

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[1-(ethoxycarbonylmethyl)pyridinium] bis(1,2-dicyanoethene-1,2-dithiolato- κ^2 S,S')nickelate(II)

Tian-li Ren,^a Cheng-jian Yang,^a* De-yu Fang,^a Guo-xun Shi^a and Xue Zhu^b

^aDepartment of Immunology and Rheumatology, the Second People's Hospital of Wuxi, Wuxi 214002, People's Republic of China, and ^bKey Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, People's Republic of China

Correspondence e-mail: yangcj12@126.com

Received 9 July 2012; accepted 28 July 2012

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.005 Å; R factor = 0.043; wR factor = 0.114; data-to-parameter ratio = 16.8.

The asymmetric unit of the title ion-pair complex, $(C_9H_{12}NO_2)_2[Ni(C_4N_2S_2)_2]$, contains two 1-(ethoxycarbonylmethyl)pyridinium cations and one bis(1,2-dicyanoethene-1,2dithiolato)nickelate(II) dianion, which exhibits a slightly distorted square-planar coordination geometry. In the crystal, the cations are linked by strong $C-H \cdots O$ hydrogen bonds into C(6) chains along [100]. The cations and anions are linked into a three-dimensional architecture by weak $C-H \cdots N$ and $C-H \cdots S$ interactions.

Related literature

For details of other maleonitriledithiolate metal complexes, see: Robertson & Cronin (2002); Coomber et al. (1996); Duan et al. (2010); Wang et al. (2012). For general background to the use of maleonitriledithiolate transition metal complexes as building blocks for optical, magnetic and conducting molecular materials, see: Brammer (2004); Ni et al. (2005); Robin & Fromm (2006). For graph-set notation, see: Bernstein et al. (1995).

 $V = 3160.6 (13) \text{ Å}^3$

Mo Ka radiation

 $0.30 \times 0.15 \times 0.10 \text{ mm}$

16888 measured reflections

6200 independent reflections

5024 reflections with $I > 2\sigma(I)$

 $\mu = 0.92 \text{ mm}^-$

T = 291 K

 $R_{\rm int} = 0.026$

Z = 4

Experimental

Crystal data

(C₉H₁₂NO₂)₂[Ni(C₄N₂S₂)₂] $M_r = 671.46$ Monoclinic, $P2_1/c$ a = 9.486 (2) Å b = 19.542(5) Å c = 17.635 (4) Å $\beta = 104.803 (4)^{\circ}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.770, \ T_{\max} = 0.914$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	370 parameters
$wR(F^2) = 0.114$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
6200 reflections	$\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline C10-H10A\cdots O1^{i} \\ C13-H13A\cdots N6^{ii} \\ C15-H15B\cdots S2 \end{array}$	0.96	2.13	3.064 (4)	164
	0.96	2.57	3.357 (4)	140
	0.96	2.86	3.680 (3)	145

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x + 1, y, z.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by a project of the Natural Science Foundation of Jiangsu Province (BK2011168) and the Economic and Social Development Foundation of Wuxi (CSZ01010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2420).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Brammer, L. (2004). Chem. Soc. Rev. 33, 476-489.
- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coomber, A. T., Beljonne, D., Friend, R. H. J., Bredas, L., Charlton, A., Robertson, N., Underhill, A. E., Kurmoo, M. & Day, P. (1996). Nature (London), 380, 144-146.
- Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509-1522.
- Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330-14338.
- Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.
- Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, F. M., Chen, L. Z., Liu, Y. M., Lu, C. S., Duan, X. Y. & Meng, Q. J. (2012). J. Coord. Chem. 65, 87-103.

supplementary materials

Acta Cryst. (2012). E68, m1151 [doi:10.1107/S1600536812033831]

Bis[1-(ethoxycarbonylmethyl)pyridinium] bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S, S'$)nickelate(II)

