture 

integrity reflects proper functioning of many neural systems in humans (Takakusaki, 2013, 

2017). Mice offer genetically tractable models for mechanistic and interventional studies. 
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The ability to measure gait and posture in an accurate and scalable manner enhances the 

utility of existing models and may also lead to the development of better models of diseases.

Analysis of human and animal movement, including gait, has a storied past (Baker, 2007). 

Aristotle wrote a philosophical treatise on animal movement and gait using physical and 

metaphysical principles (Aristotle, 2004). During the Renaissance, Borelli applied the laws 

of physics and biomechanics to muscles, tendons, and joints of the entire body to understand 

gait (Borelli and Maquet, 2012). The application of imaging technologies to the study of gait 

is credited to the work of Muybridge and Marey, who took sequential photographic images 

of humans and animals in motion to derive quantitative measurements of gait (Lanska, 2016; 

Manjila et al., 2015; Braun, 1992). Modern animal gait analysis methods are credited to 

Hildebrand (1977), who in the 1970s classified gait based on quantified metrics. He defined 

a gait cycle in terms of contact of the limb to the ground (stance and swing phases). This is 

in contrast to human gait and posture analysis, which, since the time of Borelli, has focused 

on body posture and is akin to the quantitation of whole-body movement rather than simply 

contact with the ground (Kirtley, 2006). In rodents, recent methods have fomented progress 

by the incorporation of speed in gait analysis (Batka et al., 2014; Bellardita and Kiehn, 

2015; Broom et al., 2017) and determination of whole-body posture (Machado et al., 2015, 

2020).

The open field assay is one of the oldest and most commonly used assays in behavioral 

neurogenetics (Greenberg and Haraway, 1998; Hall, 1934). In rodents, it has classically 

been used to measure endophenotypes associated with emotionality, such as hyperactivity, 

anxiety, exploration, and habituation (Crawley, 2007). For video-based open field assays, 

rich and complex behaviors of animal movement are often abstracted to a simple point to 

extract behavioral measures (Dell et al., 2014). This oversimplified abstraction is necessary 

mainly due to technological limitations that have prohibited the accurate extraction of 

complex poses from video data (Egnor and Branson, 2016). Recent technology has started 

to overcome this limitation (Mathis et al., 2018; Pereira et al., 2019); Wiltschko et al., 

2015) and has enabled a new era of animal behavior analysis. Gait, an important indicator 

of neural function, is not typically analyzed in the open field mainly due to the technical 

difficulty of determining limb position when animals are moving freely (Lakes and Allen, 

2016). The ability to combine open field measures with gait and posture analysis would 

offer key insights into the neural and genetic regulation of animal behavior. Here, we 

leverage modern neural network methods to carry out mouse gait and posture analysis in the 

open field. We develop and apply a system to measure gait and posture from a top-down 

perspective that is invariant to the high level of visual diversity seen in the mouse, including 

coat color, fur differences, and size differences (Geuther et al., 2019). We characterize a 

set of neurodegenerative, neurodevelopmental, and autism spectrum disorder (ASD) models 

using our approach. We apply our methods to carry out a strain survey and genome-wide 

association study (GWAS) analysis of 62 mouse strains and find that gait and posture traits 

are highly heritable. We also find that variance of gait and posture phenotypes are heritable 

and regulated by distinct genetic architecture. These method and strain data are a community 

resource for mouse movement in the open field for the behavioral neurogenetics community.
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RESULTS

Our approach to gait and posture analysis is composed of several modular components. 

At the base of our toolkit is a deep convolutional neural network that has been trained to 

perform pose estimation on top-down video of an open field. This network provides 12 two-

dimensional markers of mouse anatomical location, or “key points,” for each frame of video 

describing the pose of the mouse at each time point. We have also developed downstream 

components that are capable of processing the time series of poses and identifying intervals 

that represent individual strides. These strides form the basis of almost all of the phenotypic 

and statistical analyses that follow. We can extract several important gait metrics on a 

perstride basis because we have pose information for each stride interval (see Table 1 for 

a list of metrics). This gives us significant power to perform statistical analysis on stride 

metrics as well as allowing us to aggregate large amounts of data to provide consensus views 

of the structure of the mouse gait.

Pose estimation

We selected 12 key points to capture mouse pose: nose, left ear, right ear, base of neck, left 

forepaw, right forepaw, mid-spine, left hind paw, right hind paw, base of tail, mid-tail, and 

tip of tail (Figure S1B). Much effort has been spent developing and refining pose estimation 

techniques for the human pose (Moeslund et al., 2006; Dang et al., 2019; Insafutdinov 

et al., 2016; Newell et al., 2016). These advances in pose estimation techniques have 

also successfully been applied to pose estimation in animals. Prominent examples of this 

include DeepLabCut (Mathis et al., 2018) and LEAP (Pereira et al., 2019). We selected the 

HRNet architecture (Sun et al., 2019), which maintains high-resolution features throughout 

the network stack, thereby preserving spatial precision (Figure S1A), and implemented 

modifications for our experimental configuration (see STAR Methods). We used this 

network to generate 12 480 × 480 heatmaps (one heatmap per key point) for each 480 

× 480 frame of video (Figure S1A). The maximum value in each heatmap represents the 

highest confidence location for each respective point. Thus, after taking the argmax of each 

of the 12 heatmaps, we have 12 (x, y) coordinates representing the animal’s pose at that 

frame (Figure S1B). We labeled ~8,000 images across a diverse set of strains to train a 

network that operates across 62 mouse strains with high visual diversity (Geuther et al., 

2019) (Figure S1C; Video S1).

Stride detection

Our approach to detecting stride intervals is based on the cyclic structure of gait as described 

by Hildebrand (1977, 1989) (Figures 1A and 1B). During a stride cycle, each of the paws 

has a stance phase and a swing phase (Lakes and Allen, 2016). During the stance phase, the 

paw of the mouse supports the weight of the mouse and is in static contact with the ground. 

During the swing phase, the paw moves forward and does not support the weight of the 

mouse. Following Hildebrand, we refer to the transition from stance phase to swing phase as 

the toe-off event and the transition from swing phase to stance phase as the foot-strike event.

To calculate stride intervals, we determined stance and swing phases for the hind paws. We 

calculated paw speed and infer that a paw is in stance phase when the speed falls below a 
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threshold and that it is in swing phase when it exceeds that threshold (Figures 1C–1F). We 

can now determine that foot-strike events occur at the transition frame from swing phase 

to stance phase (Figure 1C). We defined the left hind foot strike as the event that separates 

stride cycles. An example of the relationship between paw speed and foot strike events is 

shown in Figure 1D for hind paws. We find clean, high-amplitude oscillations of the hind 

paws, but not forepaws, as shown in Figure 1E. This difference in inference quality between 

the forepaws and hind paws is likely due to the fact that forepaws are occluded more often 

than hind paws from the top-down view and are therefore more difficult to locate accurately. 

We observe a corresponding decrease in the confidence of forepaw inferences (Figure 1G). 

For this reason, we exclude forepaws from consideration when deriving stride intervals and 

focus instead on hind paws. We also perform a significant amount of filtering on strides 

to remove spurious or low-quality stride cycles from our dataset (Figure 1G). The criteria 

for removing strides include low-confidence or physiologically unrealistic pose estimates, 

missing right hind paw strike event, and insufficient overall body speed of mouse, which is 

any speed <10 cm/s. Figure 1G shows the distribution of confidences for each key point. 

Our filtering method uses 0.3 as a confidence threshold. Very-high-confidence key points are 

close to 1.0. We always remove the first and last strides in a continuous sequence of strides 

to avoid starting and stopping behaviors from adding noise to our stride data (Figures 1C and 

1D, labeled A and D, in tracks A and B). This means that a sequence of seven strides will 

result in at most five strides being used for analysis. The distribution of key point confidence 

varies by key point type (Figure 1G). Key points that tend to be occluded in a top-down 

view such as fore paws have confidence distributions shifted down compared to other key 

points. We find that key points that are not visually salient, such as the spine center, have 

lower confidence since they are more difficult to locate precisely. Finally, we also calculated 

an instantaneous angular velocity, which allows us to determine the turning direction of each 

stride (Figure 1F). The angular velocity is calculated by taking the first derivative of the 

angle formed by the line that connects the base of the mouse’s tail to the base of its neck. 

In summary, this approach allows us to identify individual high-quality strides of a mouse in 

the open field.

To validate that our gait quantitation is functioning properly, we analyzed data from a 

commonly used inbred strain, C57BL/6NJ. We calculated percentage of stance and swing 

from 15,667 strides of 31 animals using ~1 h of open field video per mouse. We analyzed 

data from hind paws since these showed the highest amplitude oscillations during stance 

and swing (Figures 1D and 1E). We stratified the data into 9 angular velocity and 8 stride 

speed bins based on the tail base point (Figures 1H and 1I, respectively). As expected, we 

find an increase in stance percentage over a stride of the left hind paw when the animal 

turns left. Reciprocally, when the animal turns right, the stance percentage of the right hind 

paw increases (Figure 1H). We then analyzed strides in the central angular velocity bin 

(−20° to 20°/s) to determine whether stance percentage during a stride cycle decreases as 

the speed of the stride increases. We find that the stance time decreases as the stride speed 

increases (Figure 1I). We generated the same plots for five other mouse strains and see 

similar results for all five (Figure S2A). We calculated a duty factor for the hind paws to 

quantitate this relationship with stride speed (Figure 1J). We conclude that our methods are 
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able to quantitatively and accurately extract strides from these open field videos from a 

top-down perspective.

