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Abstract: The aim of the present study was to compare changes in growth, ion accumulation and
tissue water content in relatively salt-tolerant plant taxa—Beta vulgaris subsp. maritima, Beta vulgaris
subsp. vulgaris var. cicla, Cochlearia officinalis, Mentha aquatica and Plantago maritima—as a result of
NaCl and KCl salinity in controlled conditions. Similar growth responses to Na+ and K+ salinity
in a form of chloride salts were found for all model plants, including growth stimulation at low
concentrations, an increase in water content in leaves, and growth inhibition at high salinity for less
salt-resistant taxa. All plant taxa were cultivated in soil except M. aquatica, which was cultivated in
hydroponics. While the morphological responses of B. vulgaris subsp. vulgaris var. cicla, B. vulgaris
subsp. maritima and P. maritima plants to NaCl and KCl were rather similar, C. officinalis plants tended
to perform worse when treated with KCl, but the opposite was evident for M. aquatica. Plants treated
with KCl accumulated higher concentrations of K+ in comparison to the accumulation of Na+ in
plants treated with equimolar concentrations of NaCl. KCl-treated plants also had higher tissue levels
of electrical conductivity than NaCl-treated plants. Based on the results of the present study, it seems
that both positive and negative effects of Na+ and K+ on plant growth were due to unspecific ionic
effects of monovalent cations or/and the specific effect of Cl−.

Keywords: electrical conductivity; halophytes; ion accumulation; potassium; salinity; sodium;
water content

1. Introduction

Soil salinity and plant salt tolerance has been an object of intense scientific studies for
many decades. The scientific understanding of these processes has consequently improved
significantly, as illustrated by the recent reviews [1–6]. Since both Na+ and Cl− are the
most abundant elements in seawater, it makes sense that the majority of studies specifically
use NaCl to assess the effect of salinity. However, this uniformity somewhat limits our
ability to understand the diversity of plant salinity responses. Practically, there are soils
where other ions besides Na+ and Cl+ also significantly participate in the formation of
salinity [7]. Theoretically, the response of plants to other cations such as K+ may provide
an opportunity to understand Na+ response mechanisms due to the chemical similarity of
the two elements.

Na+ toxicity is traditionally considered as one of the main reasons for plant growth
inhibition by NaCl [8]. However, while based on practical evidence on negative effects of
salinity, this thought is somewhat of a simplification, as from a chemical point of view, Na+

is very similar to K+ and therefore cannot be “more toxic” by definition. However, unlike
K+, Na+ is not an essential element for most plants, and limiting its uptake or promoting
its storage in plant tissues could have significant physiological costs. Therefore, there is
a reason to believe that for halophytes, an ability to use Na+ instead of K+ for some of its
functions would confer certain adaptive advantages [9]. There is no doubt that Na+ has
characteristically more negative effects than that of K+ for typical glycophyte species [10].
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However, while some studies have shown that the effect of NaCl and KCl in certain
obligate halophytic plant species is similar, such as Atriplex nummularia [11], Sesuvium
portulacastrum [12] and Atriplex halimus [13], there is still no conclusive confirmation of
the functional difference or similarity between the two elements in various salt-tolerant
plant taxa.

The control of the compartmentation of osmotically and electrolytically active ions
is one of the most important aspects of plant tolerance to salinity [14]. Some salt-tolerant
species use ion exclusion strategy, not allowing for a buildup of a high salt concentration in
aboveground tissues [4]. However, the majority of halophytes are thought to represent salt
accumulators, but even for these species, the ion concentration in the mesophyll tissues of
photosynthetically active organs can be diminished by means of salt secretion to the leaf
surface (recretohalophytes), an increase in tissue water content (succulent halophytes) and
the accumulation of salts in older leaves [4]. Salt-accumulating halophytes use a cellular
compartmentation strategy, accumulating salts in vacuoles, further solving a problem of
proper osmotic adjustment [15]. The control of electrolytical activity in plant tissues due
to salinity has been much less often considered, but it seems that coastal species from
salt-affected habitats show different strategies, regulating leaf tissue electrical conductivity
(EC) by changes in either K+ or Na+ concentration, but some species relatively tightly
control the EC level by concomitant changes in both K+ and Na+ concentration [16].

To comparatively assess the effect of NaCl and KCl on growth and ion accumulation,
five model plant taxa from four families with predictably good salinity tolerance were
selected for the study. Beta vulgaris subsp. maritima (L.) Arcang. (Amaranthaceae) is a
coastal-specific plant taxon, growing on sandy, pebbly or rocky beaches, and it is considered
to represent the wild ancestor of all beet crops [17]. The taxon is widely distributed around
Europe and the Mediterranean Sea [18]. It is a characteristic plant of the European protected
habitats 1230 “Vegetated sea cliffs of the Atlantic and Baltic coasts” and 1330 “Atlantic
salt meadows (Glauco-Puccinellietalia maritimae)” [19]. Among cultivated beets, the leafy
beet type Swiss chard has retained a morphology that is in general similar to that of B.
vulgaris subsp. maritima [20]. It is classified as Beta vulgaris L. subsp. vulgaris var. cicla. The
salinity tolerance of both B. vulgaris subsp. maritima [21–24] and B. vulgaris subsp. vulgaris
var. cicla [25–27] has been assessed previously. In general, it was concluded that both are
typical halophytic taxa, and the domestication process rather slightly reduced the salinity
tolerance of beet crops [28].