Tian-li Ren, Cheng-jian Yang, De-yu Fang, Guo-xun Shi and Xue Zhu

Comment

The maleonitriledithiolate (or 1,2-dicyanoethene-1,2-dithiolate, mnt²⁻) transition metal complexes, which is one typical kind of bis-1,2-dithiolene complexes, are often used as building blocks for optical, magnetic and conducting molecular materials (Brammer, 2004; Robin & Fromm, 2006; Duan *et al.*, 2010). It has been found that maleonitriledithiolate (mnt²⁻) complexes are charge-transfer salts, and they have various structure and the intra- or inter- molecular contacts which can result in large changes of physical properties of the complexes based on the $[M(mnt)_2]^n$ (Robertson & Cronin, 2002; Coomber *et al.*, 1996; Ni *et al.*, 2005; Duan *et al.*, 2010; Wang *et al.*, 2012). We report here a new $[Ni(mnt)_2]^2$ - salt containing the 1-(ethoxycarbonylmethyl)pyridinium cation, $(EtOAcPy)^+$, as shown in Fig. 1. The asymmetric unit contains two $(EtOAcPy)^+$ cation and one $[Ni(mnt)_2^{2-}]$ dianion. The $[Ni(mnt)_2]^2$ - dianion exhibits a slightly distorted square-planar coordination geometry. In the crystal, cations are linked by strong C—H…O hydrogen bond into chains with graph-set notation *C*(6) along [100] (Bernstein *et al.*, 1995). The cations and anions are linked by weak C—H… N and C —H… S interactions (Table 1).

Experimental

The title compound was prepared by the direct reaction of NiCl₂.6H₂O, Na₂mnt and (EtOAcPy)⁺.Br⁻ in the mixed solution of ethanol and H₂O (1:1). Red–brown block-like single crystals were obtained by slow evaporation of the acetonitrile solution at room temperature for about one week.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.96 Å (methylene) and 0.96 Å (pyridyl), with Uiso(H) = 1.2Ueq (pyridyl) or Uiso(H) = 1.5Ueq (methyl and methylene).

Computing details

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were draw at the 30% probability.

Figure 2

The packing diagram of title complex as viewed along *a* axis. (dotted lines are H-bonds between cations and anions)

Bis[1-(ethoxycarbonylmethyl)pyridinium] bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S, S'$)nickelate(II)

Crystal data	
$(C_9H_{12}NO_2)_2[Ni(C_4N_2S_2)_2]$	F(000) = 1384
$M_r = 671.46$	$D_{\rm x} = 1.411 { m Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1842 reflections
a = 9.486 (2) Å	$\theta = 2.4 - 20.0^{\circ}$
b = 19.542 (5) Å	$\mu = 0.92 \text{ mm}^{-1}$
c = 17.635 (4) Å	T = 291 K
$\beta = 104.803 \ (4)^{\circ}$	Block, red-brown
V = 3160.6 (13) Å ³	$0.30 \times 0.15 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000) $T_{\min} = 0.770, T_{\max} = 0.914$	16888 measured reflections 6200 independent reflections 5024 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -11 \rightarrow 11$ $k = -24 \rightarrow 24$ $l = -21 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.043$ wR(F ²) = 0.114	Hydrogen site location: inferred from neighbouring sites
S = 1.02	H-atom parameters constrained
6200 reflections	$w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 1.22P]$
370 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.0092 (3)	0.27127 (15)	0.68082 (18)	0.0574 (7)
H1A	-0.0512	0.2503	0.7105	0.069*
C2	-0.0336 (3)	0.27156 (17)	0.60181 (19)	0.0627 (8)
H2A	-0.1235	0.2499	0.5752	0.075*
C3	0.0489 (3)	0.30165 (17)	0.5601 (2)	0.0659 (8)
H3A	0.0172	0.3019	0.5038	0.079*
C4	0.1749 (4)	0.33078 (17)	0.5965 (2)	0.0702 (9)
H4A	0.2352	0.3526	0.5674	0.084*
C5	0.2169 (4)	0.33164 (17)	0.67691 (19)	0.0690 (9)
H5A	0.3086	0.3513	0.7042	0.083*
C6	0.1778 (4)	0.29897 (17)	0.80314 (17)	0.0625 (8)
H6A	0.2808	0.3076	0.8195	0.075*
H6B	0.1605	0.2538	0.8202	0.075*
C7	0.1028 (4)	0.35080 (17)	0.8425 (2)	0.0656 (8)
C8	0.0589 (4)	0.37959 (17)	0.9706 (2)	0.0664 (9)
H8A	0.0711	0.3532	1.0178	0.080*
H8B	-0.0422	0.3875	0.9456	0.080*

