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1. Introduction

Define mobility as the collection of processes through which individuals change their current location. Under such a
general definition, human mobility is multi-modal and happens in colossal volumes. We give here a very brief and partial
review of mobility, focusing on its link with the spread of infectious pathogens of humans. We present a modelling technique,
metapopulations, that can be used when considering such issues. The presentation builds on previous work of the author and
collaborators, in particular Arino (2009). Note that we assume here that the reader is familiar with the basic steps involved in
the study of a model in mathematical epidemiology.
2. Range and duration of mobility

Call place of residencewhere an individual resides. In modern days, this may be for instance where their fiscal residence is
located. In view of the definition above, a mobility event is any activity that takes an individual away from their place of
residence. It is often useful to distinguish between temporarymobility and relocation, which results in a change of the place of
residence. Mobility can be characterized using two main features, duration and range.
2.1. Duration of mobility

The duration of mobility is the length of time an individual spends away from their place of residence during a mobility
event; it varies from minutes to years. A simple arbitrary classification follows. Long-term mobility involves durations longer
than sixmonths and typically concerns relocation (immigration, move) or long term displacement from the place of residence
(refugees). Six months is chosen as a cut point because public health authorities typically require that individuals affiliate
with them if they spend this amount of time in their midst.Medium-term mobility involves events lasting from 1 to 6 months,
typically related to domestic and foreign migrant workers, with individuals often maintaining two places of residence. Short-
term mobility ranges from over 1 day to 1 month and corresponds to travel away from and back to the place of residence for
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work or leisure. Finally, instantaneous mobility involves events lasting no more than one day. These events can be daily
commute but also work-related travel.

2.2. Range of mobility

We call range of mobility the distance away from the place of residence that an individual travels for a mobility event.
Ranges vary from metres (local) to thousands of kilometres (intercontinental). Human mobility has evolved greatly over the
course of human history. Formany years, long rangemobility wasmainly linked to trade. Most humansweremobile only very
locally (within a village or to neighbouring villages). It is only since the beginning of the 20th century that travel for leisure has
become more prevalent and that as a consequence, more and more humans undertake short-duration long-range trips.

2.3. Coexistence of ranges and durations for a given individual

Different durations and ranges of mobilities can occur simultaneously for a given individual. For instance, a migrant
worker can be at the same time undertaking a long-term and long-range mobility event while commuting daily to work from
their temporary place of residence.

2.4. Time to achieve a range

Another important factor in mobility is the time it takes to achieve mobility on a certain range. For instance, long-range
continental and even intercontinental mobility has been going on for centuries. However, as technology evolves, the time it
takes to achieve a certain range decreases.

3. Volume of mobility

Together with the evolution of range, duration and speed, the number of mobility events taking place has increased many
folds over the course of human history, not only because of global population increase but also because the per capita rate at
which individuals undertake mobility has greatly changed. The total number of mobility events occurring nowadays on a
daily basis is enormous. The number of events is also difficult to apprehend. Indeed, while a lot of data is available concerning
the number of mobility events, this data is often incomplete concerning the nature of the events themselves. Take for instance
the traffic data used in Arino and Portet (2015) to parametrize a movement model. While the number of vehicles passing
through counting stations is precise, it is impossible to tease out from this data whether passengers are undertaking local or
long distance trips. Traffic utilization surveys are then useful complements to raw traffic data. The following examples serve to
provide some sense of the number of mobility events.

3.1. Migrations

Migration usually results in a change of the place of residence. Migration has always existed; it is through migration that
earth was populated. The International Organization for Migration (IOM) defines amigrant as a person living in a country that
is not their country of birth and under this definition, estimates that there are more than 200 million migrants around the
world today, with 60% of these migrants living in developed countries. For instance, from 1980 to 2015, there were 7.4 million
new Permanent Residents to Canada, out of an estimated total population in 2015 of 35.8 millions (Government of Canada,
2015). There is also a sizeable migration from rich countries; e.g., the French population registered at a foreign embassy was
1.7 million on December 31st, 2015 (Minist�ere des Affaires �etrang�eres et du D�eveloppement international, 2016). Finally,
refugees constitute an important factor of international migration, particularly relevant in the context of public health as they
represent populations often in precarious health conditions. UNHCR estimates there were 15 million refugees (mid-2015), 1.2
million asylum-seekers (end 2014), 38 million internally displaced persons (end 2014) and 10 million stateless persons.

