
Heliyon 10 (2024) e29736

Available online 16 April 2024
2405-8440/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Cross-platform gene expression profiling of breast cancer: 
Exploring the relationship between breast cancer grades and gene 
expression pattern 

Shamim Sarhadi a, Arta Armani b, Davoud Jafari-Gharabaghlou c, 
Somayeh Sadeghi d, Nosratollah Zarghami c,e,* 

a Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Germany 
b Department of Medical Biology and Genetic, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey 
c Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran 
d Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran 
e Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey   

A R T I C L E  I N F O   

Keywords: 
Gene expression profiling 
Transcriptome 
Grade classification 
Systems biology 

A B S T R A C T   

Gene expression profiling is a powerful tool that has been extensively used to investigate the 
underlying biology and etiology of diseases, including cancer. Microarray gene expression anal-
ysis enables simultaneous measurement of thousands of mRNA levels. Sophisticated computa-
tional approaches have evolved in parallel with the rapid progress in bioassay technologies, 
enabling more effective analysis of the large and complex datasets that these technologies 
produce. 

In this study, we utilized systems biology approaches to examine gene expression profiles 
across different grades of breast cancer progression. We conducted a meta-analysis of publicly 
available microarray data to elucidate the molecular mechanisms underlying breast cancer grade 
classification. 

Our results suggest that while grade index is commonly used for evaluating cancer progression 
status in the clinic, the complexity of molecular mechanisms, histological characteristics, and 
other factors related to patient outcomes raises doubts about the utility of breast cancer grades as 
a foundation for formulating treatment protocols. 

Our study underscores the importance of advancing personalized strategies for breast cancer 
classification and management. More research is crucial to refine diagnostic tools and treatment 
modalities, aiming for greater precision and tailored care in patient outcomes.   

1. Introduction 

With the advent of high-throughput sequencing and other bioassay platforms, researchers can now generate massive amounts of 
biological data from cells in various states. To stay at the forefront of biology research, many investigators are turning to integrative 
approaches for analyzing this data. Such approaches involve both horizontal integration, which entails merging data from a single 
omics level, and vertical integration, which involves integrating data from two or more omics levels [1,2]. These high-dimensional 
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techniques are powerful tools that can shed light on fundamental concepts of cell biology and be used in clinical applications. 
Systems biology, an interdisciplinary field that combines statistics, computer science, engineering, and mathematics, has emerged 

as a powerful tool for deciphering the complexity of biological data. Over the past few decades, these fields have contributed to the 
development of systems biology approaches [3]. This comprehensive approach, combined with computational methods, holds promise 
in comprehending the origins of complex diseases like cancer. Researchers in this field believe that embracing a systemic approach 
offers a broader perspective, leading to crucial insights into the development of cancer [4]. 

Cancer represents a significant burden on healthcare systems worldwide, and the number of cancer cases is projected to increase to 
29.5 million by 2040, according to reports from the World Health Organization (WHO) [5]. Among cancers, breast cancer is the most 
common malignancy in American women, according to the American Cancer Society Statistics Center. Although fewer people have 
been dying from breast cancer since around 1975 because we find it earlier, know more about it, and have better treatments, there are 
still a lot of physical and emotional problems that stay [6]. To address these challenges, numerous studies have sought to identify 
clinical and molecular features with prognostic value [7]. Various histological and molecular signatures have been established, some of 
which play a critical role in clinical applications such as cancer classification, response to specific drugs or treatments, prediction of 
overall survival among patients with different phenotypes, risk assessment, disease classification, and treatment planning for sub-
groups of patients with desirable outcomes [8]. 