C9	0.1514 (4)	0.44077 (17)	0.99563 (19)	0.0657 (8)
H9A	0.1085	0.4676	1.0295	0.099*
H9B	0.2469	0.4261	1.0239	0.099*
H9C	0.1585	0.4679	0.9514	0.099*
C10	0.2726 (4)	0.56883 (17)	0.31523 (19)	0.0632 (8)
H10A	0.1770	0.5767	0.2817	0.076*
C11	0.3033 (4)	0.58304 (16)	0.3941 (2)	0.0678 (9)
H11A	0.2314	0.6030	0.4171	0.081*
C12	0.4402 (4)	0.56894 (17)	0.4396(2)	0.0664 (8)
H12A	0.4628	0.5784	0.4948	0.080*
C13	0.5375 (3)	0.54072 (16)	0.40850 (19)	0.0608(7)
H13A	0.6330	0.5314	0.4413	0.073*
C14	0 5035 (3)	0 52757 (16)	0 33203 (18)	0.0605 (7)
H14A	0.5737	0.5057	0 3094	0.073*
C15	0.3445(4)	0.53147(17)	0.20264(18)	0.0658 (8)
H15A	0.2409	0.5290	0.1813	0.079*
H15B	0.3862	0.4883	0.1940	0.079*
C16	0.3002 0.4074(3)	0.58706 (15)	0.16235 (18)	0.079 0.0580 (7)
C17	0.1071(3) 0.4174(4)	0.50700(15) 0.62653(17)	0.0371(2)	0.0668 (9)
H17A	0.5182	0.6357	0.0617	0.080*
H17R	0.3640	0.6688	0.0297	0.080*
C18	0.3040 0.4040(4)	0.59306 (18)	-0.03955(19)	0.0701 (9)
H18A	0.4414	0.6207	-0.0750	0.105*
HISR	0.4569	0.5507	-0.0301	0.105*
H18C	0.4509	0.5838	-0.0622	0.105*
C10	0.5025	0.30330 0.30442(17)	0.31581 (18)	0.0586 (7)
C20	0.5750(3) 0.7122(3)	0.30442(17) 0.27502(17)	0.31381(18) 0.34806(18)	0.0580(7)
C20	0.7122(3) 0.5200(3)	0.27502(17) 0.30770(16)	0.34890(18) 0.23727(18)	0.0584(7)
C21 C22	0.5209(3)	0.30770(10) 0.27884(16)	0.23727(10) 0.18676(10)	0.0000(7)
C22	0.0003(3)	0.27664(10) 0.42265(16)	0.16070(19) 0.27582(17)	0.0004(7)
C23	-0.0312(3)	0.43303(10) 0.46578(17)	0.27362(17) 0.24052(18)	0.0346(7)
C24	-0.1082(3)	0.40378(17) 0.42622(17)	0.24033(18) 0.25492(17)	0.0013(7)
C23	0.0101(3)	0.42032(17)	0.33483(17) 0.40540(10)	0.0370(7)
C20	-0.0730(3)	0.44181(17) 0.20140(12)	0.40549 (19)	0.0614(8)
NI N2	0.1339(3)	0.50149 (13)	0.71817(14)	0.0555 (6)
N2	0.3757(3)	0.54281(13)	0.28536 (14)	0.0578 (6)
IN 5	0.8255(3)	0.25255(14)	0.37599(17) 0.14504(17)	0.0700(8)