3.2. Medium-term mobility

In today's globalized world, an important source of mobility is that of migrant workers, who spend extensive periods of
time working in a location that is not their primary place of residence. It is estimated that in China alone, there were 273.95
million migrant workers in 2014 (National Bureau of Statistics of the People's Republic of China, 2015). Agricultural workers
are another source of temporary migrance, often involving temporary work in richer countries. For instance, there are about
45,000 people per year coming to Canada to work in farms (Government of Canada, 2017).

3.3. Short-term and instantaneous mobility

In China, the Chunyun period is a 40 days movement period around Chinese New Year. Estimates are it involved 3.6 billion
people-trips in 2014 (Wang, Liu, Mao, Hu, & Gu, 2014). The yearly pilgrimage to Mecca involves an average 2.5 million people
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(including 1.7 million non-Saudis) (Khan et al., 2010). Instantaneous mobility, such as one's daily commute to work, occurs in
numbers that are difficult to evaluate but can safely be estimated to represent tens to hundreds of billions of people-
kilometres each day.

4. Spatio-temporal spread of pathogens

Let us state a tautology: pathogens of humans follow humans. Indeed, whatever the modalities and characteristics of
mobility, all migrants or travellers carry with them their “health history”, which may include latent or active infections (TB,
H1N1, polio, HIV), immunizations (schedules vary by country), health/nutrition practices or treatment methods. Thus, as the
way humans utilize space evolves, so does the spread of pathogens they carry. In earlier times, human pathogens followed
well-defined human trade routes. For instance, the Black Death followed the Silk Route into Europe (Benedictow, 2004). As
long range mobility becomes more of a mix between trade and leisure and trade routes evolve, the picture has become
increasingly complex. (See, for instance, the animated influenza incidence maps of R�eseau Sentinelles at http://www.
sentiweb.fr)

In modern days, problems in the spatio-temporal spread of pathogens of humans can be seen as articulating along two
main axes. The first concerns the fast spatial spread of an emerging or re-emerging pathogen, the second interactions of
health systems.

4.1. Fast spatial spread e the case of SARS

The severe acute respiratory syndrome (SARS) propagated worldwide in 2002e2003. Although it caused only 8273 cases
in 28 countries, SARS illustrated the capacity formodern transportationmethods to facilitate the rapid and global spread of an
infectious pathogen. SARS also inflamed imaginations because its case fatality ratio was high (it caused 775 deaths, i.e., a CFR
of 9.4%). The spatial extent and temporal organization of that spread is shown in Fig. 1.

4.2. Interactions between health systems e polyomyelitis

Public health systems are typically administered at political geography levels: counties, provinces, states or countries.
However, pathogens ignore borders and thus mobility-induced interconnections between administrative units
have consequences. One striking example is that of poliomyelitis in Nigeria in 2004. Because of a vaccine scare that
started in 2002 (Raufu, 2002), authorities in the northern Nigeria state of Kano interrupted polio vaccination in 2004
(Olusanya, 2004). This occurred in a context where neighbouring countries had polio vaccine coverage that was not ideal;
see Fig. 2a.
Fig. 1. Time in days to first confirmed case of SARS, with time 0 the time at which the first international spreading event took place in Hong Kong. China is
represented differently as the epidemic was ongoing there at the time. The data was compiled from the WHO website and is available as an electronic appendix.

http://www.sentiweb.fr
http://www.sentiweb.fr


Fig. 2. (Left) Estimated percentage of the population having, in 2004, received the third dose of polio vaccine in several African countries (WHO). (Right) Annual
number of polio cases in countries shown left.
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Vaccinations resumed in July the same year (Fleck, 2004), but between the official interruption and the longer lasting
public distrust, the damage was done: cases spiked in Nigeria (Cheng, 2008) but also in close countries such as Cameroon
(Endegue-Zanga et al., 2016). The effect is clearly visible in Fig. 2b.

5. Metapopulation models e general introduction

From the discussion above, formulating mathematical models to help understand the spatio-temporal spread of infectious
diseases is very important. Many different methods are available. We focus here on metapopulation models, but stress that
understanding complex phenomena such as these requires a multi-faceted approach and the interested reader would benefit
greatly from looking into other alternatives. For partial differential equations models, see for instance (Rass& Radcliffe, 2003)
and the references therein. Also, the early paper (Bailey, 1980) is worth reading. Concerning the spread of diseases on net-
works, a standard reference is Newman (2002).