Tailored medicine uses cell profiling to guide treatment decisions, mostly based on genome analysis [9]. The accurate classification 
of patients is a critical step in clinical treatment, but discrepancies between classification methods can present both advantages and 
disadvantages. Therefore, understanding the relationship between molecular-based classification systems and clinical characteristics is 
essential [10]. Various classification methods are employed in breast cancer, encompassing histological grading, TNM staging, and 
classification derived from histological, anatomical, and molecular properties. While each of these methods has a different approach, it 
is important to consider all the information derived from these classification systems in clinical decision-making [11]. Histopatho-
logical tumor grading, which measures cellular differentiation and proliferation potential, is commonly used as a histological signature 
for chemotherapy decision-making. The Elston and Ellis modified Scarff-Bloom-Richardson (SBR) system, also known as the Not-
tingham grading system, is the most widely accepted method for grade classification. This index is based on the microscopic evaluation 
of morphological and cytological features of tumor cells, including the degree of tubule formation, nuclear pleomorphism, and mitotic 
count, which are used to stratify tumors into grade 1 (well-differentiated and slow proliferative), grade 2 (moderately differentiated), 
and grade 3 (poorly differentiated and highly proliferative) [12]. 

Gene expression signatures have emerged as a powerful tool for predicting the prognosis and therapeutic response in various 
diseases, including cancer. These signatures represent specific gene expression alterations that have prognostic or predictive value for a 
particular phenotype or condition [13]. The first gene expression signature was published in the late 1990s, and since then, numerous 
studies have evaluated their strengths and weaknesses in practice. While some signatures, such as MammaPrint and Oncotype DX, have 
been approved for clinical use, many others require further validation in independent studies to gain wider acceptance among the 
scientific community [14]. MammaPrint, a 70-gene signature, identifies breast cancer patients who may safely avoid chemotherapy, 
while Oncotype DX, a 21-gene RT-PCR assay, helps to determine patients who are likely to benefit from treatment and avoid un-
necessary chemotherapy. However, with the multitude of reported gene expression signatures for various phenotypes and conditions, 
it is critical to validate their efficacy and reliability in independent studies before their clinical application [14–16]. 

2. Methods 

2.1. Data collection 

The data were collected from Gene Expression Omnibus (GEO). Data collection was followed by “Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses” (PRISMA) criteria for meta-analysis of gene expression data [17,18]. Since the aim of this 
study is to provide an insight into grade classification molecular profile, we excluded noise sources for example by removing samples 
treated by chemical and physical agents and eliminating samples with NA clinical annotation. 

2.2. Preprocessing of the data 

The raw microarray data underwent normalization and preprocessing using the Frozen Robust Multi-Array Analysis (fRMA) 
method [19]. This method was implemented using the ’fRMA’ package in R statistical software. To accomplish fRMA normalization, 
the raw data were background-corrected, and quantile normalized. Then fRMA’s pre-computed parameters from a reference database 
were applied for batch effect correction and robust summarization of probe-level intensities. No specific adjustments or modifications 
to default fRMA parameters were made during the normalization process. 

2.3. Merging data and removing batch to batch variation 

Combining data from the different batches for increasing statistical power of gene expression analysis was done with “Combined 
Association Test” (COMBAT) method [20]. This method was employed to mitigate batch-related variations and harmonize the merged 
dataset. This methodology is specifically designed to mitigate technical discrepancies between batches, such as variations arising from 
different sample processing times, platforms, or experimental conditions. COMBAT applies an empirical Bayes framework to adjust for 
batch effects without compromising the biological signal inherent in the data. The implementation of COMBAT involved estimating 
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and modeling batch effects present in the merged dataset. Then employing empirical Bayes frameworks to adjust gene expression 
values, ensuring the normalization of data across batches while preserving biological differences. Ultimately, addressing and elimi-
nating batch-related variations in gene expression profiles without introducing bias remains crucial. 

2.4. Finding differentially expression genes (DEGs) 

The identification of differentially expressed genes (DEGs) involved conducting analyses across three distinct conditions: control 
versus grade 1, control versus grade 2, and control versus grade 3. These comparative analyses were executed utilizing the Limma 
package, renowned for its proficiency in employing linear models for microarray data analysis [21]. To ensure robustness and stringent 
criteria for DEG selection, thresholds were set at a minimum log fold change of >0.5 and an adjusted p-value of <0.05. These criteria 
were implemented to focus on genes demonstrating a substantial level of differential expression while controlling for false positives, 
thereby narrowing down the list of genes considered significantly altered across the specified conditions. 