N4	0.6599 (3)	0.25557 (15)	0.14504 (16)	0.0668 (7)
N5	-0.2783(3)	0.49033 (15)	0.21326 (16)	0.0651 (7)
N6	-0.14/0(3)	0.45396 (14)	0.44550 (16)	0.0645 (7)
N11	0.27080 (4)	0.3/011/(18)	0.29545 (2)	0.05072 (12)
01	0.0043 (3)	0.38524 (11)	0.80562 (13)	0.0695 (6)
02	0.1514 (2)	0.34855 (11)	0.91666 (13)	0.0687 (6)
03	0.4846 (2)	0.63080 (11)	0.19261 (12)	0.0618(5)
04	0.3596 (2)	0.57755 (11)	0.08488 (12)	0.0634 (5)
S1	0.46957 (8)	0.33440 (4)	0.37583 (4)	0.05255 (18)
S2	0.35111 (8)	0.34322 (4)	0.19505 (4)	0.05189 (17)
\$3	0.07449 (8)	0.40886 (4)	0.21465 (4)	0.05150 (18)
S4	0.18471 (8)	0.38983 (4)	0.39552 (4)	0.05204 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0555 (17)	0.0526 (16)	0.0653 (18)	-0.0082 (13)	0.0176 (14)	-0.0130 (14)
C2	0.0542 (17)	0.0706 (19)	0.0645 (19)	-0.0201 (15)	0.0173 (14)	-0.0173 (15)
C3	0.0540 (17)	0.076 (2)	0.0641 (19)	-0.0093 (15)	0.0080 (14)	0.0125 (16)
C4	0.076 (2)	0.0659 (19)	0.0649 (19)	-0.0291 (17)	0.0112 (16)	0.0117 (16)
C5	0.069 (2)	0.0648 (19)	0.0645 (19)	-0.0179 (16)	0.0003 (15)	0.0222 (16)
C6	0.0695 (19)	0.0634 (18)	0.0540 (17)	0.0206 (15)	0.0143 (14)	-0.0037 (14)
C7	0.0636 (19)	0.0605 (18)	0.069 (2)	0.0149 (15)	0.0098 (16)	-0.0188 (16)
C8	0.0626 (19)	0.0677 (19)	0.0623 (18)	0.0139 (15)	0.0036 (15)	-0.0193 (15)
C9	0.069 (2)	0.0657 (19)	0.0630 (18)	0.0146 (15)	0.0184 (15)	-0.0181 (15)
C10	0.0568 (18)	0.0680 (19)	0.0641 (19)	0.0133 (15)	0.0142 (14)	0.0103 (15)
C11	0.076 (2)	0.0582 (18)	0.070 (2)	0.0250 (16)	0.0204 (17)	0.0048 (15)
C12	0.067 (2)	0.070 (2)	0.0600 (18)	-0.0121 (16)	0.0110 (15)	-0.0047 (15)
C13	0.0517 (16)	0.0602 (17)	0.068 (2)	-0.0049 (14)	0.0108 (14)	0.0073 (15)
C14	0.0603 (18)	0.0642 (18)	0.0600 (18)	0.0098 (14)	0.0207 (14)	0.0131 (14)
C15	0.077 (2)	0.0613 (18)	0.0574 (17)	-0.0215 (16)	0.0140 (15)	-0.0099 (14)
C16	0.0610 (18)	0.0534 (16)	0.0593 (17)	-0.0091 (14)	0.0150 (14)	-0.0094 (14)