In metapopulation models, space is discrete and consists of individual spatial units called patches. Patches range in spatial
extent from a house or neighbourhood all the way up to countries or even continents. There are several types of meta-
population models. We focus here on models with explicit movement, in which each patch contains a dynamical system
describing the dynamics of the disease in the populations present within the patch and a coupling function describes the
explicit movement of individuals between patches. Other model types, not considered here, assume that there is an implicit
coupling between patches and do not incorporate movement explicitly.

Assume geographical locations are elements of a setP with cardinality jP j (the number of patches). Each patch is a vertex
in a directed graph (digraph). In each patch, there are individuals from a variety of compartments in the sense of Jacquez and
Simon (1993). A compartment could contain for instance individuals susceptible to the disease, another individuals infected
with the disease; there could be compartments for the different species affected by the disease, etc.We denoteC the set of all
compartments that exist in the general system and C p4C those compartments present in patch p2P .

Individuals in a given compartment may move between patches, with mcqp the rate of movement of individuals in
compartment c2C from patch p2P to patch q2Pyfpg. This defines a digraph G c with arcs A c for each compartment
c2C , with an arc from p to q if mcqp >0 and no arc otherwise. Because there are jC j compartments in the overall system
(whether they are present in each patch or not), each pair ðp; qÞ of patches is joined in each direction by at most jC j arrows, so
the general context is that of a multi-digraph.

In turn, each patch p2P is endowed with a dynamical system describing the evolution of numbers or densities of in-
dividuals in the compartments in C p. Usually, all the patches are equipped with the same type of system; this is what we
describe here. Also, we assume here that movement is instantaneous between patches and that individuals do not change
compartments as they move, so that, for instance, an individual leaves their patch of origin and arrives in the destination
patch while susceptible. Some models have assumed that infection can happen during transport, e.g., (Arino, Sun, & Yang,
2016); others have considered the role of travel time, e.g., Liu, Wu and Zhou (2008). Such models are beyond the scope of
this introductory review.

The general form of a metapopulation model is then, cc2C and cp2P ,

x0cp ¼ fcp
�
Xp
�þ X

q2P

mcpqxcq; (1)

where Xp ¼ ðx1p;…; xjC jpÞT2ℝjC j is the distribution of individuals of the different compartments present in the patch and
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mcpp ¼ �
X

q2Pyfpg
mcqp; (2)

is used tomake the notationmore compact. The function fcpðXpÞ indicates that processes are localized to the patchwhere they
take place. This excludes for example the model in Arino and van den Driessche (2003), wherein birth occurs in the patch of
residence but depends on the total resident population of that patch. If it is important to take into account individuals from

the same compartment present in other patches, we define Xc ¼ ðxc1;…; xcjP jÞT2ℝjP j and use fcpðXp;XcÞ. However, to
simplify the discussion, we assume the form in (1) from now on.

The general form (1) can be used to summarize many different types of metapopulation models, not only ones for the
spread of infectious pathogens. (Metapopulations have a rich history in their originating field of Ecology; see, e.g., Hanski and
Gilpin (1997).) To focus on epidemiology, we let U =C and I =C be uninfected and infected compartments, respectively,
with U ∩I ¼ ∅ and U ∪I ¼ C . Let skp and i[p be the number or density of individuals in uninfected and infected com-
partments, respectively, with k2U , [2I and p2P . Then for all k2U , [2I and p2P , (1) can be written

s0kp ¼ fkp
�
Sp; Ip;Np

�þ X
q2P

mkpqskq (3a)

i0[p ¼ g[p
�
Sp; Ip;Np

�þ X
q2P

m[pqi[q; (3b)

where Sp ¼ ðs1p;…; sjU jpÞ, Ip ¼ ði1p;…; ijI jpÞ and Np ¼ P
u2U

sup þ
P

[2I
i[p.