After the stride intervals have been determined, we use frame poses in conjunction with 

stance and swing phase intervals to derive several stride metrics as defined in Table 1. We 

are able to extract the most relevant spatiotemporal metrics from the hind paws, which serve 

as the primary data source for our statistical analyses (Lakes and Allen, 2016).

Posture estimation during gait cycle

Our top-down videos allow us to determine the relative position of the spine with six key 

points (nose, neck base, spine center, tail base, tail middle, and tail tip). With these, we 

extracted the pose during a stride cycle, similar to previous work, which carried this out with 

nose and tail pose only (Machado et al., 2015). We used three points (nose, base of tail, and 

tip of tail) to capture the lateral movement during a stride cycle (Figures 2A–2C; Video S2). 

These measures are circular, with opposite phases of the nose and the tip of tail. For display, 

we use C57BL/6J and NOR/LtJ (Video S3), which have different tip-of-tail phases during 

a stride cycle. We are able to extract these phase plots for each stride (Figures 2D and 2E; 

Video S4). Since we have captured several hours of video across each strain, we are able to 

extract thousands of strides, enabling high levels of sensitivity. We can combine these at one 

stride speed and angular velocity bin at which we constrain the speed range from 20 to 25 

cm/s and angular velocity from −20° to 20°/s to determine a consensus stride phase plot for 

each animal and strain (Figures 2F and 2G). Finally, we compared these phase plots between 

several strains and find striking diversity among posture during the gait cycle (Figures 2H 

and 2I). The diversity in posture across mouse strains is evident and implies high heritability 

of this phenotype.

Several of our metrics relate to the cyclic lateral displacement we observe in pose key 

points (Figure 2). Our measures of lateral displacement are defined as an orthogonal offset 

from the relevant stride displacement vector. We define the displacement vector as the 

line connecting the mouse’s center of spine on the first frame of a stride to the mouse’s 

center of spine on the last frame of stride. We calculate this offset at each frame of a 

stride and then perform a cubic interpolation to generate a smooth displacement curve. 

The phase offset of displacement is defined as the percent stride location where maximum 

displacement occurs on this smoothed curve. As an example, if we observe a value of 90 

for phase offset, then it indicates that the peak lateral displacement occurs at the point at 

which a stride cycle is 90% complete. The lateral displacement metric assigned to stride 

is the difference between maximum displacement value and minimum displacement value 

observed during a stride (Figure 2A). This analysis is sensitive and allows us to detect 

subtle, but highly significant differences in overall posture during a stride (Videos S3 and 

S4). We used the previous classical spatiotemporal measures based on Hildebrand’s methods 

with the combined posture metrics for our analysis. Because of the cyclic nature of phase 

offset metrics, care was taken to apply circular statistics to these metrics in our analysis. The 

other measures are analyzed using linear methods.

Next, we determined whether stride metrics changed depending on the location of the 

animal. For instance, animals displaying thigmotaxis are considered to be more anxious and 

Sheppard et al. Page 6

Cell Rep. Author manuscript; available in PMC 2022 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in a lower state of arousal than those that are in the center (Crawley, 2007). To determine 

whether these differing emotional states affect gait and posture metrics, we analyzed the 

strides based on the location at which they occur. We partitioned each stride into center or 

periphery. To carry this out, we trained a new neural network to detect corners of our open 

field. We defined the periphery as the outermost 10% of the matrix (Figure S7A, blueversus 

purple). We only analyzed strides in 20–25 and 25–30 cm/s speed bins with angular velocity 

in (−20,20)°/s. Both groups contained an approximately equal number of strides for both 

strains (Figure S7B, red versus blue). Analysis of the gait and posture metrics showed 

no difference between the center and periphery (Figures S7C and S7D). Surprisingly, 

this analysis indicates that these measures do not change in response to location, and by 

extension, emotional state of the animal.

Statistical analysis of gait measures on three mutant strains

We phenotyped three mouse models that have previously been shown to have gait defects 

and are preclinical models of human diseases: Rett’s syndrome, amyotrophic lateral 

sclerosis (ALS, or Lou Gehrig’s disease), and Down syndrome. The three models, Mecp2 
knockout, SOD1 G93A transgene, and Ts65Dn Trisomic, respectively, were tested with 

appropriate controls at two ages in a 1-h open field assay (see STAR Methods). Gait metrics 

are highly correlated with animal size and stride speed (Batka et al., 2014; Bellardita and 

Kiehn, 2015; Machado et al., 2015, 2020; Hildebrand, 1989) (Figures 1I and J). However, 

in many cases changes in stride speed are a defining feature of gait change due to genetic 

or pharmacological perturbation. To compare our results with previously published data that 

do not take animal size and sometimes stride speed into account, we analyzed our data with 

three models that take only age and body length (M1), age and stride speed (M2), and age, 

stride speed, and body length (M3) as covariates (see STAR Methods). Since sex of the 

animal and its body length are highly collinear, we do not include sex as a term in the final 

model (measured using ANOVA and denoted by η, is strong for both SOD1 [η = 0.81] 

and Ts65Dn [η = 0.16 overall, η = 0.89 for controls, η = 0.61 for mutants]). We model 

the posture-based circular phase variables (Table 1) as a function of linear variables using a 

circular-linear regression model (Fisher and Lee, 1992) (see STAR Methods). The results are 

displayed in Figures 3, 4, S3, and S4, and exact statistics are reported in Figure S11B.

Characterization of gait in a Rett’s syndrome model—Rett’s syndrome, an 

inherited neurodevelopmental disorder, is caused by mutations in the X-linked MECP2 gene 

(Amir et al., 1999). We tested a commonly studied deletion of Mecp2 that recapitulates 

many of the features of Rett’s syndrome, including reduced movement, abnormal gait, limb 

clasping, low birth weight, and lethality (Guy et al., 2001). We tested hemizygous males (n 

= 8), heterozygous females (n = 8), and littermate controls (n = 8 of each sex) (see STAR 

Methods). Null males are normal at birth and have an expected lifespan of ~50–60 days. 

They start to show age-dependent phenotypes by 3–8 weeks and lethality by 10 weeks. 

Heterozygous females have mild symptoms at a much older age (Guy et al., 2001). We 

tested male mice twice at 43 and 56 days and females at 43 and 86 days.

Previous gait studies of this knockout did not take animal size, and in some cases, changes 

in stride speed, into account. These studies have shown changes in stride length and stance 
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width in an age-dependent manner in hemizygous males (Kerr et al., 2010; Santos et al., 

2010; Robinson et al., 2012). Recent analysis showed increased step width, reduced stride 

length, changes in stride time, step angle, and overlap distance (Gadalla et al., 2014). Mecp2 
hemizygous males show 13% reduced body (Figures S11A and S4C) (Guy et al., 2001) and 

progressive changes in movement speed that should be taken into account when modeling 

gait parameters. We limit our analysis to stride speeds between 20 and 30 cm/s, which 

allows us to reduce the variation introduced by differences in speed and compare a model 

that includes body length instead of stride speed as a covariate (M1, Figure 3A) and one in 

which both body length and stride speed are included (M3, Figure 3B). We placed the results 

from M2 into the supplemental information for comparison with previously published data 

(Figure S4), and all of the statistics (M1, M2, M3) are reported in Figure S11B. Model M3 

that includes both stride speed and body length showed a significant decrease in step width 

and suggestive difference in stride length, as well as robust differences in posture metrics 

(tail tip amplitude, phase of tail tip, and nose) (Figure 3B). We also note a decrease in total 

distance traveled in the open field, stride speed, stride length, and step width in the mutants 

after adjusting for body length (M1) (Figures 3C and 3D). Even though we limit the analysis 

to one angular and speed bin, we see differences in the distribution of stride speed (Figure 

S3B). We observe very few significant differences in Mecp2 heterozygous females that 

are consistent across all three models. All three models consistently find tail tip amplitude 

to be significantly higher, suggesting more lateral movement in the females (Figures 3A, 

3B, and S3). In summary, these results demonstrate that we are able to accurately detect 

previously described differences in Mecp2. In addition, our posture metrics are able to detect 

differences that have not been previously described. All three models consistently find tail 

tip amplitude to be significantly higher suggesting more lateral movement in the females 

(Figures 3A, 3B, and S3A).

Characterization of gait in an ALS model—Mice carrying the SOD1-G93A transgene 

are a preclinical model of ALS with progressive loss of motor neurons (Gurney et al., 1994; 

Rosen et al., 1993). The SOD1-G93A model has been shown to exhibit changes in gait 

phenotypes, particularly of hindlimbs (Wooley et al., 2005; Amende et al., 2005; Preisig et 

al., 2016; Tesla et al., 2012; Mead et al., 2011; Vergouts et al., 2015; Mancuso et al., 2011). 

The most salient phenotypes are an increase in stance time (duty factor) and decreased 

stride length in an age-dependent manner. However, several other studies have observed 

opposite results (Wooley et al., 2005; Amende et al., 2005; Mead et al., 2011; Vergouts 

et al., 2015), and some have not seen significant gait effects (Guillot et al., 2008). These 

studies did not adjust for body size difference or in some cases for stride speed. We tested 

SOD1-G93A transgenes and appropriate controls at 64 and 100 days, during time of disease 

onset (Wooley et al., 2005; Preisig et al., 2016; Vergouts et al., 2015; Mancuso et al., 2011; 

Knippenberg et al., 2010). We do not see significant differences in body length or weight 

(Figures S3C and S11), but changes are seen in stride speed (Figure S3B).

