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Abstract 

Background:  Tongue squamous cell carcinoma (TSCC) is one of the most difficult malignancies to control. It displays 
particular and aggressive behaviour even at an early stage. The purpose of this paper is to explore the value of radi-
omics based on magnetic resonance fat-suppressed T2-weighted images in predicting the degree of pathological 
differentiation of TSCC.

Methods:  Retrospective analysis of 127 patients with TSCC who were randomly divided into a primary cohort and 
a test cohort, including well-differentiated, moderately differentiated and poorly differentiated. The tumour regions 
were manually labelled in fat-suppressed T2-weighted imaging (FS-T2WI), and PyRadiomics was used to extract 
radiomics features. The radiomics features were then selected by the least absolute shrinkage and selection opera-
tor (LASSO) method. The model was established by the logistic regression classifier using a 5-fold cross-validation 
method, applied to all data and evaluated using the area under the receiver operating characteristic curve (AUC), 
accuracy, sensitivity and specificity.

Results:  In total, 1132 features were extracted, and seven features were selected for modelling. The AUC in the 
logistic regression model for well-differentiated TSCC was 0.90 with specificity and precision values of 0.92 and 0.78, 
respectively, and the sensitivity for poorly differentiated TSCC was 0.74.

Conclusions:  The MRI-based radiomics signature could discriminate between well-differentiated, moderately differ-
entiated and poorly differentiated TSCC and might be used as a biomarker for preoperative grading.

Keywords:  Tongue squamous cell carcinoma (TSCC), Radiomics, Texture analysis, Degree of pathological 
differentiation, Magnetic resonance imaging (MRI)
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Background
Tongue squamous cell carcinoma (TSCC) is one of the 
most difficult malignancies to control [1]. It displays 
particularly aggressive behaviour even at an early stage 

[2], and despite significant advances in cancer therapeu-
tics over the past 30 years [3], the 5-year survival rate is 
still unsatisfactory [4]. One reason for this dismal out-
look could be the biological propensity for local invasion 
and the high incidence of cervical lymph node metasta-
sis at the time of diagnosis (40%) [5]. Another reason is 
that, without consideration of individual differences in 
genetic and biological behaviour, it potentially results in 
ineffective treatment in some patients and unnecessary 
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overtreatment in others. Haider et al. [6] and Giraud et al. 
[7] summarised the application of radiomics and machine 
learning in head and neck squamous cell carcinomas. 
They focused on obtaining objective information through 
non-invasive testing, combined with machine learning 
to build pathological classification prediction models or 
conventional prognostic models, guide the selection of 
treatment, design the scope of surgery, and even guide 
the comprehensive postoperative treatment. But most 
studies focused on computed tomography (CT). Our 
study mainly studied magnetic resonance imaging (MRI). 
It enriches the application of MRI in machine learning of 
head and neck squamous cell carcinoma (SCC) cases.

Therefore, it is important to understand the clinical 
behaviour and outcome of TSCC and focus on individu-
ally tailored treatment. Although histological assessment 
of biopsy or surgical specimens is still the gold stand-
ard [8], rapid histological biopsy before surgery may not 
allow for the evaluation of the characteristics of the entire 
tumour, which is required for the diagnosis of TSCC. 
Many studies have concluded that the degree of patho-
logical differentiation is a strong histological feature that 
correlates with locoregional recurrence [9]. Early com-
prehensive treatment is needed for patients with poorly 
differentiated tumours to maximise the therapeutic ratio, 
avoid unnecessary extended resection and treatment and 
improve quality of life and prognosis.

Cross-sectional MRI can reveal the extent of locore-
gional tumour spread, depth of invasion, the extent of 
lymphadenopathy, and occult metastasis in exquisite 
anatomical detail [10], so there may be a degree of cor-
relation between the biological heterogeneity of a malig-
nant tumour and the heterogeneity of its image texture. 
Recent research has shown that some histopathological 
parameters can be evaluated preoperatively with an MRI 
[11] or a satisfactory diagnostic biopsy [12]. The degree 
of pathological differentiation reflects the extent of the 
malignancy [13]. The poorer the differentiation, the 
more disordered the tissue and vascular structure and 
the higher the risk of cancer cells invading the surround-
ing tissues [14]. Given that biomarkers seen on MRI may 
reflect the heterogeneity of cancerous tissue, texture 
analysis of a single biomarker may have increased sensi-
tivity and specificity [15].