6. Metapopulation models e an example

To illustrate the type of results that can be obtained about metapopulation epidemic models, we consider a jP j-SLIRS
model. To that end, we start with a classic SLIRS (SEIRS) model,

S0 ¼ b� F� dSþ nR (4a)

L0 ¼ F� ðεþ dÞL (4b)
I0 ¼ εL� ðgþ dÞI (4c)
R0 ¼ gI � ðnþ dÞR; (4d)
with the incidence function F taking the form

F ¼ b
SI
Nh

; h2f0;1g: (4)
This model is classic sowe do not discuss it at length here. S, L, I and R are, respectively, the numbers of susceptible, latently
infected (incubating), infectious and immune individuals in the population, with N ¼ Sþ Lþ I þ R the total population. Birth
is into the susceptible compartment (there is no vertical transmission of the disease) at the rate b. Death is per capita in all
compartments. Infection occurs when infecting contacts take place between infectious and susceptible individuals, with b the
disease transmission coefficient and h2f0;1g to indicate mass action when h ¼ 0 or standard incidence when h ¼ 1. Newly
infected individuals incubate in the L compartment for an average 1=ε time units then progress to an active infection in the I
compartment. The active phase lasts an average 1=g time units, after which individuals progress to the immune stage, where
they remain for an average 1=n time units.

To transform (4) into a metapopulation model, all variables and parameters are given an index, p, to indicate which patch
p2P is under consideration. The base SLIRS is then replicated in each patch and movement terms are added. As a conse-
quence, the jP j-SLIRS metapopulation extension of (4) is the following system, considered for all p2P ,

S0p ¼ bp � Fp � dpSp þ npRp þ
X
q2P

mSpqSq (5a)

L0 ¼ Fp �
�
εp þ dp

�
Lp þ

X
mLpqLq (5b)
p

q2P
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I0p ¼ εpLp �
�
gp þ dp

�
Ip þ

X
q2P

mIpqIq (5c)

R0 ¼ gpIp �
�
np þ dp

�
Rp þ

X
mRpqRq; (5d)
p

q2P

with the incidence function Fp taking the form
Fp ¼ bp
SpIp
N
hp
p
; hp2f0;1g: (5)
Note that hp in (5e) needs not be equal in all patches, allowing to consider a system with some patches having standard
incidence and others mass action incidence. Such issues were considered for instance in Arino and Portet (2015) and Fromont,
Pontier and Langlais (2003).

In the notation of Section 5, C ¼ fS; L; I;Rg, U ¼ fS;Rg, I ¼ fL; Ig. System (5) has 4jP j equations. However, it is easier to
study than this high dimensionality typically entails, since it possesses a lot of “structure”: there are jP j linearly coupled
copies of individual units, each comprising 4 equations, the dynamics of which is well understood. In a sense, this is a “good
case” of a large-scale system. We show in the following sections how to exploit this structure.

6.1. Behaviour of the total population

Consider the total population Np ¼ Sp þ Lp þ Ip þ Rp in (5). We have

N0
p ¼ bp � dpNp þ

X
X2fS;L;I;Rg

X
q2P

mXpqXq: (6)

T T T jP j
Writing X2fS; L; I;Rg, let b ¼ ðb1;…; bjP jÞ ;N ¼ ðN1;…;NjP jÞ ;X ¼ ðX1;…;XjP jÞ 2ℝ be vectors and

d ¼ diagðd1;…; djP jÞ, M X be jP j � jP j-matrices, with

M X ¼

0
BBBB@

� P
q2P

mXq1 mX12 mX1jP j

mX21 � P
q2P

mXq2 mX2jP j

mXjP j1 mXjP j2 � P
q2P

mXqjP j

1
CCCCA: (7)
Then (6) can be written as

N0 ¼ b� dNþ
X

X2fS;L;I;Rg
M XX: (8)
It is useful to derive some properties of the movement matrix (7). For a matrix M, define sðMÞ ¼ fl2ℂ;Av ¼ lv; vs0g, the
spectrum of M , tðM Þ ¼ maxf<ðlÞ; l2sðM Þg the spectral absissa of M and rðM Þ ¼ maxfjlj; l2sðMÞg the spectral radius of M .
Furthermore, we use the same notation as Berman and Plemmons (1994) for matrices and vectors:M � 0 ifmij � 0 for all i; j;
M>0 if M � 0 and dði; jÞ such that mij >0; M[0 if mij >0 for all i; j.