2.5. Gene set enrichment and pathway perturbation analysis 

The GSEA desktop application was utilized to analyze the differentially expressed genes (DEGs) obtained from the top table 
function within the limma package, individually for each grade comparison. GSEA was executed with default settings [22]. This 
approach facilitated the exploration of coordinated gene expression changes within predefined gene sets or pathways, offering 
valuable insights into their potential roles across different grades. Additionally, the Signaling Pathway Impact Analysis (SPIA) method 
was implemented to assess pathway perturbation by contrasting its impact against mere over-representation [23]. SPIA provides a 
deeper understanding of how biological pathways are perturbed beyond simple enrichment. It computationally evaluates the sig-
nificance of pathway alterations, distinguishing between pathway dysregulation and random gene set over-representation. This 
approach enables a more nuanced interpretation of pathway changes within the context of the experimental conditions or grades under 
investigation. 

2.6. Survival analysis 

To comprehensively assess the prognostic strength, distinctiveness, and practical applicability of the top 150 markers identified for 
the grade 3 signature, the SigCheck package was employed. This analysis entailed comparing the grade 3 signature against 48 well- 
established cancer signatures from previous studies. For this evaluation, independent data from the NKI (Netherlands Cancer Institute) 
dataset, available within the breast Cancer NKI package [24], was utilized. By leveraging this external dataset, the aim was to gauge 
the performance and uniqueness of the identified grade 3 signature markers in a distinct cohort. This comparative analysis allowed for 
an in-depth examination of how these top-ranked markers stood against known cancer signatures, shedding light on their potential 
prognostic significance and specificity within the context of breast cancer. The utilization of the NKI dataset in this comparative 
assessment facilitated an understanding of the grade 3 signature’s predictive power and its potential clinical relevance, providing 
valuable insights into its utility as a prognostic tool within the broader landscape of established cancer signatures. 

Table 1 
Characteristics of the individual studies.  

GEO ID Platform Sample Count (Case-Control) NA Clinical Data Removed 

GSE26639 GPL570 [HG-U133_Plus_2] 226 7 
GSE18864 GPL570 [HG-U133_Plus_2] 84 24 
GSE21653 GPL570 [HG-U133_Plus_2] 266 7 
GSE36771 GPL570 [HG-U133_Plus_2] 107 0 
GSE23177 GPL570 [HG-U133_Plus_2] 116 0 
GSE10810 GPL570 [HG-U133_Plus_2] 58 9 
GSE42568 GPL570 [HG-U133_Plus_2] 121 0 
GSE23593 GPL570 [HG-U133_Plus_2] 50 0 
GSE17907 GPL570 [HG-U133_Plus_2] 55 4 
GSE11001 GPL570 [HG-U133_Plus_2] 30 0 
GSE29431 GPL570 [HG-U133_Plus_2] 66 15 
GSE20711 GPL570 [HG-U133_Plus_2] 90 0 
GSE11121 GPL96 [HG-U133A] 200 0 
GSE2990 GPL96 [HG-U133A] 189 81 
GSE4922 GPL96 [HG-U133A] 289 0 
GSE15852 GPL96 [HG-U133A] 86 2 
GSE23988 GPL96 [HG-U133A] 61 4 
GSE22597 GPL96 [HG-U133A] 82 0 
GSE1456 GPL96 [HG-U133A] 159 12 
GSE7390 GPL96 [HG-U133A] 198 2   

2533 167 

NA stands for not available. 