Texture analysis is a branch of radiomics based on 
imaging features and uses a computer algorithm to pro-
vide the spatial distribution features of the grey level in 
an area to quantify the heterogeneity of a tumour [16, 
17]. MRI based on imaging radiomics analysis can not 
only detect and locate the focus but also monitor disease 
progression and the response to curative treatment. It 
can also provide information that a biopsy cannot, i.e., 
the overall heterogeneity of the tumour and the effects of 

long-term treatment [18, 19]. In recent years, radiomics 
analysis has played an increasingly bigger role in cancer 
research, particularly in the identification of imaging bio-
markers and clinical management, including classifica-
tion and staging, evaluation of efficacy, and prediction of 
the prognosis of brain, breast, prostate, and lung tumours 
[20–24]. An increasing number of imaging character-
istics have been reported to be highly predictive of the 
degree of pathological differentiation of tumours and to 
have diagnostic value [25].

In this study, fat-suppressed T2-weighted imaging (FS-
T2WI) data and a series of machine learning algorithms 
were used to build a prediction model, identify imag-
ing markers that could potentially predict the degree of 
pathological differentiation of TSCC, quantify and visu-
alise the radiomics features extracted from MRI scans, 
and develop a diagnostic model to guide the selection 
of individualised diagnostic and treatment methods and 
improve the outcomes for patients. Therefore, the pre-
sent study was established to find prognostic or predic-
tive imaging markers that can reflect the pathological 
differentiation of TSCC and provide more personalised 
treatment for TSCC to improve the cure rate and reduce 
the side effects.

Methods
Patients
A total of 127 patients with TSCC were randomly divided 
into a primary cohort (72 patients: 23 well-differentiated, 
28 moderately differentiated and 21 poorly differentiated) 
and a test cohort (55 patients: 22 well-differentiated, 20 
moderately differentiated and 13 poorly differentiated). 
The cohorts included 92 men and 35 women, with a 
mean age of 58.6 (range 38–75) years, with biopsy-proven 
TSCC for which preoperative MRI scans were acquired 
between June 2016 and October 2020. A retrospective 
analysis was performed to determine the degree of path-
ological differentiation. The clinical characteristics of the 
primary cohort and the test cohort are shown in Table 1. 
The inclusion criteria were to have a case of biopsy-
proven TSCC with complete clinical data and absence of 
concomitant disease, and the ability to cooperate with an 
MRI examination. The exclusion criteria were as follows: 
no definitive postoperative information on pathological 
characteristics, local or systemic treatment before sur-
gery, a minimum tumour diameter < 5 mm (not amenable 
to placement of a region of interest [ROI]), and poor MRI 
quality for post-processing due to artefact.

MRI and texture analysis
All the MRI examinations were performed using a 
1.5-T Avanto scanner (Siemens Healthineers, Erlan-
gen, Germany) with an 8-channel phased-array neck 
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coil. The patient’s head was secured using a relaxing 
cushion, ensuring that the shoulders were in contact 
with the lower part of the coil. Non-contrast axial FS-
T2WI sequence acquired in multiple breath-holds were 
obtained using the following parameters: a repetition/
echo time of 5080/87 ms, a slice thickness/interslice 
gap of 4.0/0.4 mm, 20 slices, and a matrix of 256 × 256. 
This study used the Dr Wise Multimodal Research Plat-
form (https://​keyan.​deepw​ise.​com) (Beijing Deepwise 
& League of PHD Technology Co., Ltd, Beijing, China) 
for texture analysis, including image annotation. For 
the extraction of features, an open-source python pack-
age called PyRadiomics (2.1.0), a platform that supports 
feature extraction in both two and three dimensions and 

can be used to calculate single values per feature for an 
ROI (‘segment-based’) or generate feature maps (‘voxel-
based’), was used. The steps in the texture analysis are 
shown in Fig. 1.

Delineation of tumour ROI
All scans were retrospectively reviewed, loaded, and pro-
cessed in the original DICOM format and then trans-
mitted to the post-processing workstation. The tumour 
regions in the primary dataset were labelled manually 
by two experts. In cases of discordance, the opinion of 
a third radiologist was requested, and a consensus was 
reached through discussion. Finally, the volume of inter-
est was obtained for feature extraction and quantification. 