C17	0.068 (2)	0.0584 (18)	0.069 (2)	-0.0180 (15)	0.0078 (16)	0.0077 (15)
C18	0.075 (2)	0.069 (2)	0.0642 (19)	-0.0213 (16)	0.0149 (16)	0.0186 (16)
C19	0.0442 (15)	0.0707 (19)	0.0624 (18)	0.0064 (13)	0.0161 (13)	0.0019 (15)
C20	0.0495 (17)	0.0670 (18)	0.0581 (17)	0.0027 (14)	0.0124 (13)	-0.0007 (14)
C21	0.0587 (17)	0.0632 (18)	0.0604 (18)	0.0127 (14)	0.0197 (14)	0.0052 (14)
C22	0.0602 (18)	0.0597 (17)	0.0644 (18)	0.0173 (14)	0.0216 (15)	0.0124 (14)
C23	0.0404 (14)	0.0676 (18)	0.0581 (17)	0.0016 (12)	0.0156 (12)	0.0073 (14)
C24	0.0545 (18)	0.0698 (19)	0.0603 (18)	0.0118 (15)	0.0162 (14)	0.0024 (15)
C25	0.0513 (16)	0.0680 (18)	0.0525 (16)	0.0062 (13)	0.0147 (13)	-0.0072 (14)
C26	0.0574 (17)	0.0676 (19)	0.0597 (18)	0.0142 (15)	0.0161 (14)	-0.0068 (15)
N1	0.0528 (13)	0.0582 (14)	0.0528 (14)	0.0015 (11)	0.0095 (11)	-0.0033 (11)
N2	0.0492 (14)	0.0653 (15)	0.0577 (14)	-0.0080 (11)	0.0111 (11)	-0.0050 (12)
N3	0.0570 (15)	0.0670 (16)	0.0742 (18)	0.0118 (13)	-0.0050 (13)	-0.0157 (14)
N4	0.0655 (16)	0.0733 (17)	0.0619 (16)	0.0269 (14)	0.0173 (13)	0.0104 (13)
N5	0.0482 (14)	0.0825 (18)	0.0672 (16)	0.0142 (13)	0.0193 (12)	0.0097 (14)
N6	0.0625 (16)	0.0694 (16)	0.0616 (15)	0.0164 (13)	0.0158 (13)	-0.0141 (13)
Ni1	0.0489 (2)	0.0502 (2)	0.0536 (2)	0.00300 (15)	0.01412 (16)	-0.00066 (15)
01	0.0652 (13)	0.0641 (13)	0.0718 (14)	0.0178 (11)	0.0039 (11)	-0.0198 (11)
O2	0.0707 (14)	0.0654 (13)	0.0651 (14)	0.0163 (11)	0.0085 (11)	-0.0224 (11)
O3	0.0625 (13)	0.0630(12)	0.0574 (12)	-0.0164 (10)	0.0107 (10)	0.0014 (10)
04	0.0693 (13)	0.0660 (13)	0.0569 (12)	-0.0244 (11)	0.0195 (10)	-0.0107 (10)
S1	0.0502 (4)	0.0529 (4)	0.0540 (4)	0.0037 (3)	0.0124 (3)	-0.0015 (3)
S2	0.0501 (4)	0.0523 (4)	0.0540 (4)	0.0045 (3)	0.0146 (3)	0.0007 (3)
S3	0.0488 (4)	0.0529 (4)	0.0534 (4)	0.0041 (3)	0.0141 (3)	-0.0008 (3)
S4	0.0503 (4)	0.0528 (4)	0.0531 (4)	0.0035 (3)	0.0135 (3)	-0.0010(3)