S. Sarhadi et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e29736

4

2.7. Network analysis 

For a comprehensive overview of the protein–protein interactions (PPI) in each grade, PPI networks were constructed using the top 
150 ranked genes alongside their log-fold changes. The NetworkAnalyst module detector was utilized to screen for functional modules 
within the PPI networks and identify molecular pathways primarily affected by the signatures of each grade [1,2] and enrichment in 
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database. In order to construct and compare networks that were 
generated with each signature, genes of each gene signature mapped on NetworkAnalyst PPI database. We set ≥ 15 as a cut-off for the 
degree of nodes to construct sub-networks with hub nodes as a network level signature for each grade. 

3. Results 

3.1. Overview of the studies included 

In this study, 20 microarray datasets were collected. Genome-wide expression profiling of all samples was done using Affymetrix 
GeneChip Human GenomeU133A and U133 Plus 2.0 Arrays. After merging all datasets, the merged meta data has 105, 337, 887, and 
1059 samples, related to control, grade 1, grade 2, and grade 3 respectively. Details of the individual studies are summarized in 
Table 1. 

3.2. The merged dataset quality assessment 

To fix differences caused by data batches, we used the COMBAT method. Then, we checked the combined dataset’s quality using an 
MDS plot. This plot helps see how well the batches were fixed (Fig. 1). 

3.3. Differentially expression genes analysis 

Driver genes of each grade that lead to the development of breast cancer in grade framework found via limma package. There are 
763 probe-IDs showing differential expression, summarized to 566 gene symbols associated with grade 1, 830 DE probe-IDs sum-
marized to 625 gene symbols related to grade 2, and 1045 probe-IDs summarized to 795 gene symbols related to grade 3. Fig. 2 shows 
an expression portrait of 100 top-ranked genes of each grade in randomly selected 30 samples from each grade along with normal 
samples from the merged file. We employed the Affinity propagation (AP) clustering method from apcluster package in R [25,26] to 
estimate the best number of k for k-mean clustering of genes (k = 6, 10 and 7 respectively for 100 top-ranked genes of grade 1, grade 2, 
and grade 3). K-mean clustering was done and visualized with k-mean clustering and Heatmap viewer modules on the GenePattern 
desktop [27] (Fig. 2). 

Fig. 1. Visual inspection of merged data sets without any transformation on the left and with performing COMBAT method on the right. Samples are 
labeled by color based on the biological phenotype of interest and are labeled with a symbol based on a study that they obtained from. As it shown, 
on the left part of the figure, samples are more clustered by study rather than biological variables that represent unacceptable bias but on the right 
part of the figure, it is intuitively obvious that samples are clustered by phenotype variables. 
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Fig. 2. Expression portrait of 100 top ranked driver genes of each grade in 30 randomly selected samples for each grade. Each cluster enriched in 
gene ontology biological process and molecular function with Enrichr [28]. Each cluster of columns from left to right represent, normal, grade 1, 
grade 2 and grade 3 samples, respectively. 
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3.4. Survival analysis 

A Cox model multigene assay was established to evaluate the grade 3 signature’s effectiveness in predicting overall survival. We 
hypothesized that the grade 3 signature would demonstrate superior resolution in distinguishing patients with good and poor prog-
noses. Fig. 3 presents the Kaplan-Meier curves related to this analysis. (Fig. 3A–C). 

Given the ongoing debate about the applicability and utility of gene signatures [29] we evaluated the uniqueness of grade 3 
signature by NKI dataset. In this step the data was divided into two data sets, one was the trained data (Fig. 3 A) and the other was the 
test data (Fig. 3B). As shown in Fig. 3 the signature shows the strong prognostic power to distinguish poor and good prognosis samples 
in both train and test data (p = 0.001). In addition, to compare the performance of this signature with previously published signatures, 
we test the performance of grade 3 signature with 48 known signatures (Fig. 3C). 