Table 1  Patient characteristics in the primary and test cohort (n = 127)

Notes: A P-value < 0.05 was considered to indicate a statistically significant difference. *age’s test^ independent-samples t-test, others’s test^chi-square test

Pathological differentiation degree of TSCC

Primary cohort Test cohort

Poorly 
differentiated(n = 23)

Moderately 
differentiated(n = 28)

Well
differentiated(n = 21)

P-value Poorly 
differentiated(n = 13)

Moderately 
differentiated(n = 20)

Well
differentiated(n = 22)

P-value

Sex

 Male 21 24 17 0.610 9 9 12 0.674

 Female 2 4 4 4 11 10

Age, years

 Range 39–75 43–75 38–75 0.514 47–68 53-72 34-62 0.694

 Average 56.8 59.0 59.8 55.4 61.2 49.8

Localization of tumor

 Tip 9 8 1 0.094 3 6 8 0.059

 Body 9 10 12 7 6 6

 Root 5 10 8 3 8 8

Pain

 Yes 18 20 20 0.691 10 13 13 0.725

 No 5 8 1 3 7 9

Margin

 Well-
circum-
scribed

8 8 3 0.094 3 8 18 0.053

 Ill-
defined

15 20 18 10 12 4

Cystic degeneration

 Yes 14 13 14 0.330 7 12 5 0.191

 No 9 15 7 6 8 17

Sublingual gland duct dilatation

 Yes 10 12 6 0.514 3 7 2 0.483

 No 13 16 15 10 13 20

Lymphatic metastasis

 Yes 12 6 4 0.021 10 5 3 0.000

 No 11 22 17 3 15 19

HPV

 Positive 14 22 15 0.383 9 11 15 0.601

 Nega-
tive

9 6 6 4 9 7

https://keyan.deepwise.com
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An axial FS-T2WI scan was selected as the labelling 
image. It was possible to classify the tumour tissue based 
on the principle of not exceeding the tumour boundary.

Extracting features from MRI scans
The high-pass or low-pass wavelet filter and Lapla-
cian of Gaussian filter with different λ parameters were 
used to pre-process the original images. Each stage of 
wavelet filtering generated eight decompositions, and 
all possible combinations of high-pass or low-pass fil-
ters (wavelet_LLH, wavelet_LHL, wavelet_LHH, wave-
let_HLL, wavelet_HLH, wavelet_HHL, wavelet_HHH, 
and wavelet_LLL) and four Laplacian of Gaussian filters 
(λ = 2, 3, 4, 5) were applied in all three dimensions for 
pre-processing. The features extracted from the origi-
nal images included their first-order features based on 
the pixel value, the shape features of the tumour, and 
the internal and surface texture features extracted from 
each ROI, including the grey level co-occurrence matrix 
(GLCM), grey level run length matrix (GLRLM), grey 
level size zone matrix (GLSZM), and grey level depend-
ence matrix (GLDM).  In total, 1132 radiomics fea-
tures were extracted from each ROI, and a standardised 
Z-score was then obtained by subtracting the average 

value and dividing by the standard deviation. Features 
showing poor consistency between different groups were 
removed by calculating the intraclass correlation coef-
ficient (ICC). Features with an ICC > 0.75 were selected 
and modelled. Finally, the least absolute shrinkage and 
selection operator (LASSO) algorithm was used for fea-
ture reduction and selection. The most important feature 
with a coefficient that was not zero was identified for 
modelling and improving the model’s performance. The 
LASSO method uses a shrinking (regularisation) process 
whereby it penalises the coefficients of the regression 
variables, shrinking some of them to zero. Variables that 
still have a non-zero coefficient after the shrinking pro-
cess are selected to be part of the model. The goal of this 
process was to minimise prediction error.

Establishment of the model
The logistic regression (LR) classifier was used to estab-
lish the diagnostic model by the 5-fold cross-validation 
method. The establishing of diagnostic model was per-
formed by primary cohorts, thereafter the created model 
was tested in test cohorts. After all training and testing, 
the performance of the model was evaluated by the aver-
age value of five tests. In this study, the generalisation 

Fig. 1  Flow chart of radiomics analysis. From left to right, manual segmentation to obtain voxel-based region of interest in a three-dimensional 
slice, extraction of radiomics features using Pyradiomics software, selection of features using LASSO regression, development of the model, and 
evaluation of diagnostic performance using ROC analysis
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properties of the learning algorithm were focused on 
for multiclass classification problems, and the confu-
sion matrix of each classifier was used as a measure of its 
quality. A confusion matrix is useful for evaluating the 
ability of classifiers to classify multiclass objects in addi-
tion to receiver operating characteristic (ROC) curves. 
The macro-average and micro-average are indexes to 
measure the classifier. Macro-average indicators are more 
affected by small categories than micro-average indi-
cators. Therefore, the AUC comparison in this experi-
ment mainly focuses on the micro-average. The accuracy 
score—the ratio of the correctly classified samples to all 
samples—was also used to evaluate the predictive perfor-
mance of the model. Finally, a model was computed by 
using selected features.