The genus Cochlearia (Brassicaceae) is considered to be represented only by extremophile
species, being halophytes or metallophytes [29]. Among them, Cochlearia officinalis L. is a
potential saline vegetable crop [30]. C. officinalis is regarded as a typical halophyte usually
found in brackish conditions of coastal areas, on gravel beaches and dry areas of salt-
marshes, restricted to the northern hemisphere [31]. It is a characteristic species of the
European habitat 1230 “Vegetated sea cliffs of the Atlantic and Baltic coasts” [32]. However,
the species has been classified as only moderately salinity tolerant [30].

Mentha aquatica L. (Lamiaceae) is a clonal species well-adapted to flooded conditions;
it forms long runners both from above-ground and below-ground parts of the stem, with an
ability to produce several ramet shoots from a single individual [33]. Biomass accumulation
in M. aquatica is significantly stimulated by increasing soil moisture and, especially, soil
waterlogging [34]. The species is often found in river streams and shallow waters of lakes. It
is a characteristic species of the European protected habitats 3260 “Water courses of plain to
montane levels with the Ranunculion fluitantis and Callitricho-Batrachion vegetation” [35]
and 6430 “Hydrophyllous tall herb fringe communities of plains and the montane to
alpine levels” [36]. The M. aquatica population from a seawater-affected coastal habitat
has been identified recently [16], and these plants showed a prominent potential for use
in hydroponic-based biological air purification systems, facilitating the development of
beneficial microbiome [37]. So far, only a single study assessed salinity responses in M.
aquatica, and it was characterized as moderately tolerant [34].
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Plantago maritima L. (Plantaginaceae) is a halophytic species found on European coastal
habitats 1230 “Vegetated sea cliffs of the Atlantic and Baltic coasts”, 1330 “Atlantic salt
meadows (Glauco-Puccinellietalia maritimae)” and 1630 “Boreal Baltic coastal meadows”,
as well as on inland habitats 1340 “Inland salt meadows” and 1530 “Pannonic salt steppes
and salt marshes” [32]. Earlier studies have established the high salinity tolerance and
halophytic nature of P. maritima [38–40]. High phenotypic plasticity and the life-cycle-stage-
dependence of responses to abiotic factors were noted for the species [41]. However, as
based on a more recent study, P. maritima has been designated as a facultative halophyte [42].
Using P. maritima as a model plant, it has been shown that NaCl interacts with nitrate
transporters in the plasma membrane of roots cells, decreasing the rate of nitrate uptake
in saline soil [43]. The species has also been used in ecological studies, showing that
competition for light and flooding are among important factors that affect the demographics
of P. maritima in coastal meadows [44–46].

Thus, the aim of the present study was to compare changes in growth, ion accumu-
lation and tissue water content in relatively salt-tolerant plant taxa—Beta vulgaris subsp.
maritima, Beta vulgaris subsp. vulgaris var. cicla, Cochlearia officinalis, Mentha aquatica and
Plantago maritima—in controlled conditions due to NaCl and KCl salinity. It was hypothe-
sized that both cations in a form of chloride salt will have similar effects on the selected
model plants.

2. Materials and Methods
2.1. Plant Material

Five taxa were used as model plants in the present study (Table 1). Plants of Beta
vulgaris subsp. vulgaris var. cicla cv. ‘Magenta Sunset’ (BVC), Beta vulgaris subsp. maritima
(BVM), Cochlearia officinalis (CO) and Plantago maritima (PM) were established from seed
and cultivated in soil-like substrate. Plants of Mentha aquatica (MA) were established from
stem explants collected from emergent plants on a seawater-affected sandy beach habitat
and further cultivated in hydroponics.

Table 1. Studied plants, their origin and experimental detail.

Code Model Plant Propagation Material
(Source) Cultivation System Treatments Analyzed Parameters

BVC
Beta vulgaris subsp.

vulgaris L. var. cicla cv.
‘Magenta Sunset’

Seeds (Sėklos,
Vilnius, Lithuania)

Garden soil/quartz
sand 3:1 (v/v)

NaCl (44, 87, 217, 434 mmol L−1).
KCl (44, 87, 217, 434 mmol L−1)

Dry biomass, H2O, Na,
K, EC

BVM Beta vulgaris subsp.
maritima (L.) Arcang.

Seeds (Agroforestry
Research Trust, Dartington,

Devon, UK)

Garden soil/quartz
sand 3:1 (v/v)

NaCl (44, 87, 217, 434 mmol L−1).
KCl (44, 434 mmol L−1)

Dry biomass, H2O, Na,
K, EC

CO Cochlearia officinalis L. Seeds (Jelitto Staudensamen,
Schwarmstedt, Germany)

Garden soil/quartz
sand 5:1 (v/v)

NaCl (44, 87, 217, 434 mmol L−1).
KCl (44, 87, 217, 434 mmol L−1)

Dry biomass, H2O, Na,
K, EC

MA Mentha aquatica L.
Stem explants

(seawater-affected sandy
beach, Ainaži, Latvia)

Hydroponics, Kristalon
Red + Calcinit

(0.5 g L−1)

NaCl (25, 50, 100, 200 mmol L−1).
KCl (25, 50, 100, 200 mmol L−1)

Dry biomass, H2O, Na,
K, EC

PM Plantago maritima L.
Seeds (seawater-affected
gravel beach, Ohesaare,

island of Saaremaa, Estonia)

Garden soil/quartz
sand 3:1 (v/v)

NaCl (22, 44, 87, 217, 434 mmol L−1).
KCl (22, 44, 87, 217, 434 mmol L−1)

Dry biomass, H2O

EC, electrical conductivity.