Using model M3, we find small changes in the phase of tail tip and nose (Figure 3B). 

Otherwise, we see significant changes in M1 in stride speed, limb duty factor, and stride 

length (Figures 3A and 3D). These results argue that the major effect of the SOD1 transgene 

is on stride speed, which leads to changes in stride time and duty factor. Our results are 
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congruent with reports that gait changes may not be the most sensitive preclinical phenotype 

in this ALS model, and other phenotypes such as visible clinical signs and motor learning 

tasks such as rotarod are more sensitive measures (Guillot et al., 2008; Mead et al., 2011). 

Our results validate that our statistical model is able to detect known gait defects in this 

model and may help explain some of the discordant results in the literature.

Characterization of gait in a Down syndrome model—Down syndrome, caused by 

trisomy of all or part of chromosome 21, has complex neurological and neurosensorial 

phenotypes (Haslam, 1995). Although there are a spectrum of phenotypes such as 

intellectual disability, seizures, strabismus, nystagmus, and hypoacusis, the more noticeable 

phenotypes are developmental delays in fine motor skills (Shumway-Cook and Woollacott, 

1985; Morris et al., 1982). These are often described as clumsiness or uncoordinated 

movements (Vimercati et al., 2015; Latash, 2000). One of the best studied models, Ts65Dn, 

trisomic for a region of mouse chromosome 16 that is syntenic to human chromosome 21, 

recapitulates many of the features of Down syndrome (Reeves, 1995; Herault et al., 2017). 

Ts65Dn mice have been studied for gait phenotypes using traditional inkblot footprint 

analysis or treadmill methods (Hampton and Amende, 2009; Costa et al., 1999; Faizi et 

al., 2011). The inkblot analysis showed mice with shorter and more “erratic and “irregular 

gaits, similar to motor coordination deficits seen in human patients (Costa et al., 1999). 

Treadmill-based analysis revealed further changes in stride length, frequency, some kinetic 

parameters, and footprint size (Hampton et al., 2004; Faizi et al., 2011). These previous 

analyses have not studied the posture of these mice.

We analyzed Ts65Dn mice along with control mice at ~10 and 14 weeks (see STAR 

Methods), and all three linear mixed models (M1–M3) found consistent changes. The 

Ts65Dn mice are not hyperactive in the open field (Figure 3C), although they have increased 

stride speed (Figures 3A and 3C). This indicates that the Ts65Dn mice take quicker steps 

but travel the same distance as controls. After adjusting stride speed and animal size, step 

width was increased and step and stride lengths were significantly reduced (Figure 3B). In 

particular, posture phenotypes were highly affected in the Ts65Dn mice. The amplitude of 

tail base and tip and the phase of tail base, tip, and nose were significantly decreased (Figure 

3B). We confirmed this with a phase plot of nose and tail tip (Figure 3E). Surprisingly, we 

found that there were large differences in phase. The tail tip phase peak is near 30% of the 

stride cycle in controls and close to 60% in mutants at multiple stride speeds (Figure 3E). 

Similar changes are seen in the phase plot for the nose. These results confirm previously 

reported differences in traditional gait measures, and highlight the utility of our open field 

posture measures in broadening the assayable phenotypic features in models of human 

disease. The most salient feature of the Ts65Dn gait is the alteration of posture, which 

previously was reported as a qualitative trait using inkblot analysis (Costa et al., 1999) and is 

now quantifiable using our methods.

Characterization of ASD-related mutants

To further validate our approach, we investigated gait in four ASD mouse models, in 

addition to Mecp2. In humans, gait and posture defects are often seen in ASD and 

sometimes gait and motor defects precede classical deficiencies in verbal and social 
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communication and stereotyped behaviors (Licari et al., 2020; Green et al., 2009). Recent 

studies indicate that motor changes are often undiagnosed in ASD cases (Hughes, 2011). 

It is unclear whether these differences have genetic etiologies or are secondary to the lack 

of social interactions that may help children develop learned motor coordination (Zeliadt, 

2017). In mouse models of ASD, gait defects have been poorly characterized, and thus we 

sought to determine whether any gait phenotypes occur in four commonly used ASD genetic 

models, which we characterized with appropriate controls at 10 weeks (see STAR Methods). 

Similar to the three models with known gait defects, we tested these mutants and controls in 

the 1-h open field assay and extracted gait and posture metrics (Table 1). We modeled the 

results using the same approach used for gait mutants (M1 and M3 results are presented in 

Figure 4, M2 results are found in Figure S4).

Cntnap2 is a member of the neurexin gene family, which functions as a cell adhesion 

molecule (Poliak et al., 1999). Mutations in Cntnap2 have been linked to ASD, 

schizophrenia, bipolar disorder, and epilepsy (Toma et al., 2018). Cntnap2 knockout mice 

have previously been shown to have mild gait effects, with increased stride speed leading to 

decreased stride duration (Brunner et al., 2015). These mice are significantly smaller in body 

length and weight than controls (Figures S11 and S4C). We used model M2 to compare 

our results to the previous study and found that Cntnap2 mice show significant differences 

in a majority of the gait measures (Figure S4A). In the open field, Cntnap2 mice were not 

hyperactive (Figure 4C) but showed a markedly increased stride speed (M1, Figures 4A and 

4C). These results argue that the Cntnap2 mice do not travel more, but take quicker steps 

when moving, similar to Ts65Dn mice.

Since Cntnap2 mice are smaller and have faster stride speeds (Figure 4F), we used results 

from M3 to determine whether gait parameters are altered after adjusting for body size and 

stride speed (Figure S11). We found that Cntnap2 mice were significantly different from 

controls for a majority of the traditional gait metrics as well as posture measures (Figures 

4A and 4B). The Cntnap2 mice have reduced limb duty factor, step length, and step width, 

and highly reduced stride length (Figures 4B and 4D). The mice also show altered phase 

of tail tip, base, and nose, as well as significant but small changes in amplitude of tail tip 

base and nose. Another salient feature of gait in Cntnap2 mice is the decrease in interanimal 

variance compared to controls, particularly for limb duty factor (Fligner-Killeen test, p 

<0.01), step length (Fligner-Killeen test, p <0.01), and stride length (Fligner-Killeen test, p 

<0.02) (Figure 4D). This may indicate a more stereotyped gait in these mutants. Combined, 

these results imply that Cntnap2 mice are not hyperactive as measured by total distance 

traveled in the open field, but are hyperactive at the individual stride level. They take 

quicker steps with shorter stride and step length and narrower step width. Next, we asked 

whether there is a lower-dimensional gait space where the Cntnap2 mutants separate from 

the controls. We performed principal-component analysis (PCA) on Z score transformed 

gait metrics and embedded the animals in a two-dimensional (2D) space for visualization. 

We found the first PC that explained 40% of the total variance to separate the mutants and 

controls effectively. We plotted the absolute PC loadings to shed light on contributions of 

gait and posture metrics to PC1. The loadings revealed that most gait metrics contributed to 

PC1. We found that the gait metrics allow us to distinguish Cntnap2 from controls (Figure 

4E). This analysis shows that Cntnap2 mice can be distinguished from controls based on its 
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gait patterns in the open field. We report similar analyses with body length and body length 

+ speed adjusted residuals in Figures S6A and S6B).

Mutations in Shank3, a scaffolding postsynaptic protein, have been found in multiple cases 

of ASD (Durand et al., 2007). Mutations in Fmr1, an RNA-binding protein that functions 

as a translational regulator, are associated with fragile X syndrome, the most commonly 

inherited form of mental illness in humans (Crawford et al., 2001). Fragile X syndrome has 

a broad spectrum of phenotypes that overlaps with ASD features (Belmonte and Bourgeron, 

2006). Del4Aam mice contain a deletion of 0.39 Mb on mouse chromosome 7 that is 

syntenic to human chromosome 16p11.2 (Horev et al., 2011). Copy-number variations 

(CNVs) of human 16p11.2 have been associated with ASD features, including intellectual 

disability, stereotypy, and social and language deficits (Weiss et al., 2008). Fmr1 mutant 

mice travel more in the open field (Figure 4C) and have higher stride speed (Figures 4A 

and 4C). When adjusted for stride speed and body length (M3), these mice undergo slight 

but significant changes in limb duty factor in model M3. Shank3 and Del4Aam are both 

hypoactive in the open field compared to controls. Shank3 mice experience a significant 

decrease in stride speed, whereas Del4Aam mice have faster stride speeds (Figures 4A and 

4C). All three statistical models show a suggestive or significant decrease in step length 

in both strains. Using M3, we find that Shank3 mice have longer step and stride lengths, 

whereas Del4Aam mice have shorter steps and strides. In posture measures, Shank3 mice 

have a decrease in nose phase and Del4Aam has an increase in tail tip phase. These results 

indicate that even though both Shank3 and Del4Aam are hypoactive in the open field (Figure 

4C), Shank3 takes slower and longer strides and steps, whereas Del4Aam takes faster strides 

with shorter steps and strides (Figure 4F). Both mutants have some defects in posture. We 

find each of the ASD models to have a unique set of gait deficits, with Cntnap2 having the 

strongest phenotypes. All have some change in stride speed, although the directionality of 

change and the variance of the phenotypes differ. These results imply that changes in gait 

and posture are general features of ASD.