Statistical analysis
The classification model was built using the Scikit-learn 
software package (version 0.20.3). Matplotlib (version 
3.1.0) was used to draw the ROC curves. The statistical 
analysis of general data was performed using SPSS for 
Windows version 16.0 (IBM Corp., Armonk, NY, USA). 
Chi-square tests were used to detect differences in the 
categorical variables between groups. Group differences 
in quantitative variables were examined using independ-
ent-samples t-tests. P  < 0.05 was considered statisti-
cally significant. Comparing AUCs of Machine Learning 
Models was done by a DeLong’s test, testing whether one 
machine learning model’s test set performance differs 
significantly from the test set performance of an alterna-
tive model.

Results
Patients and radiomics features
The characteristics of the 127 patients with TSCC are 
summarised in Table 1. There were significant differences 
in the rates of lymphatic metastasis (P < 0.05), based on 
the degree of pathological differentiation of TSCC in the 
cohort. There was no significant difference in sex, age, 
localisation of the tumour, pain, margin, cystic degen-
eration, sublingual gland duct dilatation or human pap-
illomavirus (HPV), based on the degree of pathological 
differentiation. A total of 1132 imaging features, including 
234 first-order features, 14 shape features and 884 texture 
features, were extracted from the original images through 
wavelet and Laplacian of Gaussian filters and selected 
by the LASSO algorithm. The key relevant features were 
selected by the 5-fold cross-validation method, as shown 
in the mean square error (MSE) path of the LASSO algo-
rithm (Fig. 2a). The best alpha value was 0.18484, and the 
-log(alpha) value was 0.73320. The vertical axis of the 
path graph of the coefficient solution (Fig. 2b) represents 
the coefficients of each feature in the LASSO model, 

which change with the change in alpha value. Based on 
the best alpha value, the coefficients corresponding to the 
different features were identified. Features with a coeffi-
cient that was not 0 were selected, and finally, seven of 
the 1132 features were selected for modelling. The feature 
list and coefficient chart showed two first-order features 
(wavelet-LHH_first-order_maximum and log-sigma-2-0-
mm-3D_first-order_maximum) and five texture features 
(wavelet-HHH_glrlm_LongRunHighGreyLevelEmphasis,log-sigma-3-0-mm-3D_
glcm_Idmn,wavelet-HHL_glcm_MaximumProbability, 
wavelet-LHL_glszm_GreyLevelNonUniformityNormal-
ised, and original_glcm_ClusterShade) (Fig.  2c). The 
intraobserver and interobserver consistency of the anno-
tation images were good (Fig.  3). The consistency of all 
features of the selected model is greater than 0.75.

Establishment and evaluation of the model
1) Performance evaluation of the prediction model 
in the primary cohort
The prediction model’s performance was first assessed in 
the testing sets with the equilibrium of the class distribu-
tion and balanced data. The results are shown in Table 2. 
In terms of the accuracy of the classification, the confu-
sion matrix results confirmed that there was consistency 
between the predicted and actual results, suggesting a 
better performance of the model in the classification 
of multiclass objects (Fig.  4a). ROC curve analysis also 
verified that the model could predict and distinguish the 
degree of pathological differentiation of TSCC with high 
accuracy of 0.81–0.90 (all AUC > 0.80). The diagnos-
tic effect of this prediction model on differentiation was 
more than 80%. The micro-average AUC of the LR model 
in the 5-fold cross-validation of the primary cohort was 
0.86, tending towards the upper left corner and far from 
the diagonal (Fig.  4b). Moreover, in the LR model, the 
AUC for well-differentiated TSCC was 0.90, suggesting 
that this model had the highest accuracy for predicting 
and distinguishing well-differentiated TSCC.