Geometric parameters (Å, °)

C1—N1	1.335 (4)	C14—N2	1.314 (4)
C1—C2	1.348 (4)	C14—H14A	0.9599
C1—H1A	0.9601	C15—N2	1.430 (4)

C2—C3	1.340 (4)	C15—C16	1.502 (4)
C2—H2A	0.9600	C15—H15A	0.9601
C3—C4	1.331 (4)	C15—H15B	0.9599
С3—НЗА	0.9599	C16—O3	1.163 (3)
C4—C5	1.372 (5)	C16—O4	1.338 (4)
C4—H4A	0.9600	C17—O4	1.471 (4)
C5—N1	1.338 (4)	C17—C18	1.478 (5)
C5—H5A	0.9601	C17—H17A	0.9600
C6—N1	1.450 (4)	C17—H17B	0.9598
C6—C7	1.506 (4)	C18—H18A	0.9600
С6—Н6А	0.9600	C18—H18B	0.9600
С6—Н6В	0.9599	C18—H18C	0.9600
C7—O1	1.200 (4)	C19—C21	1.349 (4)
C7—O2	1.271 (4)	C19—C20	1.417 (4)
C8—C9	1.482 (5)	C19—S1	1.723 (3)
C8—O2	1.572 (4)	C20—N3	1.148 (4)
C8—H8A	0.9600	C21—C22	1.422 (4)
C8—H8B	0.9600	C21—S2	1.737 (3)
С9—Н9А	0.9600	C22—N4	1.132 (4)
С9—Н9В	0.9600	C23—C25	1.358 (4)
С9—Н9С	0.9600	C23—C24	1.435 (4)
C10—N2	1.325 (4)	C23—S3	1.719 (3)
C10—C11	1.375 (5)	C24—N5	1.138 (4)
C10—H10A	0.9600	C25—C26	1.415 (4)
C11—C12	1.369 (5)	C25—S4	1.730 (3)
C11—H11A	0.9600	C26—N6	1.136 (4)
C12—C13	1.310 (5)	Ni1—S4	2.1599 (9)
C12—H12A	0.9601	Ni1—S2	2.1636 (9)
C13—C14	1.329 (4)	Ni1—S1	2.1647 (9)
С13—Н13А	0.9600	Ni1—S3	2.1714 (9)
N1—C1—C2	120.2 (3)	C16—C15—H15A	110.0
N1—C1—H1A	119.7	N2—C15—H15B	108.1
C2—C1—H1A	120.1	C16—C15—H15B	109.4
C3—C2—C1	120.4 (3)	H15A—C15—H15B	108.4
C3—C2—H2A	119.7	O3—C16—O4	125.5 (3)
C1—C2—H2A	119.9	O3—C16—C15	126.4 (3)
C4—C3—C2	120.0 (3)	O4—C16—C15	108.1 (2)
С4—С3—НЗА	120.1	O4—C17—C18	106.1 (2)
С2—С3—НЗА	119.8	O4—C17—H17A	109.7
C3—C4—C5	119.5 (3)	C18—C17—H17A	109.9
C3—C4—H4A	121.0	O4—C17—H17B	112.1
C5—C4—H4A	119.4	C18—C17—H17B	109.7
N1C5C4	120.1 (3)	H17A—C17—H17B	109.3
N1—C5—H5A	119.2	C17—C18—H18A	112.8
С4—С5—Н5А	120.6	C17—C18—H18B	107.7
N1—C6—C7	114.1 (3)	H18A—C18—H18B	109.5
N1—C6—H6A	107.8	C17—C18—H18C	107.9
С7—С6—Н6А	108.0	H18A—C18—H18C	109.5