Lemma 1. Let M c be a jP j � jP j-movement matrix for compartment c2C . Then the following hold true:

1. �M c is a singular M-matrix.
2. tðM cÞ ¼ 0.
3. tðM cÞ2sðM cÞ.
4. One of the left eigenvectors associated to the eigenvalue tðM sÞ ¼ 0 is the vector 1TjP j ¼ ð1;…;1Þ.
5. If additionally, M c is irreducible, then tðM cÞ ¼ 0 has multiplicity 1, 1TjP j is (to a multiple) the only strongly positive left

eigenvector associated with M c and there is a strongly positive eigenvector v� corresponding to tðM cÞ.
6. Let D>0 be a diagonal matrix. If D[0, then D� M c is a nonsingular M-matrix and ðD� M cÞ�1 >0. If M c is irreducible, then

D� M c is a nonsingular M-matrix and ðD� M cÞ�1[0.

PROOF. Points 1e5 are shown for example in Arino and Portet (2015). To prove 6, first consider the case D[0. Define
d ¼ minp2P fdppg>0. Then �M c � dI� M c � D� M c. From Fiedler (2008, Theorem 5.2.5), dI� M c is an M-matrix. Since
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tðM cÞ ¼ 0, using a “spectrum shift” (Horn & Johnson, 2013, Problem 1.2.P8), all eigenvalues of dI� M c have real parts larger
than d, so d� M c is a nonsingular M-matrix. In turn, Fiedler (2008, Theorem 5.1.1.4) implies that D� M c is a nonsingular M-

matrix and Fiedler (2008, Theorem 5.1.1.11) allows to conclude. Suppose now thatM c is irreducible. Let d ¼ maxp2P fdppg>0.

Then D� M c is irreducibly diagonally dominant with all columns k2P such that dkk ¼ d satisfying the strict diagonal
dominance requirement. As a consequence, Varga (2004, Theorem 1.11) implies that D� M c is nonsingular and inverse
positivity follows from Fiedler (2008), Theorem 5.2.10).

Note also that for each compartment, �M c is a nonsymmetric Laplacian matrix. This implies that additional results are
available about the spectrum ofM c; see, e.g., Agaev and Chebotarev (2005).We characterize the relations betweenmovement
matrices as follows. We say movement is equal for all compartments ifM S ¼ M L ¼ M I ¼ M R ¼: M ; movement is similar for all
compartments if the zero/nonzero patterns in all matrices are the same but not the entries. Finally, movement is dissimilar
across compartments if there are two movement matrices with different zero/nonzero patterns.

Case of movement equal for all compartments. Equation (8) reduces to

N0 ¼ b� dNþ M N; (9)
giving the equilibrium solution N� ¼ ðd� M Þ�1b, which, by 6 in Lemma 1, exists if all death rates are positive or M is irre-
ducible. Assume either of these properties holds. To show that N� attracts all solutions of (9), consider Df , the Jacobian of

f ðNÞ :¼ b� dNþ M N. We have Df ¼ M � d. Since d is nonsingular, we have tðM � dÞ<0, so limt/∞NðtÞ ¼ ðd� M Þ�1b. This
is summarized as follows.

Theorem 2. Suppose that movement is equal for all compartments and that all death rates are positive or the (common)
movement matrix M is irreducible. Then

N� :¼ lim
t/∞

NðtÞ[0:
It is actually quite “difficult” to be in a situation where : if b[0 and d� M is a nonsingular M-matrix, then strong
positivity of N� is guaranteed. Thus, except if d ¼ 0 or b � 0 with some zero entries, N�[0.

Case of unequal movement. When movement is not equal for all compartments, the problem is more complicated and, to
the best of our knowledge, still open in general. To operate within a manageable context, assume movement rates are similar
for all compartments. This situation might arise for instance in the case where infectious individuals are less prone to travel.
Let

M ¼
�

min
X2fS;L;I;Rg

mXpq

�
pq;psq

M ¼
�

max
X2fS;L;I;Rg

mXpq

�
pq;p¼q
and

M ¼
�

max
X2fS;L;I;Rg

mXpq

�
pq;psq

M ¼
�

min
X2fS;L;I;Rg

mXpq

�
pq;p¼q

:

Using these matrices in (8) gives the following inequality:

b� dNþ M N � N0 � b� dNþ M N:

here, M and M are obtained frommovement matrices but are not movement matrices in the sense of Lemma 1; in particular,
their column sums are not all zero. It follows that the upper bound grows unbounded and the lower bound does not guarantee
nonnegativity.