2.2. Plant Establishment, Cultivation and Treatments

Before germination, seeds were surface-sterilized with 50% commercial bleach Ace
(Procter & Gamble, Warszawa, Poland) for 7 min followed by washing in sterile deionized
water (10 × 2 min). Seeds were imbibed in sterile deionized water for 4 h and sown
in sterile plastic tissue culture containers with 1 cm of autoclaved commercial garden
soil (Biolan, Eura, Finland) mixed with sterile deionized water. Containers were placed
in a plant growth cabinet MLR-352H (Sanyo Electric, Osaka, Japan) with a photoperiod
of 16 h (40 µmol m−2 s−1) and day/night temperatures of 20/15 ◦C. Seedlings were
transplanted to 200 mL plastic containers filled with a mixture of quartz sand (Saulkalne
S, Saulkalne, Latvia) and heat-treated (60 ◦C, 24 h) garden soil (Biolan, Eura, Finland)
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1:4 (v/v) after the appearance of the first two true leaves. Containers were placed in 48 L
plastic boxes closed with lids, placed in a greenhouse and gradually adapted to greenhouse
conditions. An experimental automated greenhouse (HortiMaX, Maasdijk, Netherlands)
was used for the study. Supplemented light was provided by Master SON-TPIA Green
Power CG T 400 W (Philips, Amsterdam, Netherlands) and Powerstar HQI-BT 400 W/D
PRO (Osram, Munich, Germany) lamps (photon flux density of photosynthetically active
radiation 380 µmol m−2 s−1 at the plant level), with a 16 h photoperiod. The day/night
temperature was 23/16 ◦C, and the relative air humidity was maintained at 60 to 70%.
When plants reached 5 to 10 cm heights, they were transplanted to 1.2 L plastic containers
filled with a 1 L mixture of quartz sand (Saulkalne S, Saulkalne, Latvia) and garden
soil (Biolan, Eura, Finland) in different proportions (Table 1). Soil was moistened with
deionized water. The substrate water content was monitored with an HH2 moisture meter
equipped with a WET-2 sensor (Delta-T Devices, UK) and maintained at no less than 50%
throughout the experiment using deionized water. Individual containers were randomly
placed on a greenhouse bench and repositioned once a week. Every week, plants were
fertilized with Yara Tera Kristalon Red and Yara Tera Calcinit fertilizers (Yara International,
Oslo, Norway). A stock solution was prepared for each fertilizer (100 g L−1), and the
working solution contained 25 mL of each per 10 L of deionized water, used with a rate of
100 mL per container.

Salinity treatment for soil-grown plants was started after a week-long period of addi-
tional acclimatization in the greenhouse. Individual plants were randomly distributed for
treatments, with five plants per treatment. The salt treatment was performed gradually,
twice a week, in 44 mmol L−1 increments during 5 weeks, using NaCl and KCl solution. A
necessary amount of salt was dissolved in deionized water, and 100 mL per container was
applied to soil. The total treatment doses of NaCl and KCl are given in Table 1. Control
plants received deionized water.

Plants of M. aquatica were propagated with stem explants derived from a stock culture
kept in a greenhouse. Explants were rooted in deionized water, and uniform plants with
newly developed healthy shoots and well-developed root systems were transferred to 1 L
hydroponic vessels, with three individual plants per vessel and three vessels per treatment.
Yara Tera Kristalon Red and Yara Tera Calcinit fertilizers (1:1 w/w, 0.5 g L−1) were used
as fertilizer medium to which an appropriate amount of NaCl and KCl was added. The
salt concentration was increased and added gradually, 25 mmol L−1 per week, to reach
the necessary concentration (25, 50, 100 and 200 mmol L−1). Fertilizer solution was used
for control plants. The fertilizer and respective salt solution was changed weekly. Plants
were cultivated in a growth cabinet with a photon flux density of photosynthetically active
radiation 100 µmol m−2 s−1 at the plant level, with a 16 h photoperiod. The day/night
temperature was 22/16 ◦C, and the relative air humidity was maintained at 60 to 70%.

2.3. Plant Harvest and Measurements

Experiments were terminated 4–7 weeks after reaching full treatment according to
the individual growth characteristics of model plants (after 4 weeks for B. vulgaris subsp.
vulgaris var. cicla and C. officinalis, 5 weeks for B. vulgaris subsp. maritima, 6 weeks for
M. aquatica and 7 weeks for P. maritima). Soil EC was measured at the end of the P. maritima
experiment using an HH2 meter equipped with a WET-2 sensor (Delta-T Devices, Burwell,
UK) at four sides of each container. For B. vulgaris subsp. vulgaris var. cicla, B. vulgaris
subsp. maritima and P. maritima plants, the leaves were separated according to their age and
position, as well as size, in senescent, old, middle and young leaves. For both B. vulgaris
taxa, leaf petioles and leaf blades were handled separately. For P. maritima, flower stalks
were counted, their lengths were measured, and inflorescences and stalks were handled
separately. For C. officinalis, leaves were separated in leaf petioles and leaf blades. For
M. aquatica, plants were separated in the roots, stems and leaves, and the stem length
was measured. All leaves were counted. Plant roots were separated from substrate and
carefully washed to remove any soil particles. All plant material was weighed before and
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after drying in an oven at 60 ◦C for 72 h. The tissue water content was estimated as a mass
of water in grams per gram of dry mass of tissues.