N1—C6—H6B	109.2	H18B—C18—H18C	109.5
С7—С6—Н6В	109.5	C21—C19—C20	120.3 (3)
H6A—C6—H6B	108.0	C21—C19—S1	119.6 (2)
O1—C7—O2	127.2 (3)	C20—C19—S1	120.1 (2)
O1—C7—C6	121.4 (3)	N3—C20—C19	178.8 (4)
O2—C7—C6	111.2 (3)	C19—C21—C22	120.5 (3)
C9—C8—O2	96.4 (3)	C19—C21—S2	121.3 (2)
C9—C8—H8A	104.2	C22—C21—S2	118.1 (2)
O2—C8—H8A	110.7	N4—C22—C21	178.1 (4)
C9—C8—H8B	116.9	C25—C23—C24	121.1 (3)
O2—C8—H8B	115.5	C25—C23—S3	121.4 (2)
H8A—C8—H8B	111.7	C24—C23—S3	117.4 (2)
С8—С9—Н9А	108.3	N5—C24—C23	178.6 (4)
С8—С9—Н9В	108.8	C23—C25—C26	122.1 (3)
H9A—C9—H9B	109.5	C23—C25—S4	119.8 (2)
С8—С9—Н9С	111.3	C26—C25—S4	117.9 (2)
Н9А—С9—Н9С	109.5	N6—C26—C25	179.2 (4)
H9B—C9—H9C	109.5	C1—N1—C5	119.8 (3)
N2-C10-C11	119.5 (3)	C1—N1—C6	118.6 (3)
N2-C10-H10A	119.6	C5—N1—C6	121.5 (3)
C11—C10—H10A	120.9	C14—N2—C10	119.7 (3)
C12—C11—C10	118.4 (3)	C14—N2—C15	121.4 (3)
C12—C11—H11A	120.3	C10—N2—C15	119.0 (3)
C10-C11-H11A	121.3	S4—Ni1—S2	176.02 (3)
C13—C12—C11	120.3 (3)	S4—Ni1—S1	88.30 (3)
C13—C12—H12A	120.5	S2—Ni1—S1	91.58 (3)
C11—C12—H12A	119.2	S4—Ni1—S3	91.96 (3)
C12—C13—C14	119.5 (3)	S2—Ni1—S3	88.28 (3)
C12—C13—H13A	119.0	S1—Ni1—S3	178.30 (3)
C14—C13—H13A	121.5	C7—O2—C8	119.8 (2)
N2-C14-C13	122.5 (3)	C16—O4—C17	114.6 (2)
N2—C14—H14A	117.9	C19—S1—Ni1	104.30 (11)
C13—C14—H14A	119.6	C21—S2—Ni1	103.18 (11)
N2-C15-C16	111.5 (2)	C23—S3—Ni1	103.07 (10)
N2—C15—H15A	109.4	C25—S4—Ni1	103.71 (10)
N1—C1—C2—C3	0.5 (5)	C13—C14—N2—C10	-3.8 (5)
C1—C2—C3—C4	0.9 (6)	C13—C14—N2—C15	176.6 (3)
C2—C3—C4—C5	-2.1 (6)	C11—C10—N2—C14	3.5 (5)
C3—C4—C5—N1	2.1 (6)	C11—C10—N2—C15	-176.9 (3)
N1-C6-C7-O1	7.7 (5)	C16—C15—N2—C14	-79.4 (4)
N1—C6—C7—O2	-176.5 (3)	C16—C15—N2—C10	101.0 (4)
N2-C10-C11-C12	-0.7 (5)	O1—C7—O2—C8	15.0 (6)
C10-C11-C12-C13	-2.0 (5)	C6—C7—O2—C8	-160.4 (3)
C11—C12—C13—C14	1.8 (5)	C9—C8—O2—C7	-107.1 (3)
C12—C13—C14—N2	1.1 (5)	O3—C16—O4—C17	2.3 (5)
N2-C15-C16-O3	7.5 (5)	C15—C16—O4—C17	-177.4 (3)
N2-C15-C16-O4	-172.8 (3)	C18—C17—O4—C16	157.6 (3)
C20—C19—C21—C22	3.0 (5)	C21—C19—S1—Ni1	0.1 (3)

S1—C19—C21—C22	-175.5 (3)	C20—C19—S1—Ni1	-178.4 (2)
C20-C19-C21-S2	179.8 (2)	S4—Ni1—S1—C19	174.96 (12)
S1—C19—C21—S2	1.3 (4)	C19—C21—S2—Ni1	-2.0 (3)
C24—C23—C25—C26	8.0 (5)	S1—Ni1—S2—C21	1.54 (12)
S3—C23—C25—C26	-175.3 (3)	S3—Ni1—S2—C21	179.84 (12)
C24—C23—C25—S4	-177.9 (2)	C25—C23—S3—Ni1	-0.2 (3)
C2-C1-N1-C5	-0.5 (5)	C24—C23—S3—Ni1	176.6 (2)
C2-C1-N1-C6	-178.8 (3)	S4—Ni1—S3—C23	1.13 (11)
C4—C5—N1—C1	-0.8 (5)	C23—C25—S4—Ni1	2.0 (3)
C4—C5—N1—C6	177.4 (3)	C26—C25—S4—Ni1	176.3 (2)
C7—C6—N1—C1	-80.3 (4)	S1—Ni1—S4—C25	176.70 (12)
C7—C6—N1—C5	101.4 (4)	S3—Ni1—S4—C25	-1.61 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C10—H10A…O1 ⁱ	0.96	2.13	3.064 (4)	164
C13—H13 <i>A</i> ···N6 ⁱⁱ	0.96	2.57	3.357 (4)	140
C15—H15 <i>B</i> ····S2	0.96	2.86	3.680 (3)	145

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z.