3.5. Comparative analysis of grade 3 signature across intrinsic subtypes and clinical variables 

Gene expression associated with the Grade 3 signature extracted from GSE7390 dataset. We investigated the relationship between 
this signature and patient prognosis along with the intrinsic subtypes of breast cancer. Upon visual inspection, there was no apparent 
correlation observed between high-grade breast cancer and patients with poor prognoses, which contrasts with our initial expecta-
tions. Moreover, within each intrinsic subtype, we observed instances of both poor and good prognosis patients. In addition, it rep-
resents that the distribution of ER-negative and grade 3 sample is in concordance with basal-like and HER2+ and luminal B samples. 
Grade 2 samples are in concordance with luminal A and normal-like samples, and to some extent, grade 1 samples. Additionally, ER- 
negative samples appear connected to basal-like, HER2+, and normal-like breast cancer molecular subtypes (Fig. 4). 

3.6. Gene set enrichment analysis (GSEA) 

The GSEA is a computational method that assesses whether a prior defined set of genes related to a special phenotype shows 
statistically significant correlation. To explore the difference and molecular etiology of each grade, gene set enrichment analysis was 
done with more reproducible probe-IDs of each grade including 5814, 6091, and 6578 related to grade 1, grade 2, and grade 3 
respectively that have q-value less than 0.05. Enrichment analysis results from GSEA results enable us to track the events that result in 
cancer progression from the beginning stages to advance stages. Overview of the grade 1 results represent changes in the extracellular 
structure of cells and tissue development (Fig. 5A) and also events that involved estrogen-receptor (Fig. 5B). Specifically, the 
enrichment of grade 1 markers shows change in the tight junction. Also, results from grade 2 enrichment analysis again represent 
events related to the extracellular matrix and changes related to cell skeletal and mitotic organization and modifications on chro-
mosome structural that start a process that eventuates to the cell cycle. 

Gene enrichment analyses of grade 2 markers point to the M phase of the mitotic cell cycle (q-value <0.05), cell cycle process (q- 
value <0.05) and deposition of new CENPA (Centromere protein A) containing nucleosomes at the centromere (q-value = 0.013) 
events. Deposition of new CENPA (a unique form of histone H3) refers to action during the late telophase/early G1 phase related to the 

Fig. 3. Assessment the prognostic performance of grade 3 signature. NKI dataset split into two datasets (train and test (A, B)). As it seems this 
signature has a robust performance to separate good and poor prognostic samples in both train and test dataset (with overall survival as variable). 
(C) Comparison between grade 3 signature with 48 previously known signatures (p = 0.001, 0.05) (15 genes from signature were missing in the 
NKI dataset). 
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formation of centromeric chromatin (Fig. 5C–F). Furthermore, GSEA for grade 3 markers highlight events related to the cell cycle and 
the un-differentiation situation of cancer cells. The Grade 3 markers show correlation with M phase of the mitotic cell cycle (q-value 
<0.05), rosty_cervical_cancer_proliferation_cluster (q-value <0.05) that represents the un-differentiation situation of cancer cells, cell 
cycle and DNA metabolism (p < 0.05) (Fig. 5G–J). 

3.7. Pathway perturbation analysis 

Finding mostly affected pathways that have significant contributions to developing the disease phenotype is one of the important 
topics of systems biology [30]. In this study impact analysis of pathway in each grade was done with SPIA. Impact analysis identifies 
significantly impacted pathways that involved two types of evidence, over-representation and accumulated perturbation analysis 
(perturbation of a pathway that is computed by propagating the measured expression changes across the pathway topology) [23]. This 
approach offers a more comprehensive understanding of the molecular mechanisms that underlie the classification of breast cancer 
grades. The most impacted pathway in grade 1 breast cancer cells is ECM-receptor interaction (p = 0.02), which represents events that 
lead to extracellular matrix (ECM) structural abnormalities (Fig. 6). ECM serves an important role in tissue and organ development, 
and maintenance of cell and tissue structure and also has prominent functions in the direct and indirect control of cellular activity such 
as migration, adhesion, apoptosis, and proliferation via interactions that mediated with transmembrane molecules like integrins, CD36 
and other cell surface components [30,31]. The results suggest a connection between events that weaken tissue structure and drive 
cells towards a less differentiated state that aligns with grade classification framework. In grade 2 and grade 3, the most impacted 
pathway is focal adhesion with p = 0.005 and p = 0.007 for grade 2 and grade 3 respectively. The focal adhesion is the specialized 
structures at the cell-extracellular matrix contact point. Some of these structure components participate in linking between membrane 
receptor and actin cytoskeleton, while others are signaling molecules including protein kinases, phosphatases, and a wide variety of 