For the estimation of Na+, K+ and EC, plant tissues were crushed by hand to small
pieces, and a sample of 0.2 g was randomly taken from the total amount of leaf material.
Tissues were ground with a mortar and pestle to a fine powder, and 10 mL of deionized
water was added. The homogenate was stirred with a pestle for 1 min. After filtration
through nylon mesh cloth (No. 80), the homogenate was used for the measurement of
ion concentration using LAQUAtwin compact meters B-722 (Na+) and B-731 (K+), and
electrical conductivity using a LAQUAtwin conductivity meter B-771 (Horiba Scientific,
Kyoto, Japan). Three individual samples per treatment of particular plant parts of particular
species were analyzed in three analytical replicates.

2.4. Data Analysis

The results were analyzed via KaleidaGraph (v. 5.0, Synergy Software, Reading, PA,
USA). The statistical significance of the differences was evaluated with one-way ANOVA
using post hoc analysis with minimum significant difference. Significant differences were
indicated at p < 0.05.

3. Results
3.1. Effect on Plant Growth and Water Content

Treatment with equimolar concentrations of NaCl and KCl resulted in identical in-
creases in substrate salinity, as seen in the experiment with P. maritima (Figure 1A). The
morphological appearance of P. maritima plants treated with NaCl or KCl was similar at all
salinity levels (Figure S1). Total biomass accumulation in P. maritima plants was stimulated
at 22 and 44 mmol L−1 salinity, but only for KCl was this effect statistically significant
(Figure 1B). An increase in salinity resulted in a decrease in plant biomass, but only plants
grown at 434 mmol L−1 had significantly lower biomasses in comparison to that in the
control. Detailed information on the morphological effects of salinity on P. maritima plants
are given in Table S1. Most importantly, the biomass increase at low salinity was associ-
ated with an increase in the number and biomass of leaves, the number and biomass of
inflorescences, as well as the biomass of roots.
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Figure 1. Substrate electrical conductivity (EC1:5) after cultivation of Plantago maritima plants treated
with different doses of NaCl and KCl (A) and effect of treatments on total dry biomass of P. maritima
plants (B). Different letters indicate statistically significant (p < 0.05) differences between treatments.

The stimulated elongation of leaf petioles was a characteristic morphological response
of BVC plants at increased substrate salinity (Figure S2), but the total biomass was not sig-
nificantly affected by the treatment at any concentration both for NaCl and KCl (Figure 2A).
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However, there was a significant difference in biomass between BVC plants treated with
44 and 434 mmol L−1 NaCl. Detailed information on the morphological effects of salinity
on BVC plants are given in Table S2.
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Figure 2. Effect of treatment with different doses of NaCl and KCl on total dry biomass of Beta
vulgaris subsp. vulgaris var. cicla (A), Beta vulgaris subsp. maritima (B), Cochlearia offficinalis (C) and
Mentha aquatica (D) plants. Different letters indicate statistically significant (p < 0.05) differences
between treatments.

At low salinity, BVM plants also showed the stimulated elongation of leaf petioles
(Figure S3), but a significant increase in total biomass was only evident for plants treated
with 44 mmol L−1 NaCl (Figure 2B). No significant decrease in biomass was evident with
increasing substrate salinity in comparison to the control. Detailed information regarding
the morphological effects of salinity on BVM plants is given in Table S3. A biomass increase
at low NaCl was associated with an increase in the number and biomass of leaves, as well
as the biomass of roots.

C. maritima plants showed a typical decrease in leaf size with increasing salinity
(Figure S4). The total biomass significantly decreased at 217 mmol L−1 for both NaCl-
and KCl-treated plants, and further decreased at 434 mmol L−1 (Figure 2C). Detailed
information on the morphological effects of salinity on C. maritima plants are given in
Table S4. The number of leaves, leaf and root biomass were strongly negatively affected by
increasing salinity for both NaCl- and KCl-treated plants.

The total biomass of M. aquatica plants significantly decreased already at 44 mmol L−1

salinity, and this effect was more pronounced for NaCl-treated plants (Figure 2D). However,
the negative effect did not further increase with the increasing salinity of the cultivation
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medium. Detailed information on the morphological effects of salinity on M. aquatica plants
is given in Table S5.