Strain survey

After validating that our methods are able to characterize differences in known gait mutants, 

we sought to understand the range of gait and posture phenotypes in the open field in 

standard laboratory mouse strains. We surveyed 44 classical inbred laboratory strains, 7 

wild-derived inbred strains, and 11 F1 hybrid strains (1,898 animals, 1,740 h of video). All 

animals were isogenic, and we surveyed both males and females in a 1-h open field assay 

(see STAR Methods) (Geuther et al., 2019). We then extracted gait metrics from each video 

and performed an exploratory analysis of the data on a per-animal level (Figures 5A and 

S5). We analyzed stride data when animals were traveling at a moderate stride speed (20–30 

cm/s) and in a straight direction (angular velocity between −20° and +20°/s). We could carry 

out such a selective analysis because of the large amount of data we were able to collect and 

process in freely moving mice. Since these mice vary considerably in their size (Geuther et 

al., 2019), we plotted residuals from M1 that adjust for body size (Figures 5A and S5).

We sought to determine whether we could cluster strains based on their open field gait 

and posture phenotypes. We took a model-free approach and applied the k-means algorithm 
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to cluster the strains. We did not include the circular features in our analyses, as the 

k-means algorithm requires features that lie in a Euclidean space. We fit a linear model 

to each linear gait feature with body length and stride speed as covariates and extracted 

the model residuals. The Z score-transformed residuals served as the input features for 

our analysis (Figure 5B). We initialized the k-means algorithm several times, with random 

points from the data as means. We picked the initialization that gave the smallest total 

within-cluster sum of squares. We projected the selected k-means output onto the 2D PC 

subspace to visualize the clustering structure (Figures 5C–5E). We found three clusters 

of strains that can be distinguished based on their open field gait behaviors. The number 

of clusters was chosen based on the gap statistic (Figure S6D). Cluster 1 consisted of 

primarily classical strains such as A/J, C3H/HeJ, and 129S1/SvImJ; cluster 3 consisted of 

several classical strains and a large number of wild-derived strains such as MOLF/EiJ and 

CAST/EiJ. Cluster 2 mainly consisted of C57 and related strains, including the reference 

C57BL/6J. Next, we visualized the clustering structure in a non-linear embedded space 

using Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) 

with two different initializations (Figure S6E). The UMAP dimensions preserved the cluster 

structure discovered using the k-means algorithm. We further explored the three k-means 

clusters. PC loading analysis revealed that most of PC1 is highly correlated with posture 

measures, while PC2 is correlated with open field distance and traditional gait measures 

(Figure 5C, right). We constructed a consensus stride phase plot of the nose and tail tip 

for each cluster. Cluster 3 has much higher amplitude, while clusters 1 and 2 have similar 

amplitude but shifted phase offset (Figure 5D). An examination of the linear gait metrics 

reveals individual metrics that distinguish the clusters (Figure 5E). For example, cluster 2 

has longer stride and step lengths, cluster 3 has higher temporal symmetry, and cluster 2 has 

low lateral displacement of nose, base, and tip tail. An overall analysis of individual metrics 

reveals a significant difference in 9 of 10 measures. For comparison, we plotted the output 

of the k-means analysis of body length-adjusted gait features (Figure S6C). We found strain 

SEA/GnJ changed cluster membership from cluster 2 to cluster 1 and strains 129X1/SvJ, 

DBA/2J, LP/J, PWD/PhJ, PWK/PhJ, SWR/J, and WSB/EiJ changed from cluster 1 to cluster 

3. This analysis reveals high levels of heritable variation in gait and posture in the laboratory 

mouse. A combined analysis using multidimensional clustering of these metrics finds three 

subtypes of gait in the laboratory mouse. Our results also show that the reference mouse 

strain, C57BL/6J, is distinct from other common mouse strains and wild-derived strains.

We further explored cluster 2, which contains mostly strains from the C57 family. We 

asked whether our movement phenotypes could distinguish among the C57 family. We used 

two approaches: a supervised dimension-reduction approach and a classification approach. 

For the former, we used linear discriminant analysis (LDA) (Machado et al., 2020; Rao, 

1948) to quantitatively distinguish between strains C57BL/6J, C57BL/6NJ, C57BLKS/J, 

C57L/J, C57BR/cdJ, C57BL/10SnJ, and C58/J. C57BL/6J and C57BL/6NJ are considered 

substrains, while the rest are independent, yet closely related strains (Morse, 2012). For 

the second approach, we used a multi-class logistic regression (“one versus rest”) model 

to predict the strain membership for each animal from its gait metrics. We adjusted the 

gait metrics for both body length (Figures S8A and S8B) and body length + stride speed 

(Figures S8C and S8D) in our analyses to account for their effect on gait metrics. We 
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found that LDA separated strains when we embedded their adjusted gait metrics in a lower-

dimensional 2D space using PCs (Figures S8A and S8C). We plotted absolute PC loadings 

to understand the gait and posture metrics contributions and found that LD1 consists mainly 

of base tail lateral displacement and LD2 consists of several gait and posture metrics 

(Figure S8). In the second approach, we summarized the sensitivity of gait analysis for the 

multi-class classifier to distinguish between strains using a confusion matrix, which shows 

the proportion of correctly classified and misclassified animals in each strain (Figures S8B 

and S8D). Indeed, these combined data indicate that animal movement alone can accurately 

distinguish genetically similar strains and even substrains.

GWAS

The strain survey demonstrated that the gait and posture features we measure are highly 

variable, and thus we wanted to understand the heritable components and the genetic 

architecture of mouse gait in the open field. In human GWAS, both mean and variance 

of gait traits are highly heritable (Adams et al., 2016). We separated the strides of each 

animal into four different bins according to the speed at which it was traveling (10–15, 

15–20, 20–25, and 25–30 cm/s) and calculated the mean and variance of each trait for each 

animal to conduct a GWAS to identify quantitative trait loci (QTL) in the mouse genome. 

We used GEMMA (Zhou and Stephens, 2012) to conduct a GWAS using a linear mixed 

model. To distinguish between body length-dependent and -independent QTL, we used two 

models, one taking into account sex and body length as fixed effects and another taking 

only sex as a fixed effect for comparison. Both models used population structure as a 

random effect. Since linear mixed models do not handle circular values, we excluded phase 

gait data from our analysis. The heritability was estimated by determining the proportion 

of variance of a phenotype that is explained (PVE) by the typed genotypes (Figure 6A, 

left panel). Heritability of gait measures showed a broad range, and the majority of the 

phenotypes are moderately to highly heritable. The mean phenotypes with lowest heritability 

are angular velocity and temporal symmetry, indicating that variance in the symmetrical 

nature of gait or turning behaviors are not due to genetic variance in the laboratory mouse. 

In contrast, we find that measures of posture (amplitude measures) and traditional gait 

measures are moderately to highly heritable. Variance of phenotypes showed moderate 

heritability, even for traits with low heritability of mean traits (Figure 6A, right panel). For 

instance, mean angular velocity phenotypes have low heritability (PVE <0.1), whereas the 

variance angular velocity phenotypes have moderate heritability (PVE between 0.2 and 0.4). 

These heritability results indicated that the gait and posture traits are appropriate for GWAS 

of mean and variance traits. When body length was not included in the model, we observed 

changes in heritability with gait phenotypes that are dependent on animal size (e.g. stride 

length, step length) (Figure S9). We proceeded with GWAS and excluded traits with low 

heritability (PVE <0.25).

For the significance threshold, we calculated an empirical p value correction for the 

association of an SNP with a phenotype by shuffling the values (total distance traveled 

in the open field) between the individuals 1,000 times. In each permutation, we extracted 

the lowest p value to find the threshold that represents a corrected p value of 0.05 (1.9 × 

10−5). We took the minimal p value over all mean phenotypes, variance phenotypes, and 
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both classes combined for each SNP to generate combined Manhattan plots (Figures 6B–6D 

for the model with body length and Figures S9B–S9D for the model without it). Each SNP is 

colored according to the phenotype associated to the SNP with the lowest p value.

We found 157 QTL for mean traits and 117 QTL for variance traits (Figures 6B and 6C; 

Table S1). The phenotype with the most associated loci was tail base amplitude (10–15 

cm), with 25 loci. Overall, when considering all of the phenotypes together, we found 

254 significant genomic regions associated with at least 1 phenotype (Table S1), indicating 

only 20 QTL were identified for both a mean phenotype and a variance phenotype. Most 

phenotypes had limited to no overlap between QTL associated with the mean of the feature 

and its variance. These data argue that the genetic architecture of mean and variance traits 

in the mouse are largely independent. We compared GWAS models with and without body 

length as a fixed effect and find 296 QTL that are dependent on animal length. We find 194 

and 102 QTL in models without and with body length in model, respectively. We detected 

152 QTL that are common in both models (Figure S10A; Table S1). This comparison 

allows us to assign specific QTL to animal anatomy and sets a framework for detecting 

feature-dependent genetics.

We extracted the genes residing in the identified QTL and tested for enriched Gene 

Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, or 

Mammalian Phenotype (MP) Ontology associated with them using the software INRICH 

(Lee et al., 2012). Among the most enriched terms are the GO term “positive regulation 

of synaptic transmission, glutamatergic (BP)” (GO: 0051968) with two QTL for open field 

variance traits containing genes associated with this term out of 31 genes in the genome, and 

“proteolysis involved in cellular protein catabolic process (BP)” (GO: 0051603) enriched 

in the QTL for pose variance (Figure S10B). These results begin to outline the genetic 

landscape of mouse gait and posture in the open field.