Fig. 4. Gene expression pattern of grade 3 signature in GSE7390. There is unobvious disagreement in gene expression of grade 3 signature in 
intrinsic subtypes for each gene clusters. Top bars represent other clinical variables that represent correlation and difference between them. 
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adapter proteins [30,31]. The comparison of affected focal adhesion pathways in grade 2 and grade 3 highlights greater perturbation 
for FAK and Src genes in grade 3. These proteins are linked to integrin signaling, acting as non-receptor tyrosine kinases along with 
their adapter proteins to initiate downstream signaling events, especially accentuated in grade 3 compared to grade 2. Given that 
cancer disrupts the equilibrium between two crucial states—cell growth and cell death—the overexpression of bcl-2, serving as an 
anti-apoptotic factor, signifies one of the aggressive properties exhibited by cancer cells [32]. Additionally, the number of differentially 
expressed genes in the focal adhesion pathway is more in grade 3 than grade 2 and this pathway is more perturbed in grade 3 rather 
than grade 2. 

3.8. Network analysis and enrichment of top-ranked modules 

Tree PPI networks were constructed named grade 1, grade 2, and grade 3 networks. The grade 1 network was constructed with 135 
seed proteins and has 306 nodes and 992 edges, grade 2 includes 309 nodes, and 887 edges with 135 seed proteins and the grade 3 
network includes 288 nodes, 872 edges, and 133 seed proteins. In grade 1 network UBC, ESR1, FN1, EGFR, IKBKB, in grade 2 UBC, 
EGFR, FN1, CAV1, KRT18 and in grade 3 network UBC, KIAA0101, FOS, CDK1, CCNA2 are 5 top-ranked hub nodes. We employed 
walktrap Algorithm [1,2] to find modules in each network. Table [2,3] shows the KEGG pathway enrichment analyses results of each 

Fig. 5. GSEA results. GSEA of grade 1 markers against computational gene sets and cancer module (A–B). GSEA of grade 2 markers against 
computational gene sets, cancer module, GO biological process gene set and Reactome gene set (C–F). GSEA of grade 3 markers against Reactome 
gene set, GO biological process gene set, C2 curated gene sets and cancer module (G–J). The peak of each plot represents highest enrichment score 
from leading age analysis of GSEA desktop application. 
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grade network and top-ranked modules selected by walktrap Algorithm (see Table 2 and 3). 
While creating the sub-networks for each grade under the same condition (Degree ≥ 15) as displayed in Fig. 7 (A-C) and conducting 

enrichment analysis on these sub-networks (as outlined in Table 4), the findings indicate a higher number of ongoing events in grade 2 
compared to other grades. This observation might be attributed to this state resembling a transitional phase between aggressive and 
non-aggressive states in breast cancer, similar to what Anna V. Ivshina et al. suggest in their paper regarding the division of grade 2 
breast cancer into grade 2a and grade 2b [33]. Additionally, alongside events aimed at meeting the metabolic demands of cancer cells, 
crucial for their accelerated growth, there are notable occurrences associated with the cell cycle and metastasis that drive the 
development of an aggressive state in cancer cells. Fig. 7 illustrates the larger network for grade 2, encompassing hub nodes linked to 
divergent cancer events in grade 2. 

4. Discussion 

The study of gene expression data has grown exponentially in recent years, generating vast amounts of data that can provide 
insights into the underlying mechanisms of complex biological systems, such as cells. To make knowledge from this huge data, large- 
scale analyses are required to uncover hidden patterns and relationships within the data. 