A significant increase in tissue water content by NaCl and KCl treatment at all concen-
trations was evident in both old and young leaves of P. maritima (Figure 3), BVC (Figure 4)
and BVM (Figure 5) plants. In contrast, no changes in root water content were evident for
these model plants. For C. officinalis, a significant increase in tissue water content was seen
only in the leaf blades and petioles of plants treated with 87 mmol L−1 NaCl and the roots
of both 44 and 87 mmol L−1 NaCl-treated plants (Figure 6). However, a significant decrease
in water content was evident in the leaf blades and petioles of plants treated with 434 mmol
L−1 KCl. Both the leaves and stems of M. aquatica plants grown at 25 mmol L−1 NaCl and
KCl showed increased water content (Figure 7). Plants treated with 100 and 200 mmol L−1

NaCl and 200 mmol L−1 KCl had significantly decreased water content in both leaves and
stems. However, no significant changes in root water content were evident.
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3.2. Effect on Ion Accumulation

Trend of Na+ accumulation in leaves of the model plants treated with NaCl showed a
typical saturation-type curve (Figure 8A). Both Beta taxa showed higher Na+ accumulation
potential than that for C. officinalis and M. aquatica. The accumulation of K+ in KCl-treated
plants was more pronounced and distinctly more linear than that for Na+ (Figure 8B).
However, the K+ accumulation response was saturable at 100 mmol L−1 KCl. The highest
K+ accumulation was evident for BVC plants. Treatment with NaCl resulted in a significant
decrease in K+ concentration in the leaves of M. aquatica plants at all concentrations and for
BVC plants at the highest concentration, but not in BVM and C. officinalis plants (Figure 9A).
Similarly, Na+ concentration significantly decreased due to KCl treatment in all plants
besides C. officinalis (Figure 9B).
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Figure 9. Effect of treatment with different doses of NaCl on K+ concentration in leaves (A) and effect
of treatment with different doses of KCl on Na+ concentration in leaves (B) of Beta vulgaris subsp.
vulgaris var. cicla (BVC), Beta vulgaris subsp. maritima (BVM), Cochlearia officinalis (CO) and Mentha
aquatica (MA) plants. Different letters of respective colors indicate statistically significant (p < 0.05)
differences between treatments for a respective plant taxon.
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Detailed information on the Na+ and K+ concentrations in different parts is given in
Tables S6–S9. For Beta taxa, both senescent and old leaves of NaCl-treated plants had the
highest Na+ accumulation potential, and more Na+ accumulated in petioles in comparison
to that in blades. However, this relationship was not pronounced for K+ accumulation in
KCl-treated Beta plants. However, more K+ accumulated in the leaf petioles than in the leaf
blades of C. officinalis plants, and the K+ concentration in leaf petioles increased even in
NaCl-treated plants (Table S8). Relatively low concentrations of Na+ and K+ accumulated
in the roots of all plant taxa treated with NaCl or KCl, respectively.

Total concentrations of soluble ions, as represented by tissue EC levels, tended to be
higher in the leaves of KCl-treated plants in comparison to those in NaCl-treated plants, and
this effect was statistically significant at 434 mmol L−1 for BVC (Figure 10A), 434 mmol L−1

BVM (Figure 10B), 434 mmol L−1 C. officinalis (Figure 10C) and 100 and 200 mmol L−1 for
M. aquatica (Figure 10D) plants. The dose–response of EC for NaCl-treated plants showed
saturation at 217 mmol L−1 for both Beta taxa and even at 87 mol L−1 for C. officinalis.
The level of EC in the leaves of NaCl-treated M. aquatica plants showed some tendency to
increase, but the effect was not statistically significant. Detailed information on EC values
in different parts is given in Tables S6–S9. In general, EC was higher in the respective
parts of equimolar KCl-treated plants in comparison with NaCl-treated plants of all taxa.
There was a pronounced gradient of EC from older to younger leaves in NaCl-treated
Beta plants, especially for BVC, but this was less pronounced in KCl-treated Beta plants
(Tables S6 and S7).
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Figure 10. Effect of treatment with different doses of NaCl and KCl on electrical conductivity in leaf
extracts of Beta vulgaris subsp. vulgaris var. cicla (old leaf blades; (A)), Beta vulgaris subsp. maritima
(old leaf blades; (B)), Cochlearia officinalis (leaf blades; (C)) and Mentha aquatica (leaves; (D)) plants.
Different letters indicate statistically significant (p < 0.05) differences between treatments.
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The trend of summed Na+ + K+ concentration with increasing salinity was similar to
that established for the EC values (Figure 11). A significant difference between NaCl- and
KCl-treated plants was evident at 434 mmol L−1 for BVC and C. officinalis plants, and at
217 and 434 mmol L−1 for M. aquatica plants, but not for BVM plants. There was a very
tight relationship between the tissue EC value and the summed Na+ + K+ concentration in
all parts of both B. vulgaris taxa and C. officinalis (Table 2). However, this relationship was
less pronounced in M. aquatica plants, especially in the stems and roots.
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Table 2. Relationship between tissue electrical conductivity (EC) and summed concentration of
Na+ + K+ in different parts of the model plants.

Model Plant Plant Part R2 r

BVC Leaf petioles 0.978 0.989
Leaf blades 0.984 0.992
Roots 0.970 0.985

BVM Leaf petioles 0.873 0.934
Leaf blades 0.860 0.927
Roots 0.863 0.929

CO Leaf petioles 0.995 0.997
Leaf blades 0.982 0.991
Roots 0.970 0.985

MA Stems 0.548 0.741
Leaves 0.822 0.907
Roots 0.625 0.790

BVC, Beta vulgaris subsp. maritima; BVM, Beta vulgaris subsp. vulgaris var. cicla; CO, Cochlearia officinalis;
MA, Mentha aquatica.
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3.3. Comparison of NaCl and KCl Effects

The relative effect of NaCl and KCl treatment was evaluated by comparing the maxi-
mum total biomass increase at low salinity, the maximum total biomass decrease at high
salinity, the maximum increase in H2O content in leaf blades as well as the maximum
increase in EC values in leaf blades (Table 3). It is evident that plant growth responses, both
positive and negative, did not differ between the two cations. No significant differences
between the increase in leaf blade H2O content were evident for C. officinalis and P. maritima
plants, and only for M. aquatica did the K+ treatment result in a higher increase in leaf water
content. However, the increase in tissue EC value was significantly more pronounced in
the case of KCl than for NaCl for all analyzed plant taxa.