DISCUSSION

Gait and posture are important indicators of health, and are perturbed in many neurological, 

neuromuscular, and neuropsychiatric diseases. The goal of this project was to develop a 

system that performs pose estimation on mice to extract key gait and posture metrics in an 

open field from the top-down view. We present a solution that allows researchers to adapt a 

traditional top-down video imaging system used for open field analysis to extract gait and 

posture metrics. Our approach has some clear advantages as well as limitations. We are able 

to process a large amount of data with low effort and cost since the only data that needs to 

be captured is top-down grayscale video of a mouse in an open field, and all-pose estimation 

and gait metric extraction are fully automated after that. Top-down videos have routinely 

been used in behavioral neurogenetics, and this method could be applied to archival video 

data. We analyzed gait in a strain survey dataset that we partially analyzed for tracking 

and grooming behaviors (Geuther et al., 2019, 2021). Our method allows the animal to 

move of its own volition (unforced behavior) in a familiar environment (Jacobs et al., 

2014). One limitation of our approach is that we cannot measure kinetic properties of gait 

because we are limiting ourselves to video (Lakes and Allen, 2016). We also limit ourselves 

to a 2D representation of pose because of our monocular recording configuration. A 3D 
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representation of pose would allow for the extraction of height metrics from all key points 

and would likely provide richer gait phenotypes (Wiltschko et al., 2015). The decision to 

use top-down video also means that forepaw key points are often occluded by the mouse’s 

body. The pose estimation network is robust to some amount of occlusion, as is the case with 

the hind paws, but the forepaws, which are almost always occluded during locomotion, have 

pose estimates that are too inaccurate and were excluded from our analysis. Regardless, in 

all genetic models that we tested, hind paw data are sufficient to detect robust differences 

in gait and body posture. In addition, we analyze videos at 30 Hz (frames per second) 

which is standard for video streams. Certain behaviors that occur at high speed such as 

escape or gallop may be difficult to determine. Kinematic approaches that view the animal 

from multiple angles and capture data at high frame rates may be more appropriate for 

certain applications (Machado et al., 2015, 2020). Thus, our methods are not a replacement 

for kinematic gait analysis that is carried out by certain specialized labs. These labs need 

higher-resolution approaches with enhanced video and kinetic analysis. Instead, our method 

offers a high-throughput assessment of gait in a commonly used behavior apparatus, the 

open field. We hope that our methods will allow these behavior labs to easily access 

gait and posture for additional biological insight. In addition, the ability to analyze large 

amounts of data in free-moving animals proves to be highly sensitive, even with very strict 

heuristic rules around what we consider to be a stride. Future iterations of our method 

could incorporate data from multiple camera angles and with higher frame rates. Even 

though we share our training data, code, and trained network weights, the implementation 

of our methods requires computational expertise. Future development efforts need to focus 

on turnkey solutions for non-computational labs. This is a problem faced by many of the 

advanced phenotyping methods that have been developed.

Gait and posture are frequently measured in humans as an endophenotype of psychiatric 

illness (Sanders and Gillig, 2010; Licari et al., 2020; Flyckt et al., 1999; Walther and Strik, 

2012). Our results in mice indicate that gait and posture measures are highly heritable and 

perturbed in mutants. Specifically, we test neurodegenerative (Sod1), neurodevelopmental 

(Down syndrome, Mecp2), and ASD models (Cntnap2, Shank3, FMR1, Del4Am) and 

find altered gait features in all of these mutants. Others have also found similar results 

with neurodegenerative models (Machado et al., 2015). Of note are the data for Down 

syndrome. In humans, miscoordination and clumsiness are prominent features of Down 

syndrome. In mouse models, this miscoordination was previously characterized in inkblot 

gait assays as a disorganized hind footprint. Here, our analysis revealed perturbed posture 

differences between control and Tn65Dn mice. Our approach thus enables the quantitation 

of a previously qualitative trait. We also explored the extent to which differences in the 

emotionality of the animal could account for differences in gait parameters characterized by 

its movement in the open field. We split the data for C57BL/6J and C57BL/6NJ into the 

periphery (high anxiety) and center (low anxiety) strides and analyzed all of the gait and 

posture measures separately. To our surprise, we found that gait and stride-based posture 

metrics are identical in center and periphery. This additional analysis, in which we restricted 

the strides to particular speed (20–30 cm/s) and angular velocity (−20° to 20°/s) bins, found 

no differences between periphery and center. It indicated that, in C57BL/6J and C57BL/6NJ, 

gait and posture phenotypes are similar whether or not the animal is anxious. However, the 
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question of independence between emotionality and gait mechanisms may require additional 

research.

Our analysis of a large number of mouse strains for gait and posture finds three distinct 

classes of overall movement. We find that the reference C57BL/6J and related strains belong 

to a distinct cluster separate from other common laboratory and wild-derived strains. We 

further explored the group containing the reference strain and found that the gait metrics are 

sensitive enough to distinguish animals between strains belonging to the C57 family (Figure 

S8). The main difference is seen in the high amplitude of tail and nose movement of the 

C57BL/6J and related strains. This may be important when analyzing gait and posture in 

differing genetic backgrounds. The GWAS revealed 254 QTL for gait and posture in the 

open field for both mean and variance phenotypes. We found that the mean and variance 

of traits are regulated by distinct genetic loci. We found that most variance phenotypes 

show moderate heritability, even for mean traits with low heritability. Human GWAS have 

been conducted for gait and posture, albeit with underpowered samples, which has led 

to good estimates of heritability, but only a few significantly associated loci (Adams et 

al., 2016). Similar to rodents, in humans, the variability of traits shows high heritability 

(Adams et al., 2016). In extended GWAS analysis, we find that a large number of QTL 

are dependent on body size, emphasizing the need to include this as a covariate in any gait 

and posture analysis. Enrichment analysis showed a loose set of GO terminologies that are 

enriched, indicating a wide array of biological functions that regulates gait and posture. 

Altered gait and posture could result from QTLs that regulate neuronal or non-neuronal 

function (e.g., morphometrics). This is challenging to tease apart because specific genes 

can be expressed broadly and have varying functions during development. One could take 

a statistical approach to this problem by modeling morphometric features as covariates in 

GWAS linear mixed models (LMMs). For instance, if the size of the femur is thought to 

alter gait and posture, modeling its size as a parameter in the LMMs could reveal femur 

length-specific QTLs. Alternatively, single-gene studies using tissue or cell-type-specific 

knockouts may elucidate the functional roles of specific pathways to address this question. 

Our results in the mouse argue that a well-powered study in humans may identify hundreds 

of genetic factors that regulates gait and posture.

Limitations of the study

We are unable to precisely detect forepaws and limit our analysis to rear paws only. Certain 

symmetry gait metrics cannot be analyzed. The speed of our video data capture does not 

allow the detection of fast movements and could benefit from higher frame rate video. Video 

data do not permit the detection of kinetic events. We also limit our analysis to 2D images, 

and events that require data in the z direction are challenging.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Vivek Kumar (vivek.kumar@jax.org).
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Materials availability—This study did not generate new unique reagents.

Data and code availability

• The training and validation data have been deposited within a Zenodo repository 

at https://doi.org/10.5281/zenodo.5708437 and are publicly available as of the 

date of publication.

• All original code has been deposited under the Kumar Lab’s Github page 

(https://github.com/KumarLabJax/, https://doi.org/10.5281/zenodo.5725641) 

within the deep-hrnet-mouse and gaitanalysis repositories using the open source 

MIT License.

• All phenotype data has been deposited in Mouse Phenome database under 

“Kumar4” https://phenome.jax.org/ under “Kumar4”.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All behavioral tests were performed in accordance with approved protocols from The 

Jackson Laboratory Institutional Animal Care and Use Committee guidelines. All animals 

were obtained from JAX repository or bred in a room adjacent to the behavioral testing room 

(key resources table). All behavioral protocols have been previously published (Geuther 

et al., 2019; Kumar et al., 2011). Our open field arena measures 52 cm by 52 cm by 23 

cm. The floor is white PVC plastic and the walls are gray PVC plastic. To aid in cleaning 

maintenance, a white 2.54 cm chamfer was added to all the inner edges. Illumination is 

provided by an LED ring light (Model: F&V R300). The ring light was calibrated to produce 

600 lux of light in each of our 24 arenas. The strain survey data was published before and 

reanalyzed for gait behavior (Geuther et al., 2019, 2021). We excluded animals that had too 

few strides which disproportionately affected low activity strains (key resources table). All 

gait mutants and ASD models were generated in JAX repository and genotyped prior to 

shipment to Kumar Lab for testing. Animals were acclimated for at least a week prior to any 

testing. Prior to open field testing, animals were moved to the behavior room and allowed to 

acclimate for 30–60 minutes. White noise was used for testing to balance the noise between 

holding and testing rooms. All animals were between 10 and 20 weeks old. The following 

sexes were used for each strain: 129P3/J (8M, 15F), 129S1/SvlmJ (13M, 4F), 129X1/SvJ 

(8M, 7F), A/J (4M, 2F), AKR/J (9M, 8F), B6129PF1/J (10M, 20F), B6129SF1/J (15M, 9F), 

B6AF1/J (17M, 18F), B6C3F1/J (12M, 20F), B6CBAF1/J (9M, 9F), B6D2F1/J (12M, 10F), 

B6SJLF1/J (5M, 23F), BALB/cByJ (11M, 7F), BALB/cJ (19M, 2F), BTBR T<+>ltpr3<tf>/J 