Meta-analysis combines the results of individual studies. However, this approach may suffer from variability in experimental 

Fig. 6. Perturbation.vs over-representation: From left to right each plot shows the most impacted pathway in grade 1, 2, and 3 respectively. Using 
negative log of the perturbation and overrepresentation p-values, pathways in red significantly were based on the combined uncorrected p-value, 
while the ones in black were not. 

Table 2 
KEGG pathway enrichment analyses of grade 1-3 networks.  

Grade 1 Grade 2 Grade 3 

Name Hits p-value Name Hits p-value Name Hits p-value 

Pathways in cancer 37 1.79e-11 Pathways in cancer 44 2.18e- 
14 

Cell cycle 35 2.01e-24 

Hepatitis C 21 1.83e-11 Focal adhesion 30 1.39e- 
10 

Pathways in cancer 36 7.77e-12 

Chronic myeloid leukemia 17 3.11e-10 Chronic myeloid leukemia 18 2.39e- 
10 

Prostate cancer 19 2.28e-11 

Prostate cancer 18 7.28e-10 Acute myeloid leukemia 16 3.07e- 
10 

HTLV-I infection 28 2.53e-11 

Epstein-Barr virus infection 18 1.58e-9 ErbB signaling pathway 19 7.03e- 
10 

Chronic myeloid 
leukemia 

16 9.08e-10 

Chagas disease (American 
trypanosomiasis) 

15 3.66e-7 Hepatitis C 20 1.29e-9 Focal adhesion 23 9.56e-8 

Acute myeloid leukemia 12 4.71e-7 Adipocytokine signaling 
pathway 

15 1.37e-8 Epstein-Barr virus 
infection 

15 1.84e-7 

Small cell lung cancer 14 5.67e-7 Insulin signaling pathway 22 1.4e-8 Oocyte meiosis 16 3.24e-7 
Adherens junction 13 7.19e-7 Prostate cancer 17 3.47e-8 Glioma 12 9.37e-7 
Adipocytokine signaling pathway 12 0.000001 Pancreatic cancer 15 5.14e-8 p53 signaling 

pathway 
12 0.00000156  
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protocols and data quality between studies. An alternative approach for analyzing of gene expression data is data integration, which 
involves combining the intensity of each feature (prob-IDs) after transforming expression values into numerically comparable mea-
sures. This approach provides a more reliable and powerful analysis due to its ability to reduce false discovery rates and increase 
statistical power. 

Several methods have developed for data integration, including DWD, COMBAT, and XPN. However, no single method works 
perfectly in all situations and with all technologies. In this study, the COMBAT method was chosen due to its simplicity and flexibility, 
making it suitable for handling different batch sizes and similarities between batches. The use of the COMBAT method successfully 

Table 3 
KEGG pathway enrichment analysis of grade networks.  

Grade 1 Grade 2 Grade 3 

Name KEGG enrichment KEGG enrichment KEGG enrichment 

Module1 PPAR signaling pathway, p = 0.00145 
Sphingolipid metabolism, p = 0.0117 
Adipocytokine signaling pathway,p = 0.0213 

PPAR signaling pathway, p = 0.013 
Glycerophospholipid metabolism, p =
0.0209 
Fat digestion and absorption,p = 0.0247 

Biotin metabolism, p = 0.00342 
Porphyrin and chlorophyll metabolism, p = 0.06 
Staphylococcus aureus infection, p = 0.0664 

Module2 Small cell lung cancer, p =
0.00122 
Pathways in cancer, p = 0.00837 
Leishmaniasis, p = 0.00841 

Bacterial invasion of epithelial cells, p =
1.44e-7 
Pathways in cancer, p = 0.00000504 
Thyroid cancer,p = 0.000274 

Cell cycle, p = 0.00000273 
Oocyte meiosis, p = 0.0000506 
HTLV-I infection, p = 0.000544 

Module3 Cytosolic DNA-sensing pathway, p = 0.0000519 
Epithelial cell signaling in Helicobacter pylori 
infection, p = 0.000182 
Shigellosis, p = 0.000294 