2) Performance evaluation of prediction model in a test 
cohort
In addition to the internal testing above, external valida-
tion for the performance of the prediction model was also 
performed by using a test cohort without pre-processing 
or the equilibrium of the class distribution. The machine 
learning algorithms in the test cohort were the same as 
those used in the primary cohort. In terms of classifier 
performance in the test cohort, the confusion matrix and 
ROC curves both indicated a high classification accu-
racy of the model, with an AUC value of 0.70–0.81. ROC 
curves also revealed that the model could distinguish the 
degree of pathological differentiation of TSCC with high 
accuracy (Fig.  4c, d). Ultimately, the prediction model 
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Fig. 2  a The MSE path in the LASSO algorithm. The dotted lines in different colors indicate each group of cross-validation samples corresponding 
to different -log(alpha) with a different MSE. The black solid line is the mean value of five MSE groups. The best alpha is the value with the lowest 
MSE. Notes: The optimization objectives of LASSO are as follows:

CV, LASSO, least absolute shrinkage and selection operator; MSE, mean square error. b LASSO coefficient solution path for the seven features. 
c Coefficients in the LASSO model of the seven features. The vertical axis represents the seven key features for modeling. The transverse axis 
represents the relative weight of these features

Fig. 3  Intraobserver (a) and interobserver (b) consistency (ICC)
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that used seven optimal characteristics was validated to 
be significantly effective in predicting the degree of path-
ological differentiation of TSCC.

Discussion
In this study, the texture features of 127 patients with 
biopsy-proven TSCC were extracted and analysed. Cor-
relations were sought by comparing these features with 
histopathological features that were determined postop-
eratively. Tumour characteristics that suggest the degree 
of pathological differentiation are difficult to distin-
guish accurately by visual observation alone. We found 
that compared with DWI sequence images, the correla-
tion between T2WI imaging features and pathological 
differentiation of TSCC was more obvious in patients 
with TSCC. The prediction results of the T2WI model 
and DWI model were analysed by DeLong’s test. In the 
training and the validation set, we use DeLong’s test to 
demonstrate that the T2WI model has a significantly 
different AUC from the DWI model with P < 0.05. In 
general, classification models with AUC values of 1.00–
0.90 and 0.90–0.80 are regarded as excellent and good, 
respectively [26]. The micro-average AUC values for the 
prediction models constructed by the LR in the 5-fold 
cross-validation of the primary cohort reached 0.86, and 
the AUC and specificity values for well-differentiated 
tumours was better (> 0.90), indicating that the diagno-
sis model can accurately distinguish well-differentiated 
TSCC. This model also had the highest sensitivity for the 
diagnosis of poorly differentiated tumours. In terms of 
the test cohort, classifier performance indicated a high 
classification accuracy of the model. Parmar et  al. [27] 

compared different classifiers to predict overall survival 
based on a set of 440 radiomic features extracted from 
231 head and neck cancer (HNSCC) primary tumour 
lesions in contrast-enhanced CT images. In this study, 
we also compared different classifiers. The primary and 
test cohort indicated a high classification accuracy of the 
model. Therefore, the radiomics analysis described here 
has a strong ability to predict the degree of pathological 
differentiation of TSCC.

The most recent World Health Organization guidelines 
[28] recommend using cell differentiation to grade head 
and neck carcinomas. Lower tumour heterogeneity is 
likely associated with a lower histological grade [29]. In 
the present study, most cases were classified as moder-
ately differentiated, consistent with what other studies 
have observed for oral squamous cell carcinoma (OSCC) 
[30]. Moreover, similar to results reported by Jing et  al. 
[31], poorly differentiated tumours showed a statisti-
cally significant relationship with recurrence (P = 0.043). 
Therefore, poor differentiation is a known risk factor for 
treatment failure in patients with tongue cancer [32]. It is 
important to determine the degree of pathological differ-
entiation preoperatively to assess the prognosis. Fujima 
et  al. [33] studied the utility of the MRI histogram and 
texture analysis in head and neck malignancies; however, 
it is limited to the correlation analysis between first-order 
features and DWI values, and no external verification was 
carried out. Compared with the study of Ren et  al., the 
T2WI sequence is the research object in this study. It not 
only reflects the internal characteristics of lesions more 
comprehensively but also the key sequence of disease 
differentiation. The results of this study show that T2WI 
has greater advantages in distinguishing different degrees 
of differentiation of TSCC. For TSCC, larger resections 
generally result in a worse functional outcome [34].