(32M, 21F), BUB/BnJ (7M, 8F), C3H/HeJ (11M, 16F), C3H/HeOuJ (6M, 13F), C3HeB/FeJ 

(5M, 5F), C57BL/10SnJ (10M, 9F), C57BL/6J (298M, 196F), C57BL/6NJ (126M, 167F), 

C57BLKS/J (19M, 11F), C57BR/cdJ (3M, 12F), C57L/J (10M, 13F), C58/J (7M, 4F), 

CAF1/J (8M, 6F), CAST/EiJ (10M, 23F), CB6F1/J (18M, 9F), CBA/CaJ (15M, 15F), 

CBA/J (9M, 5F), CByB6F1/J (14M, 4F), CZECHII/EiJ (4M, 7F), DBA/1J (12M, 15F), 

DBA/2J (8M, 9F), FVB/NJ (5M, 8F), I/LnJ (6M, 8F), KK/HiJ (5M, 3F), LG/J (3M, 3F), 

LP/J (15M, 10F), MA/MyJ (7M, 8F), MOLF/EiJ (3M, 6F), MRL/MpJ (4M, 8F), MSM/MsJ 
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(3M, 8F), NOD/ShiLtJ (13M, 12F), NON/ShiLtJ (13M, 14F), NOR/LtJ (7M, 6F), NU/J 

(5M, 5F), NZB/BlNJ (5M, 16F), NZBWF1/J (9M, 8F), NZO/HILtJ (6M, 8F), NZW/LacJ 

(7M, 4F), PL/J (4M, 8F), PWD/PhJ (7M, 5F), PWK/PhJ (5M, 4F), RIIIS/J (3M, 7F), 

SEA/GnJ (4M, 3F), SJL/J (4M, 30F), SM/J (8M, 4F), SWR/J (2M, 10F), TALLYHO/JngJ 

(13M, 9F), WSB/EiJ (8M, 3F).

METHOD DETAILS

Modifications to HRNet—We made some modifications to the HRNet architecture in 

order to make it work well for our experimental configuration. We used the smaller HRNet-

W32 architecture rather than HRNet-W48 because it was shown to provide significant speed 

and memory improvements for only a small reduction in accuracy (Sun et al., 2019). We 

added two 5×5 transpose convolutions to the head of the network to match the heatmap 

output resolution with the resolution of the video input (Figure S1A). Because all of our 

experiments have a single mouse in an open field, we do not need to rely on object detection 

for instancing. We thus eliminated this step from our inference algorithm, which also leads 

to clear runtime performance benefits. Instead of performing pose estimation after object 

detection, we use the full resolution pose keypoint heatmaps to infer the posture of a single 

mouse at every frame. This means that for each 480×480 frame of video we generate 

12 480×480 heatmaps (one heatmap per keypoint). The maximum value in each heatmap 

represents the highest confidence location for each respective point. Thus, after taking the 

argmax of each of the 12 heatmaps we have 12 (x, y) coordinates.

Neural network training—For training our network, we use the same loss function that 

is used in the original HRNet description (Sun et al., 2019). For each keypoint label, we 

generate a 2D gaussian distribution centered on the respective keypoint. We then compare 

the output of the network with our keypoint-centered Gaussian and calculate loss as the 

mean squared difference between our labeled keypoint Gaussian and the heatmap generated 

by our network. We train our network over 600 epochs and perform validation at the end of 

every epoch. The training loss curves (Figure S1) show a fast convergence of the training 

loss without an overfitting of the validation loss. We used transfer learning (Weiss et al., 

2016; Tan et al., 2018) on our network in order to minimize the labeling requirements 

and improve the generality of our model. We started with the imagenet model provided by 

the authors of the HRNet paper (hrnet_w32–36af842e.pth) and froze the weights up to the 

second stage during training. In order to further improve the generality of our network 

we employed several data augmentation techniques during training including: rotation, 

flipping, scaling, brightness, contrast and occlusion. We train our network using the ADAM 

optimization algorithm which is a variant of stochastic gradient descent (Kingma and Ba, 

2014). The learning rate is initially set to 5 × 10−4, then reduced to 5×10−5 at the 400th 
epoch and 5×10−6 at the 500th epoch.

We generated labels that represent a wide diversity of mouse appearances, including 

variation in coat color, body length and obesity to ensure that the resulting network operates 

robustly across these differences. We manually labeled 8,910 frames across these diverse 

strains for training. The resulting network is able to track dozens of mouse strains with 

varying body size, shape and coat color (Video S1) (Geuther et al., 2019). We calculate the 
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accuracy of our neural network and experimental configuration over two datasets: a set of 

1000 images with results for 200 white mice and 200 dark mice broken out (Figure S2B) as 

well as a set of 120 images containing twenty images each from a set of six visually diverse 

mouse strains (Figure S2C). We provide these metrics in pixel and centimeter distance units.

Gait extraction—Here we describe our method of extracting gait structure from pose in 

further detail. The processes of detecting strides begins with first determining intervals of 

time where the mouse is moving at sufficient speed for strides to take place. We will call 

these tracks. To determine track intervals we threshold for base of tail speed greater than or 

equal to 5 cm/sec. Through observation we determined that the base of tail point is highly 

stable and a good surrogate for overall mouse speed.

The next step is to identify individual steps in both the left hind paw and right hind paw. 

Initially these steps are determined for each paw respectively without consideration for the 

other paw. Later in the process we will pair up left and right steps into strides. The process 

for step detection relies on oscillations in speed as can be seen in (Figure 1D). We calculate 

individual paw speed and then apply a peak detection algorithm (Billauer, 2012) to identify 

local maxima in speed. After finding all of the local maxima we use the surrounding local 

minima to define a step interval with a toe-off event followed by a foot strike event on either 

side of the step. We then filter out any steps whose peak speed does not exceed 15 cm/sec or 

the overall animal speed (whichever is greater).

Once we have each set of valid steps from left and right hind paws we need to group pairs 

of steps together to find strides. We use left hind paw steps to delimit strides. Stride intervals 

end when the left hind paw step ends and begin at the frame just after the previous stride. 

There is an additional constraint that stride intervals are not allowed to extend before or after 

the containing track. After we have defined our stride intervals using left hind paw steps we 

need to associate right hind paw steps with the stride. If we find a right hind paw step that 

completes within the given stride interval we then associate that step with the stride. If we 

cannot find a right hind step that meets this condition the stride is discarded.

Now that we have all of our stride definitions with associated steps we apply additional 

filtering to improve the quality and consistency of strides. For our application of statistical 

and genomic analysis of stride metrics we decided to take a fairly aggressive approach 

at removing strides that have potential to degrade quality or introduce inconsistency. All 

strides at the start and end of a track are removed. This is done to improve the consistency 

of gait metrics and avoid introducing variance due to starting and stopping behavior. We 

also discard strides if the keypoint confidence for Nose, Neck Base, Spine Center, Tail 

Base, Hind Paw Left, Hind Paw Right, Tail Middle or Tail Tip (Figure 1G) falls below the 

threshold of 0.3 for any frame in the stride in order to avoid using low quality strides.

Corner detection—In order to perform a comparative analysis of gait metrics between 

center and periphery of the open field arena (Figure S7) we need to know pixel locations 

for each of the four corners. Rather than use fixed values which would have been affected 

by differences in camera placement, we developed a simple corner detector using the same 

neural network architecture that we developed for pose estimation. The only difference in 
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the network structure is the output; the pose estimation network outputs twelve heatmaps 

(one per keypoint) whereas the corner detection network just outputs a single heatmap for 

detecting corner positions. We trained our corner detector using 415 annotated images. We 

tested accuracy on the 27 validation images which use the same 480×480 resolution that 

we use for the video in this paper. The Mean Absolute Error (MAE) averaged over the 108 

corners from these 27 validation images was 1.63 ±0.51 pixels (0.20 ±0.06 cm). In order to 

generate corner positions for each of our videos we choose a frame from seven different time 

points and estimate corner locations at each of these frames. For each corner we then use the 

median X and Y values from these seven measurements as the final value in order to reduce 

the impact of inaccurate locations which can result from occlusion or other image noise.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis—We have multiple repeated measurements that are collected for 

each subject (mouse) and each subject has a different number of strides giving rise to 

imbalanced data. To address this, we used a linear mixed model (LMM) to dissociate 

within-subject variation from genotype-based variation between subjects (Laird and Ware, 

1982; Pinheiro and Bates, 2000). Specifically, in addition to the main effects such as animal 

size, genotype and age, a random effect that captures the intra-subject variation is included. 

Finally, we have multiple repeated measurements at two different ages giving rise to a nested 

hierarchical data structure. The models (M1, M2 M3) follow the standard LMM notation 

with (Genotype, BodyLength, Speed, TestAge) denoting the fixed effects and (MouseID/

TestAge) (test age nested within the animal) denoting the random effect.

M1: Phenotype Genotype+TestAge+BodyLength+(1|MouseID / TestAge)

M2 : Phenotype Genotype+TestAge+Speed+(1|MouselD / TestAge)

M3 : Phenotype  Genotype + TestAge + Speed + BodyLength + ( 1 MouseID / TestAge)

In general, we use M1 to detect changes in stride speed and M3 for changes in gait 

parameters. We include data for M2 in supplement for comparison with previously published 

data (Figures S3 and S4).