Table 3. Comparison of the main relative effects of NaCl and KCl in the model plants. EC, electrical
conductivity.

Parameter Model Plant Effect of NaCl Effect of KCl Na+ vs. K+

Maximum dry mass
increase (%)

BVC 37 20 n.s.
BVM 47 * 29 n.s.
CO 13 7 n.s.
MA 0 0 n.s.
PM 29 46 * n.s.

Maximum dry mass
decrease (%)

BVC 16 15 n.s.
BVM 18 15 n.s.
CO 59 * 66 * n.s.
MA 65 * 65 * n.s.
PM 51 * 49 * n.s.

Maximum increase in H2O
in leaf blades (%)

BVC 96 * 78 * n.s.
BVM 91 * (54 *) -
CO 45 * 18 n.s.
MA 43 * 97 * s.
PM 60 * 56 * n.s.

Maximum increase in EC
in leaf blades (%)

BVC 187 * 260 * s.
BVM 351 * 579 * s.
CO 207 * 447 * s.
MA 68 272 * s.

Significant differences from the respective control are indicated by * (p < 0.05). n.s., not significant (p ≥ 0.05);
s., significant, p < 0.05). For BVM plants, K+ concentration resulting in maximum increase in H2O content was not
used. BVC, Beta vulgaris subsp. maritima; BVM, Beta vulgaris subsp. vulgaris var. cicla; CO, Cochlearia officinalis;
MA, Mentha aquatica.

4. Discussion

Among the model plants used in the present study, both B. vulgaris taxa showed the
most prominent salinity tolerance, with no negative effect on plant growth even at the
highest salinity level (434 mol L−1). This is not surprising for B. vulgaris subsp. maritima as
this taxon has been found growing naturally in different salt-affected coastal habitats [19].
However, usually, studies have shown the lower salinity tolerance of different cultivated
beet varieties. In a hydroponic culture, the relative growth rate of sea beet was reduced,
only not significantly, by 11% at 300 mM salinity, while that of different sugar beet cultivars
was reduced by 58–37% [28]. However, in another study, the biomass of B. vulgaris subsp.
maritima plants in gravel hydroponics was reduced by 50% at 375 mol m−3 NaCl [22]. In
a soil culture, the leaf biomass of leaf beet (B. vulgaris var. cicla) was already significantly
inhibited at 3 g kg−1 NaCl in soil, but at 7 g kg−1 NaCl, the biomass was inhibited
by 75% [47]. In the present study, both B. vulgaris taxa were highly tolerant to high
salinity caused by NaCl or KCl, showing no negative effect on plant biomass accumulation
(Figure 2), but with visible morphological effects (Figures S1 and S2). However, B. vulgaris
subsp. maritima had a tendency to respond more by the increase in biomass at low salinities
(Table 3). In general, these findings support the view that the initial salt-tolerance-related
characteristics of wild ancestors of beet crops have been preserved during domestication
and further breeding process [28].

Both C. officinalis and P. maritima are coastal-specific plant species and have been
classified as typical halophytes [31,40]. While the salinity tolerance of the two species in the
conditions of the present study was relatively similar (59–66% and 49–51% biomass decrease
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at 434 mmol L−1 salinity for C. officinalis and P. maritima, respectively; Table 3), P. maritima
plants showed a more pronounced biomass increase in the low-salinity treatment (Table 3).

M. aquatica plants in the present study showed the highest sensitivity even to low Na+

and K+ treatment (Figure 2D), and plant shoots almost completely dried out at the highest
salinity level (Figure 7). One possibility is that the particular accession of M. aquatica does
not represent a coastal-specific ecotype, as the general salinity tolerance of the species
cannot be expected to be high [34]. However, it cannot be excluded that such a difference
from other model plants could be due to the fact that M. aquatica plants were cultivated in
hydroponics owing to their natural occurrence in a shallow brackish water lagoon. There
has not been much of direct comparison between the two systems, but plants in hydroponic
conditions are shown to be more sensitive to salinity in comparison to soil cultures, and
genotypic variation in cultivars in salt tolerance has been larger in soil in comparison to
that in hydroponics, as shown for barley [48]. Therefore, it has been suggested that funda-
mental differences exist between the two systems of cultivation affecting plant responses to
salinity [48].

The ion accumulation potential in the leaves of the studied species was relatively high,
reaching 5 mol kg−1 Na+ for B. vulgaris subsp. vulgaris var. cicla, 4 mol kg−1 Na+ for B.
vulgaris subsp. maritima, more than 2 mol kg−1 Na+ for C. officinalis and near 2 mol kg−1

Na+ for M. aquatica (Figure 8A). The accumulation potential for K+ was higher than that
for Na+, but mostly only at the highest salinity level (Figure 8B). In previous studies,
different Na+ accumulation potentials have been reported for these plants. In hydroponics,
C. officinalis accumulated 5.7 mol kg−1 Na+ [30]. B. vugaris subsp. vulgaris var. cicla plants
accumulated up to 3.5 mol kg−1 Na+ in alkaline conditions [25], but only 0.7 mol kg−1

Na+ was found for B. vulgaris subsp. maritima [22]. It is evident that very high variability
exists between various studies with the same plant species, mainly due to differences in
experimental conditions, sampling procedures, etc. However, genotype-specific effects
cannot be excluded.