Prognostic and predictive markers hold the prom-
ise of allowing more personalised treatment of TSCC to 
improve cure rates and minimise side effects. In patients 
followed closely for N0phase, 20–30% will subsequently 
develop cervical lymph node metastases. A 40% inci-
dence of micrometastatic disease was still found when 
elective neck dissection was performed in patients with 
T1 and T2 TSCC [35]. Most of the patients were poorly 
differentiated. HPV positivity is a strong independent 
prognostic factor for favourable outcomes and over-
all survival (OS) in patients with oropharyngeal SCC 
(OSCC) [36, 37]. Since 2015, multiple studies have dem-
onstrated the association of radiomic features with HPV 
status in HNSCC. While Buch et al. [38] and Fujita et al. 
[39] examined the association of individual texture fea-
tures with HPV status, other groups have designed 
machine learning classification models for HPV predic-
tion in HNSCC. HPV is positive in most TSCC, but there 

Table 2  The results of primary set and test set

Notes: F1-score = 2PR/(P+R) (P, precision; R, recall)

Precision Sensitivity Specificity F1-score Support

Primary set

 Poorly 0.68 0.74 0.84 0.71 23

 Moder-
ately

0.66 0.68 0.77 0.67 28

 Well 0.78 0.67 0.92 0.72 21

 Macro avg 0.70 0.69 0.84 0.70 72

 Weighted 
avg

0.70 0.69 0.84 0.69 72

Test set

 Poorly 0.80 0.61 0.95 0.69 13

 Moder-
ately

0.54 0.70 0.78 0.61 20

 Well 0.74 0.66 0.85 0.68 22

 Macro avg 0.69 0.65 0.82 0.66 55

 Weighted 
avg

0.68 0.65 0.80 0.66 55
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was no significant difference in HPV status based on the 
degree of pathological differentiation. Therefore, these 
present findings have the potential to impact the clinical 
management of early TSCC. Excessive staging may lead 
to the loss of opportunity for effective surgical treatment, 
and too low clinical staging may result in ineffective or 
even harmful therapy. However, an accurate judgement 
of the degree of pathological differentiation before sur-
gery may improve this situation. The performance of 
radiomics analysis varies depending on the MRI scan-
ner, imaging parameters and tumour delineation method 
used [40, 41]. MRI scans acquired by one type of scan-
ner and imaging parameters from the entire dataset were 
used to reduce the influence of these variations on per-
formance [35]. However, in terms of delineation, the con-
sistency within and between groups was analysed using 
the ICC to avoid interobserver and intraobserver differ-
ences. The results of independent verification suggested 

that reproducible radiomic features for observing deline-
ation variability should be investigated to obtain high 
prediction performance when using different data. In this 
study, rather than measuring the largest diameter of the 
tumour slice, the whole tumour volume was measured. 
This can extract tumour features more efficiently, thereby 
offering an opportunity to overcome the limitations of 
visual image interpretation and refine the characteristics 
of different tumour regions [42].

In this study, an intensive search for non-invasive 
imaging biomarkers was undertaken, and a prediction 
model that can not only detect imaging information 
hidden in focus but can also distinguish the degree of 
differentiation of that focus, which has high clinical 
value, was used. At present, the research on texture 
analysis of head and neck tumours is relatively limited. 
Texture analysis and prediction of the differentiation 
degree of TSCC by MRI are not only a breakthrough 

Fig. 4  Performance assessment of prediction model in primary set and testset. Confusion matrix ROC curve analysis in primary cohort (a and b) 
and test cohort (c and d). The solid lines in different colors indicate that the ROC curve for each class of TSCC correspond to a different AUC, which 
represents the positive rate of prediction of the degree of pathological differentiation. The dotted lines in different colors indicate the ROC curves of 
the micro-average and macro-average. Notes: Numbers 1, 2, and 3, represent poorly, moderately, and well differentiated TSCC, respectively
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and innovation in the diagnosis of TSCC but also of 
significance in clinical diagnosis and treatment. The 
advantages of MRI over CT scans as a non-invasive 
predictive tool have been confirmed in many research 
studies [43]. The MRI has high soft tissue contrast and 
can reflect the internal information of the lesion to a 
greater extent. This study also had some limitations. 
The study data was limited and obtained from a sin-
gle centre, the ROI still depends on a semiquantitative 
feature extraction method, the edge and contour of the 
tumour are affected by the experience of the evaluator, 
and the diagnosis model still needs to be used in con-
junction with other important diagnostic indicators, 
with the cases increasing.

Conclusions
In conclusion, in this study, we constructed a radiomics 
model based on MRI that can noninvasively predict and 
differentiate the degree of pathological differentiation of 
TSCC, especially highly differentiated TSCC. This radi-
omics model can be used for precision medicine and 
improve clinical treatment strategies. High-throughput 
radiomics data are extracted to establish a model to pre-
dict the differentiation degree of TSCC, which may be a 
method to evaluate imaging biomarkers in patients with 
TSCC.
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