Each gait and ASD mutant were analyzed separately. We analyze Mecp2 males and females 

separately. Having fixed a mutant line to analyze, we used dummy variable encoding to 

encode Genotype, a categorical covariate with two levels - Control (0) and Mutant (1), with 

the corresponding littermate WTs (or another control strain) serving as the reference level. 

The numeric covariates, Body length (M1,M2,M3), speed (M2, M3), were normalized using 

the z-score transformation. We did not include Sex as a covariate in the model; we found 

it correlated with body length. As described earlier, we treated all gait metrics as response 

variables except in M2 and M3, where we treated stride speed as a covariate. For the linear 

gait metrics, we considered the following LMM model for repeated measurements:

Sheppard et al. Page 20

Cell Rep. Author manuscript; available in PMC 2022 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



yij = xij⊤β + γi + εij, i = 1, …, n, j = 1, …, ni

γi N 0, σγ2 , εij N 0, σ2

where n is the total number of animals; yij is the jth repeat measurement on the ith animal, 

ni denotes the number of repeat measurements on animal i; xij is a p×1 vector of covariates 

such as body length, stride speed, genotype, age; β is a p× 1 vector of unknown fixed 

population-level effects; γi is a random intercept which describes subject-specific deviation 

from the population mean effect; and εij is the error term that describes the intrasubject 

variation of the ith subject that is assumed to be independent of the random effect. We 

used Type II ANOVA F-test via Satterthwaite’s degrees of freedom method to test the null 

hypothesis of no Genotype-based effect and obtain p-values. We fit our LMM models using 

the lme4 package in R (Bates et al., 2015).

We modeled the circular gait metrics (phase variables) in Table 1 as a function of linear 

variables using a circular-linear regression model. To adjust for linear variables such as body 

length and stride speed, we include them as covariates in the model. Analyzing circular 

data is not straightforward and statistical models developed for linear data do not apply 

to circular data (Jammalamadaka and Sengupta, 2001). The circular response variables are 

assumed to have been drawn from a von-Mises distribution with unknown mean direction μ 

and concentration parameter κ. The mean direction parameter is related to the variables X 
through the equation

yi vonMises μi, κ , μi = μ + g xi⊤γ , i = 1, …, n

where yi is the mean circular metric for animal i, g (u) = 2tan−1 (u) is a link function 

such that for − ∞<u<∞, − π<g(u)<π. The parameters μ, γ1, …, γk and κ are estimated 

via maximum likelihood (Fisher and Lee, 1992). We computed the p-value of no Genotype-

based effect in circular phenotypes using a t-test which is based on asymptotic normality of 

the maximum likelihood estimators of the model parameters. The model is fitted using the 

circular package in R. (Lund et al., 2017)

We used the q-value (FDR adjusted p-value) to adjust for multiple testing across all gait 

metrics and control the false positive discovery rate. We reported LOD scores, defined as 

−log(q-value), in the heatmaps (Figures 3A, 3B, 4A, 4B, S3A, and S4A), and the q-values in 

Figure S11B.

The gait features for each animal were adjusted for body length (resp. body length + stride 

speed) by extracting residuals from a linear model with body length (resp. body length 

and stride speed) covariate/s and the gait metrics as response variables. The residuals 

were then averaged over animals for each strain to form a representative observation 

for the strain. The input to the k-means algorithm consisted of a matrix of 62 z-score 

transformed observations, each corresponding to a strain, on ten gait metrics. We initialized 
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the k-means algorithm several times with random points from the data as means. We picked 

the initialization that gave the smallest total within-cluster sum of squares. We projected the 

selected k-means output onto the 2D PC (principal components) subspace to visualize the 

clustering structure. We performed PCA by applying singular value decomposition (SVD) 

of the input observations matrix. We obtained the contributions of different gait features to 

each PC component using the PC loadings, i.e., the corresponding eigenvectors obtained 

from PCA. The number of clusters was chosen based on the gap statistic (Tibshirani et 

al., 2001). To see the effect of non-linear embedding, we visualized the clustering structure 

in a non-linear embedded space using UMAP (McInnes et al., 2018) with two different 

initializations (SPCA - scaled PCA, Laplace - Laplacian Eigenmap).

GWAS—The R package mousegwas, previously described in Geuther et al. (2021), was 

used to compute genome wide associations. Briefly, the classical mouse strains were used 

(excluding wild-derived strains), ten individuals from each strain and sex combination were 

randomly selected and GEMMA was used with its LMM method. The MDA genotypes 

were obtained from (https://phenome.jax.org/genotypes). Body size and sex were used as 

covariates in the model. The GWAS can be reproduced using the command:

export G=https://raw.githubusercontent.com/TheJacksonLaboratory/mousegwas/ 

master nextflow run TheJacksonLaboratory/mousegwas -r gait \ 

–yaml $G/example/gait_nowild_withBL.yaml \

–shufyaml $G/example/gait_shuffle_withBL.yaml \

–input $G/example/gait_paper_strain_survey_2019_11_12.csv \ 

–outdir gait_output_withBL –clusters 1 \

–addpostp “–colorgroup –meanvariance –set3 –minherit 0.25 \ 

–loddrop 1.5” –addheatmap “–meanvariance -p 0.1”

nextflow run TheJacksonLaboratory/mousegwas -r gait \

–yaml $G/example/gait_nowild_noBL.yaml \

–shufyaml $G/example/gait_shuffle_noBL.yaml \

–input $G/example/gait_paper_strain_survey_2019_11_12.csv \ 

–outdir gait_output_noBL –clusters 1 \

–addpostp “–colorgroup –meanvariance –set3 –minherit 0.25 \ 

–loddrop 1.5” –addheatmap “–meanvariance -p 0.1”

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A method to determine mouse pose in an open field to extract key gait and 

posture metrics

• These methods are genetically validated with known gait mutants

• Mouse models of autism spectrum disorder have gait and posture deficits

• GWAS describes the genetic architecture of gait and posture in 62 mouse 

strains
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Figure 1. Extraction of gait metrics from video pose estimation
(A and B) Spatial and temporal characteristics of gait. (A) We derived three spatial stride 

metrics from hind paw foot-strike positions: step length, step width, and stride length. (B) 

All of the metrics shown in this Hildebrand plot have percent stride time for units. We see 

here the relationship between foot-strike and toe-off events with the stance and swing phases 

of stride. (A) and (B) are adapted from Lakes and Allen, 2016.

(C) A single frame of input video with hind paw tracks plotted 50 frames in the past and 50 

frames in the future. The location of hind foot-strike events is indicated with black circles, 

and paths are shown (left hind paw [blue], right hind paw [orange], and base of tail [green]) 

for two sequences (tracks A and B).
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(D–F) Three plots showing different aspects of the mouse’s movement over the same 

100-frame interval. The centered red vertical line indicates the current frame (displayed in 

C). The top plot shows three lines indicating speed of the left hind paw (blue), the right hind 

paw (orange), and the base of tail (green). The vertical black lines in the plot indicate the 

inferred start frame of each stride.

(G) The distribution of confidence values for each of the 12 key points we estimate.

(H) Aggregate view of Hildebrand plot for hind paws binned according to angular velocity 

(left [L] and right [R]) shows changes in strike duration based on direction of turning.

(I) Similar to (H), except binned by increasing stride speed and a fixed angular velocity 

(−20° to 20°/s).

(J) Limb duty factor changes as a function of stride speed.

Data for (H–J) are derived from 15,667 strides from 31 C57BL/6NJ animals.
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Figure 2. Extraction of cyclic posture metrics during gait cycle
(A and B) We measured lateral displacement of (A) the tail tip and (B) the nose. 

Positive values are to the animal’s left and negative values are to its right. We labeled 

this “normalized displacement” because displacement values are divided by the respective 

animal’s body length. We did this so that differences in amplitude could not simply be 

attributed to animal size. (C) A cartoon of the mouse during a gait cycle. Tail and nose 

points are shown at various positions during one cycle.

(D–G) We could also average displacement across many strides within a cohort to form 

a consensus view such as (D) C57BL/6J versus (E) NOR/LtJ, or we could average many 

strides within individuals: (F) C57BL/6J versus (G) NOR/LtJ.
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(H and I) For tail (H) and nose (I), we note the diversity of lateral displacement between 

a set of strains selected from our strain survey. The translucent bands for these two plots 

represent the 95% confidence interval of the mean for each respective strain.
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Figure 3. Analysis of gait in three mutant strains
(A) We found previously reported differences using M1, which adjusts only for body length, 

test age (Age), genotype, and random effects (RE). The LOD (−log10(qvalue)) scores and 

effect sizes are shown in the left and right vertical blocks, respectively. In the left block, 

the number of “★” and heat represent the strength of evidence against the null hypothesis 

of no genotype-based effect, while + represents a suggestive effect. In the right block, the 

color (red for positive and blue for negative) and area of the circle (area ∝ size of the effect) 

represent the direction and magnitude of the effect size.

(B) Same as (A), except that we used model M3, which adjusts for body length, stride speed 

(speed), genotype, test age (Age), and RE.
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(C) We plotted distance ×104 (cm) across test ages (x axis) and stride speed (cm/s) across 

gait mutants (Sod1, Ts65Dn, Mecp2) to compare mutants with controls. Each dot represents 

a tested animal.

(D) We plotted the most significant gait parameters from (A) for different gait mutants to 

compare mutants with controls across test ages (x axis).