One carbon pool by folate, p = 0.0241 
Maturity onset diabetes of the young, p =
0.0304 
Neuroactive ligand-receptor interaction, 
p = 0.0341 

Chagas disease (American trypanosomiasis), p =
0.00345 
Hepatitis C, p = 0.00433 
Transcriptional misregulation in cancer, p =
0.0201 

Module4 Cell cycle, p = 0.00000139 
Epstein-Barr virus infection, p = 0.000015 
Hepatitis C, p = 0.000724 

Acute myeloid leukemia, p = 0.00000238 
Pathways in cancer, p = 0.000125 
Measles, p = 0.000768 

Cell cycle, p = 3.18e-13 
p53 signaling pathway, p = 5.86e-10 
Oocyte meiosis, p = 0.0000149 (This module was 
not significant)  

Fig. 7. Tree subnetworks were constructed with hub nodes of each grade (degree ≤ 15). The color of each node represents down (green) and up 
(red) expression of nodes. Also, the size of nodes represents the measure of changes in expression of nodes. In grade 2 subnetwork (B) the complexity 
of network is more than grade 1 (A) and grade 3 (C), which shows the situation that a greater number of functional gene clusters related to different 
interwoven pathways are activated in this grade. 

Table 4 
GO biological process of sub-networks.  

Grade 1/Sub-network Grade 2/Sub-network Grade 3/Sub-network 

Name Hits p-value Name hits p- 
value 

name hits p- 
value 

regulation of apoptotic 
process 

12 0.00000178 enzyme linked receptor protein signaling 
pathway 

23 3.12e- 
12 

regulation of cell 
cycle 

13 9.5e- 
12 

regulation of programmed 
cell death 

12 0.00000202 transmembrane receptor protein tyrosine 
kinase signaling pathway 

19 1.18e- 
11 

interphase of mitotic 
cell cycle 

10 8.69e- 
11 

negative regulation of 
apoptotic process 

8 0.00000932 positive regulation of metabolic process 32 1.28e- 
11 

interphase 10 1.04e- 
10  
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removed batch effects and transformed the clustering of data from study-based to phenotype-based. 
After identifying differentially expressed genes (DEGs), the grade 3 signature was screened for survival analysis. The results 

suggested that events related to cancer progression are interconnected and nested, making it difficult to make reliable decisions on 
treatment protocols only based on grade classifications. This highlights the need for a more comprehensive and personalized approach 
to cancer treatment, considering the complexity of biological systems. 

In addition, network analysis approaches have been proposed as a powerful tool for understanding complex cellular interactions. 
By systematically representing all molecules and their interactions, researchers can identify important hub nodes in the network, 
providing insights into the underlying mechanisms of biological systems. Although it may take time for network-derived signatures to 
be applied in clinical settings, this approach can provide researchers with a more comprehensive understanding of complex systems. 

Overall, the results of this study suggest that there is no comprehensive and precise concordance between each grade and the 
biological mechanisms and survival outcomes of patients in each grade. Therefore, it may not be reasonable to separate patients based 
solely on a histological and visual classification. A more personalized approach that considers the complexity of biological systems and 
their interactions may provide a more effective and precise approach to cancer treatment. This study benefitted from a substantial 
number of samples, enhancing statistical power and reliability of the findings. By incorporating two microarray platforms, this study 
provided a more comprehensive assessment. A novel aspect of this research was its exploration of the relationship between grade 
classifications and gene expression patterns, shedding light on potential associations between tumor grading and molecular signatures. 
While utilizing microarrays, the study was unable to incorporate newer and more advanced technologies like RNA-seq, which could 
have offered a higher resolution and expanded insights into gene expression profiles of breast cancer grade classification. Exploring 
more diverse datasets and integrating advanced technological platforms in future studies could significantly enhance the depth and 
accuracy of understanding the molecular landscape of cancer progression. 
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