The ability of most plants to accumulate supraoptimal concentrations of K+ in tissues
is a well-known fact, and it has been associated with predominant vacuolar sequestration,
acting as a reserve pool of K+ [49]. It is evident that Na+ sequestration in vacuoles of salt-
tolerant accumulating plant species largely resembles this response. Indeed, the existence of
shared transport systems within the plant for the two cations has been indeed shown [50],
including these located in the tonoplast [51]. Interestingly, for all model plants in the
present study, the K+ accumulation ability was consequently more pronounced than that of
Na+ when the same plant was cultivated at the same molar concentration of KCl or NaCl,
respectively (Figure 8), and this resulted in higher values of tissue EC (Figure 10, Table 2).
However, the difference was only significant at high salinity.

An increase in tissue water content in plants at elevated substrate salinity is a part of
an adaptive mechanism of induced succulence, as indicated already by early studies [52].
Salt dilution by increased water content is among most important adaptive mechanisms of
salt-accumulating halophyte species [53,54]. In the present study, the increase in leaf water
content by increasing substrate salinity was the most pronounced in both B. vulgaris taxa
at all NaCl and KCl concentrations (Figures 4 and 5). Similarly, both leaf thickness and
their succulence significantly increased in B. vulgaris subsp. maritima and various sugar
beet cultivars with increasing salinity in hydroponic conditions [28]. A decrease in leaf
water content by 434 mmol L−1 KCl treatment in C. officinalis plants (Figure 6) and by
relatively high salinity in M. aquatica plants (Figure 7) most likely reflected the induction of
senescence as a result of prolonged salinity, as indicated by other studies [55].

One of possible reasons for the negative effect of Na+ on plant growth (Na+ “toxicity”)
is mentioned to be a reduction in the K+ concentration in tissues. Significant growth
reduction in P. maritima plants at a NaCl concentration above 200 mM had been suggested
to be a result of a decrease in K+ uptake [42]. However, Na+ and K+ clearly had similar
effects on the growth of P. maritima (Figure 1B) and other model plants (Figure 2) of the
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present study, as summarized in Table 2. However, the increase in the total electrolytic
activity in plant tissues was more pronounced for KCl-treated plants (Figure 8, Table 3).

Previously, only obligate halophyte species, such as Atriplex nummularia, Atriplex
halimus and Sesuvium portulacastrum, were shown to have similar morphological responses
to NaCl and KCl treatment [11–13]. Recently, it was established that NaCl and KCl had
similar effects on the growth of three accessions of facultative recretohalophyte Armeria
maritima from isolated micropopulations located in sandy soil habitats [56]. However, both
cations differentially affected osmotic adjustment in leaf tissues: while the osmotic value
increased in both treatments in a concentration-dependent manner, only plants treated with
NaCl showed a significant increase in the non-ionic osmotic value. Consequently, together
with the data of the present study, these results suggest that taxonomically different plant
species possessing rather variable levels of salinity tolerance respond equally to NaCl
and KCl treatment at the morphological level but may have differences in protection
mechanisms of the internal environment.

The results of the present study clearly showed that, for a number of putatively
salt-tolerant, taxonomically different plant taxa, NaCl and KCl treatment had similar
genotype-specific and concentration-dependent effects on plant growth and development.
This can be explained by two non-mutually exclusive possibilities: (i) the level of “toxicity”
of Na+ and K+ is identical and not specific and (ii) Cl− is the element resulting in “toxicity”.
These possibilities will be discussed in detail further.

A well-known fact from plant mineral nutrition experiments and fertilization practice
shows that a too-high (supraoptimal) concentration of minerals significantly reduces plant
growth and causes other signs of toxicity [57]. There is a reason to believe that plant sensitiv-
ity vs. tolerance to a high soil electrolyte level is a species-specific trait, allowing us to define
“eletrolytophytic species” as the ones with a high general tolerance to salinity and an ability
to accumulate high electrolyte concentrations in photosynthetically active tissues [16]. So
far, comparative experimental evidence for plant genetic differences in degree of electrolyte
tolerance and/or accumulation is rather limited. Electrolyte accumulation potential in
plant leaves significantly varied within 102 species from salt-affected coastal habitats, but
the particular level of tissue EC did not show a general relation with the putative salinity
tolerance of the species [16]. It seems that the major electrolytically active ions were Na+, K+

and Cl−, as evident by the relatively tight relationship between the summed Na+ plus K+

concentration (which in fact also included a Cl− component) and tissue EC, especially in
leaves (Table 2). Therefore, a characteristic decrease in electrolyte concentration from older
to younger leaves possibly reflects a lower degree of the vacuolation of mesophyll cells
in younger tissues [58]. However, this feature was not evident for the accumulation of K+

in KCl-treated plants, pointing to other possible sites of surplus K+ accumulation besides
vacuoles. Preferential Na+ accumulation in older leaves of accumulating halophyte species
has also been noted in a number of previous studies [56,58]. This type of accumulation is
also characteristic for heavy metals, which is especially pronounced in plants with a rosette
type of growth, allowing for induced senescence and the gradual replacement of older
metal-accumulating leaves [59].