(E) Lateral displacement of nose and tail tip for Ts65Dn strain. The solid lines represent the 

mean displacement of stride, while the translucent bands provide a 95% confidence interval 

for the mean.
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Figure 4. Characterization of gait and posture in mouse genetic models of ASD
(A) We found previously reported differences using M1, which adjusts only for body length. 

The LOD scores and effect sizes are shown in the left and right vertical blocks, respectively. 

In the left block, the number of ★s represents the strength of evidence against the null 

hypothesis of no genotype-based effect, while + represents a suggestive effect. In the right 

block, the color (red for positive and blue for negative) and area of the circle (area ∝ size of 

the effect) represent the direction and magnitude of the effect size.

(B) Same as (A), except that we used model M3, which adjusts for both body length and 

stride speed.
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(C) We plotted distance ×104 (cm) across test ages (x axis), and stride speed (cm/s) across 

ASD mutants (Cntnap2, Fmr1, Shank3, Del4Aam) to compare mutants with controls. Each 

dot represents a tested animal.

(D) We plotted the most significant gait parameters from (B) for different gait mutants to 

compare mutants with controls.

(E) We performed PCA on Z score-transformed gait data for Cntnap2 mutants and their 

controls. We used the first two PCs to plot a 2D representation of the multidimensional gait 

space, which separates controls from the mutants. The dots represent individual animals.

(F) We plotted the stride speed cumulative distributions between mutants and controls across 

ASD mutants.
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Figure 5. Strain survey results
(A) We plotted body-length-adjusted residuals for gait parameter stride length (y axis) across 

62 strains in the strain survey (x axis). We arranged the boxplots in increasing order of 

medians from left to right.

(B) Residuals were obtained from a linear model with body length and speed as covariates/

features for all gait parameters. We transformed the residuals to obtain Z scores and used the 

scores as inputs to the k-means algorithm of the next step. The heatmap shows the Z scores 

(|z – score|>1; thresholding is applied for easier visualization) along with color-coded cluster 

memberships (x axis).

(C) We used a k-means algorithm to determine the cluster memberships. We projected the 

clusters discovered by k-means to a 2D space formed by PC components obtained from the 

Sheppard et al. Page 37

Cell Rep. Author manuscript; available in PMC 2022 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Z scores. See Figure S6 for more information on the choice of the number of clusters and 

the clusters formed when the gait parameters were adjusted for both body length and body 

length + stride speed.

(D) A consensus view of lateral displacement of nose and tail tip across the clusters. The 

solid lines represent the mean displacement of stride, while the translucent bands provide a 

95% confidence interval for the mean.

(E) Post-clustering analysis: We used a linear model (one-way ANOVA) with cluster 

membership as a categorical covariate/feature to compare gait parameters between strains 

across the three clusters. The number of ★s represents the strength of evidence against the 

null hypothesis of no difference in a gait parameter between strains across three clusters. 

In contrast, NS represents not sufficient evidence to claim a difference in a gait parameter 

between strains across 3 clusters.
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Figure 6. GWAS results for gait phenotypes
(A) Heritability estimates for each phenotype mean (left) and variance (right). Heritability is 

calculated as PVE (percent variance explained). Colors indicate posture (yellow), gait (blue), 

and open field (salmon) phenotypes.

(B–D) Manhattan plots of all mean phenotypes (B), variance phenotypes (C), and all of them 

combined (D); colors correspond to the phenotype, with the lowest p value for the SNP.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Mouse: 129P3/J The Jackson Laboratory JAX: 000690

Mouse: 129S1/SvImJ The Jackson Laboratory JAX: 002448

Mouse: 129X1/SvJ The Jackson Laboratory JAX: 000691

Mouse: A/J The Jackson Laboratory JAX: 000646

Mouse: AKR/J The Jackson Laboratory JAX: 000648

Mouse: B6129PF1/J The Jackson Laboratory JAX: 100492

Mouse: B6129SF1/J The Jackson Laboratory JAX: 101043

Mouse: B6AF1/J The Jackson Laboratory JAX: 100002

Mouse: B6C3F1/J The Jackson Laboratory JAX: 100010

Mouse: B6CBAF1/J The Jackson Laboratory JAX: 100011

Mouse: B6D2F1/J The Jackson Laboratory JAX: 100006

Mouse: B6SJLF1/J The Jackson Laboratory JAX: 100012

Mouse: BALB/cByJ The Jackson Laboratory JAX: 001026

Mouse: BALB/cJ The Jackson Laboratory JAX: 000651

Mouse: BTBR T+ Itpr3tf/J The Jackson Laboratory JAX: 002282

Mouse: BUB/BnJ The Jackson Laboratory JAX: 000653

Mouse: C3HeB/FeJ The Jackson Laboratory JAX: 000658

Mouse: C3H/HeJ The Jackson Laboratory JAX: 000659

Mouse: C3H/HeOuJ The Jackson Laboratory JAX: 000635

Mouse: C57BL/10SnJ The Jackson Laboratory JAX: 000666

Mouse: C57BL/6J The Jackson Laboratory JAX: 000664

Mouse: C57BL/6NJ The Jackson Laboratory JAX: 005304

Mouse: C57BLKS/J The Jackson Laboratory JAX: 000662

Mouse: C57BR/cdJ The Jackson Laboratory JAX: 000667

Mouse: C57L/J The Jackson Laboratory JAX: 000668

Mouse: C58/J The Jackson Laboratory JAX: 000669

Mouse: CAF1/J The Jackson Laboratory JAX: 100003

Mouse: CAST/EiJ The Jackson Laboratory JAX: 000928

Mouse: CB6F1/J The Jackson Laboratory JAX: 100007

Mouse: CBA/CaJ The Jackson Laboratory JAX: 000654

Mouse: CBA/J The Jackson Laboratory JAX: 000656

Mouse: CByB6F1/J The Jackson Laboratory JAX: 100009

Mouse: CZECHII/EiJ The Jackson Laboratory JAX: 001144

Mouse: DBA/1J The Jackson Laboratory JAX: 000670

Mouse: DBA/2J The Jackson Laboratory JAX: 000671

Mouse: FVB/NJ The Jackson Laboratory JAX: 001800

Mouse: I/LnJ The Jackson Laboratory JAX: 000674

Mouse: KK/HlJ The Jackson Laboratory JAX: 002106

Mouse: LG/J The Jackson Laboratory JAX: 000675
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: LP/J The Jackson Laboratory JAX: 000676

Mouse: MA/MyJ The Jackson Laboratory JAX: 000677

Mouse: MOLF/EiJ The Jackson Laboratory JAX: 000550

Mouse: MRL/MpJ The Jackson Laboratory JAX: 000486

Mouse: MSM/MsJ The Jackson Laboratory JAX: 003719

Mouse: NOD/ShiLtJ The Jackson Laboratory JAX: 001976

Mouse: NON/ShiLtJ The Jackson Laboratory JAX: 002423

Mouse: NOR/LtJ The Jackson Laboratory JAX: 002050

Mouse: NU/J The Jackson Laboratory JAX: 002019

Mouse: NZB/BlNJ The Jackson Laboratory JAX: 000684

Mouse: NZBWF1/J The Jackson Laboratory JAX: 100008

Mouse: NZO/HlLtJ The Jackson Laboratory JAX: 002105

Mouse: NZW/LacJ The Jackson Laboratory JAX: 001058

Mouse: PL/J The Jackson Laboratory JAX: 000680

Mouse: PWD/PhJ The Jackson Laboratory JAX: 004660

Mouse: PWK/PhJ The Jackson Laboratory JAX: 003715

Mouse: RIIIS/J The Jackson Laboratory JAX: 000683

Mouse: SEA/GnJ The Jackson Laboratory JAX: 000644

Mouse: SJL/J The Jackson Laboratory JAX: 000686

Mouse: SM/J The Jackson Laboratory JAX: 000687

Mouse: SWR/J The Jackson Laboratory JAX: 000689

Mouse: TALLYHO/JngJ The Jackson Laboratory JAX: 005314

Mouse: WSB/EiJ The Jackson Laboratory JAX: 001145

Mouse: B6.129P2(C)-Mecp2tm1.1Bird/J The Jackson Laboratory JAX: 0038901

Mouse: B6.Cg-Tg(SOD1*G93A)1Gur/J The Jackson Laboratory JAX: 0044351

Mouse: B6EiC3Sn.BLiA-Ts(1716)65Dn/DnJ The Jackson Laboratory JAX: 0052521

Mouse: B6EiC3Sn.BLiAF1/J The Jackson Laboratory JAX: 0036471

Mouse: B6.129P2-Fmr1tm1Cgr/J The Jackson Laboratory JAX: 0030251

Mouse: B6.129S-Del(7Slx1b-Sept1)4Aam/J The Jackson Laboratory JAX: 0131281

Mouse: B6.129-Shank3tm2Gfn/J The Jackson Laboratory JAX: 0176881

Mouse: B6.129(Cg)-Cntnap2tm1Pele/J The Jackson Laboratory JAX: 0286351

Software and algorithms

Training, validation data, neural network weights This paper https://doi.org/10.5281/zenodo.5708437

Gait extraction code version of record This paper https://doi.org/10.5281/zenodo.5725641

PyTorch (Paszke, 2019) https://pytorch.org/

R R Core Team https://www.r-project.org/

Deposited data

Raw and analyzed data This paper MPD: Kumar4. Mouse Phenome
Database web resource
(RRID:SCR_003212), The Jackson Laboratory, Bar Harbor, 
Maine USA. https://phenome.jax.org
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