Note that this does not preclude conducting an analysis of the system. Indeed, some authors have considered models with
movement similar for all compartments or even dissimilar across compartments (as might arise if infectious individuals are
not allowed somemovementse as has been the case with HIV positive individuals travelling to some countries, for instance).
However, in this case, results such as Theorem 2 are not readily available and the analysis typically relies on properties of the
system embedded in the patches.

6.2. The disease free equilibrium (DFE)

Assume (5) is at equilibrium with Lp ¼ Ip ¼ 0 for p2P . Then Fp ¼ 0 and for all p2P ,
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0 ¼ bp � dpSp þ npRp þ
X
q2P

mS
pqSq

0 ¼ ��np þ dp
�
Rp þ

X
mR Rq;
q2P
pq

which we must solve for Sp;Rp. Here again, we write the problem in vector form. We have
0 ¼ b� dS� þ nR� þ M SS�

0 ¼ �ðnþ dÞR� þ M RR�;
where S�;R�;b2ℝjP j and d; n ¼ diagðn1;…; njP jÞ;M S;M R are jP j � jP j-matrices. We have
0 ¼ �ðnþ dÞR� þ M RR�⇔
�
M R � n� d

�
R� ¼ 0;

so the solution R� ¼ 0 is unique if M R � n� d is invertible. This is similar to the proof of Theorem 2 and uses Lemma 1. We

thus find that limt/∞RðtÞ ¼ 0 provided that nþ d[0 or M r irreducible. Provided this is true, at the DFE, there holds that

L� ¼ I� ¼ R� ¼ 0 and b� dSþ M SS� ¼ 0, i.e., S� ¼ ðd� M SÞ�1b. To summarize, provided all death rates are positive orM R and
M S irreducible, then the DFE takes the form

ðS�; L�; I�;R�Þ ¼
��

d� M S
��1

b;0;0;0
	
:

� �
Note that S ¼ N at the DFE.

6.3. Computation of R 0 and local stability of the DFE

Use the next generation method (van den Driessche & Watmough, 2002) with infected variables L and I ordered as

X I ¼
n
L1;…; LjP j; I1;…; IjP j

o
:

0 T
Write the dynamics of the subsystem of (5) in the variables X I as X I ¼ F �V , with F ¼ ðF1;…;FjP j;0;…;0Þ and
V having all other flows (with a negative sign). Differentiating F with respect to X I , first note that whenever ksp,

vFp

vLk
¼ vFp

vIk
¼ 0;

since there are no contacts between individuals not located in the same patch. Thus,
DF ¼

0
BB@diag

 
vF1

vL1
;…;

vFjP j
vLjP j

!
diag

 
vF1

vI1
;…;

vFjP j
vIjP j

!

0 0

1
CCA:

�
Suppose that Fp ¼ bpSpIp, i.e., hp ¼ 0. Then vFp=vLp ¼ 0 and vFp=vIp ¼ bpSp. At the DFE, vFp=vIp ¼ bpNp. Suppose that

Fp ¼ bpSpIp=Np, i.e., hp ¼ 1. Then vFp=vLp ¼ �bpSpIp=N2
p and vFp=vIp ¼ bpSp=Np � bpSpIp=Np. Thus, at the DFE, vFp=vLp ¼ 0

and vFp=vIp ¼ bp. Thus,

vFp

vLp




DFE ¼ 0 and

vFp

vIp




DFE ¼ bpðN�Þ1�hp :
As a consequence,

F ¼ DF



DFE ¼

0
BB@0 diag

 
vF1

vI1




DFE;…;

vFjP j
vIjP j




DFE

!

0 0

1
CCA ¼:

�
0 F12
0 0

	
: (10)
On the other hand,
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V ¼ DV