The chaotropic effect of ions as a mechanism of salt toxicity cannot be ruled out. This
idea has been tested with extremophile microorganisms, and several species of fungi were
shown to be chaotolerant [60]. While NaCl is sometimes considered a chaotropic salt, Na+

itself is kosmotropic (being strongly hydrated), but both Cl− and K+ are chaotropic (being
weakly hydrated), as indicated by the respective Jones–Doyle viscosity coefficients [61].
Therefore, theoretically, KCl might have a stronger chaotropic effect in comparison to
that of NaCl. However, due to physiological mechanisms of ion compartmentation, the
accumulation of K+ at concentrations high enough to cause adverse chaotropic effects is
highly unlikely. This inevitably leads back to the idea that it is Cl− that is the potentially
toxic element in the salinity of chloride salts.

Cl− itself is considered to represent an essential plant nutrient [62], but it is still a
matter of debate as to whether it represents a micronutrient or beneficial macronutrient [63].
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The possible negative effect of Cl− in NaCl-treated plants usually has been neglected in the
majority of studies, but see Martin, Koebner 1995 [64]. Only recently has a deeper interest
in Cl− effects been renewed [65–69]. On a positive side, in addition to the established role
of Cl− in photosynthesis [70], the importance of osmotic adjustment, the control of turgor
and water balance has been suggested [71]. Additional functions of Cl− can be proposed
for halophytic species [67]. On a negative side, competition of Cl− with anionic forms of
nutrients, nitrate and phosphate, can significantly disturb plant mineral nutrition, leading
to reduced growth [66]. In typical glycophytes species, it was shown that Na+ and Cl−

synergistically contribute to salt toxicity [64]. Sugar beet is listed among the crop plants
with the highest Cl− tolerance level, with no negative effects seen even at a 50.8 g kg−1

tissue concentration of Cl− [62]. Both Swiss chard and table beet plants had a maximum
growth increase at 80 mol m−3 NaCl, being 146 and 128%, respectively [72]. However, a
change in the Na+ vs. K+ external ratio at identical salinity had no effect on the growth of
the two plants [73]. These findings are fully comparable with the results of the present study,
showing the extremely high tolerance of the two B. vulgaris taxa to Na+ and K+ chloride
salinity, with no large differences in the effect of the two cations. However, at equimolar
concentrations, NO3

− uptake was significantly enhanced in NaCl-treated B. vulgaris var.
cicla plants but not in the KCl-treated ones [74].

Salt stress sensing and the hormonal regulation of salinity tolerance responses in plants
are still underexplored directions in the biology of plant adaptations to environmental
heterogeneity. To dissect the general osmotic, electrolytic or ion-specific effects of salinity
responses, more attention needs to be forwarded to comparative studies involving plant
taxa with variable salinity tolerance affected by different combinations of salts. The use of
these model systems together with approaches of transcriptomics and ionomics will allow
us to better understand plant adaptation mechanisms to different types of salinity.

5. Conclusions

Taxonomically different plant species showed similar growth responses to Na+ and K+

salinity in a form of chloride salts. While the morphological responses of B. vulgaris subsp.
vulgaris var. cicla, B. vulgaris subsp. maritima and P. maritima plants to NaCl and KCl were
rather similar, C. officinalis plants tended to perform worse when treated with KCl, but the
opposite was evident for M. aquatica. Based on the results of the present study, it seems
that, at least for the model plants used, both positive and negative effects of Na+ and K+ on
plant growth were due to the unspecific ionic effects of monovalent cations or/and specific
effects of Cl−.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life12101577/s1, Figure S1: Typical Plantago maritima plants 6 weeks after the final treatment
with NaCl (A) and KCl (B), Figure S2: Typical Beta vulgaris subsp. vulgaris var. cicla plants 4 weeks
after the final treatment with NaCl (A) and KCl (B), Figure S3: Typical Beta vulgaris subsp. maritima
plants 5 weeks after the final treatment with NaCl and KCl, Figure S4: Typical Cochlearia officinalis
plants 3 weeks after the final treatment with NaCl (A) and KCl (B), Table S1: Effect of NaCl and KCl
treatment on morphological parameters of Plantago maritima plants, Table S2: Effect of NaCl and KCl
treatment on morphological parameters of Beta vulgaris subsp. vulgaris var. cicla, Table S3: Effect
of NaCl and KCl treatment on morphological parameters of Beta vulgaris subsp. maritima plants,
Table S4: Effect of NaCl and KCl treatment on morphological parameters of Cochlearia officinalis plants,
Table S5: Effect of NaCl and KCl treatment on morphological parameters of Mentha aquatica plants,
Table S6: Effect of NaCl and KCl treatment on Na+ and K+ concentration and electrical conductivity
(EC) in different parts of Beta vulgaris subsp. vulgaris var. cicla, Table S7: Effect of NaCl and KCl
treatment on Na+ and K+ concentration and electrical conductivity (EC) in different parts of Beta
vulgaris subsp. maritima, Table S8: Effect of NaCl and KCl treatment on Na+ and K+ concentration
and electrical conductivity (EC) in different parts of Cochlearia officinalis, Table S9: Effect of NaCl and
KCl treatment on Na+ and K+ concentration and electrical conductivity (EC) in different parts of
Mentha aquatica.
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