DFE ¼

 
diagp

�
εp þ dp

�� M L 0

�diagp
�
εp
�

diagp
�
gp þ dp

�
� M I

!
;

where the notation diagpðzpÞ ¼ diagðz1;…; zjP jÞ is used for simplicity. Thus, using the formula for the inverse of a 2� 2 block

matrix (Horn & Johnson, 2013), Section 7.3,

V�1 ¼

0
BB@
�
diagp

�
εp þ dp

�� M L
��1

0

~V
�1
21

�
diagp

�
gp þ dp

�
� M I

��1

1
CCA

where
~V
�1
21 ¼

�
diagp

�
εp þ dp

�� M L
��1

diagp
�
εp
��

diagp
�
gp þ dp

�
� M I

��1
: (11)
So we obtain the next generation matrix

FV�1 ¼
�
0 F12
0 0

	 
~V
�1
11 0

~V
�1
21

~V
�1
22

!
¼
 
F12 ~V

�1
21 F12 ~V

�1
22

0 0

!
;

where ~V
�1

is the block ij in V�1. So R ¼ rðF ~V
�1Þ. It is difficult to go further without more information. However, given
ij 0 12 21

parameter values,R 0 is easy to compute numerically. In terms of the local asymptotic stability of the DFE, (van den Driessche
& Watmough, 2002), Theorem 2 gives the following result.

Theorem 3. Define R 0 for the jP j-SLIRS (5) as

R 0 ¼ r
�
F12 ~V

�1
21

�
; (12)
with F12 and ~V
�1
21 defined by (10) and (11), respectively. Then the DFE

ðS�; L�; I�;R�Þ ¼
��

d� M S
��1

b; 0;0; 0
	

is locally asymptotically stable if R 0 <1 and unstable if R 0 >1.
7. Further considerations

Because of space, we have focused on the mathematical properties that are required in order to conduct a basic analysis of
metapopulation epidemic models. Several additional fascinating problems exist which we now briefly present.

7.1. Global stability of the DFE

Several methods are available to consider global stability properties of the DFE in metapopulation models and have been
used successfully in many cases. Note that it has also been shown that metapopulation models can exhibit backward bi-
furcations (Arino, Ducrot, & Zongo, 2012), so proving the global asymptotic stability of the DFE will not always be possible.

7.2. Existence and stability of an endemic equilibrium point (EEP)

The problem of existence and stability of an endemic equilibrium point where the disease is present in all patches is more
complex and cannot yet be attacked in full generality. Some interesting examples are those in Iggidr, Sallet and Tsanou (2012)
and Li and Shuai (2009).

7.3. Inheritance of dynamical properties

Most of the problems mentioned above are solved by exploiting the fact that metapopulations are linearly coupled copies
of constituting units whose behaviour is known. This poses a very interesting problem, the inheritance problem. Consider
model (3) with no movement,
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s0kp ¼ fkp
�
Sp; Ip;Np

�
(13a)

i0[p ¼ g[p
�
Sp; Ip;Np

�
; (13b)

where k2U , [2I and p2P . Think of (13) as representing anymodel for a single population found in the literature.Within a
given patch p, suppose some dynamical properties are known about (13). Which of these properties also hold for the general
systemwithmobility (3)? It is relatively easy to show that such things as existence and boundedness of solutions is preserved.
As shown in this article, the same is true to some extent of existence and local asymptotic stability of the DFE. As we have just
seen, global asymptotic stability is not as easy to settle. Techniques such as the one in Li and Shuai (2010) allow to envision a
general treatment of this issue when a Lyapunov function is known for the isolated model.

7.4. Metapopulation specific behaviour e mixed equilibria

A problem essentially dual to that of inheritance consists in seeking properties that hold for themetapopulation system (3)
but not for uncoupled population level model (13). A prototypical example here is the problem of mixed equilibria, first
considered in Arino and van den Driessche (2003). Consider a metapopulation such as (3) in which, when there is no
movement, i.e., in the case of (13), some patches are at the DFE while others are at an EEP. It is shown in Arino (2009) that for
suchmixed equilibria to persist in the presence of movement, movementmust be dissimilar between uninfected and infected
compartments.

7.5. Deterministic simulations

It is worth noting that numerical simulations of metapopulation models such as (5) are simple to set up and not extremely
onerous on modern computers for systems with a reasonable number of patches. Sample code in R andMatLab is provided as
electronic appendices to the present paper to illustrate this.

7.6. Stochastic simulations

When dealingwith problems related to the fast spatial spread of a pathogen such as SARS (Section 4.1), systems of ordinary
differential equations allow to investigate an average behaviour but do not capture the range of potential outcomes that occur
in an actual “real life” crisis. For this reason, stochastic simulations of metapopulation models have been carried out; see, e.g.,
Arino, Hu, Khan, Kossowsky and Sanz (2011) and Colizza and Vespignani (2008).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.idm.2017.05.001.
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