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Abstract: Boron-doped graphite was prepared by the heat treatment of coke using B4C powder as a
graphitization catalyst to investigate the effects of the substitutional boron atoms on the interlayer
spacing of graphite. Boron atoms can be successfully incorporated into the lattice of graphite by heat
treatment, resulting in a reduction in the interlayer spacing of graphite to a value close to that of ideal
graphite (0.3354 nm). With an increase in the catalyst mass ratio, the content of substituted boron in
the samples increased significantly, causing a decrease in the interlayer spacing of the boron-doped
graphite. Density functional theory calculations suggested that the effects of the substitutional boron
atoms on the interlayer spacing of the graphite may be attributed to the transfer of Π electrons
between layers, the increase in the electrostatic surface potential of the carbon layer due to the
electron-deficient nature of boron atoms, and Poisson contraction along the c-axis.

Keywords: boron-doped graphite; substitutional boron; interlayer spacing; DFT calculations

1. Introduction

Boron has been widely used as a graphitization catalyst during the preparation of
carbonaceous materials for application in lithium-ion battery anodes because it can reduce
the graphitization temperature and promote the degree of graphitization [1–4]. As is well
known, boron atoms can be inserted into graphite to form B4C clusters. In addition, some
boron atoms can substitute for the carbon atoms, since the atomic radius of boron is close to
that of carbon, which can effectively influence the structure, electrochemical performance
and physicochemical properties of graphite [5–9]. One prominent structural characteristic
of boron-doped carbon materials is the obvious decrease in the interlayer spacing. Many
researchers have reported that boron-doped graphite has a smaller interlayer spacing than
that of ideal graphite (0.3354 nm) [10–12].

A decrease in the interlayer spacing of boron-doped graphite is considered to be
associated with dissolution–precipitation of the carbon atoms and the substitutional boron
atoms (sub-B) in the lattice, while boron atoms occupying the interstitial positions enlarge
the interlayer spacing [10,12,13]. The carbon dissolution–precipitation mechanism is widely
referenced to understand the excellent catalytic effects of boron, which can accelerate the
gradual homogeneous graphitization of graphite. However, it is difficult to understand
the smaller interlayer spacing of boron-doped graphite compared to ideal graphite. There
are two possible mechanisms for the effect of sub-B on the interlayer spacing of graphite:
(1) the decrease in d002 upon boron doping may be related to the depleted p-electrons
between the graphitic layers, which leads to a shorter interlayer distance and a lower
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density of Π-electrons within the graphite layers because of the lower valence state of
boron relative to carbon [1]; (2) the decrease in the interlayer spacing is mainly caused by
Poisson contraction along the c-axis due to the expansion along the a-axis. On the contrary,
the depleted p-electrons between graphitic layers by sub-B result in an enlargement of the
interlayer spacing [14]. To date, as far as we are aware, no further theoretical study has
been conducted and no general understanding has been reached as to the effect of sub-B on
the interlayer spacing of graphite.

In this paper, needle coke and pitch coke were chosen as raw materials, and B4C
powder was used as a graphitization catalyst to prepare boron-doped graphite. The
variation in the sub-B content in the carbon lattice with the addition of the catalyst and
the effects of the sub-B on the interlayer spacing of the graphite were systematically
investigated. The mechanism of the sub-B-induced decrease in the interlayer spacing was
revealed based on the analysis of the partial density of states, Mulliken partial charges,
total charge density, electrostatic surface potential and Poisson’s ratio of the graphite using
density functional theory (DFT) calculations.

2. Experimental Methods
2.1. Synthesis of Boron-Doped Graphite

Needle coke and pitch coke powder (SHINZOOM Co., Changsha, China) were cho-
sen as the raw materials, and B4C powder (C-W NANO Co., Shanghai, China) was used
as graphitization catalyst. To prepare boron-doped graphite, B4C powder and coke were
homogeneously mixed and then transferred into a graphite crucible, which was placed in the
center of a medium-frequency induction graphitizing furnace. The furnace was evacuated
and flushed with Ar gas three times to completely remove the oxygen and moisture, avoiding
their negative impacts. The temperature of the furnace was raised to 2700 °C at a heating rate
of 10 °C/min and annealed for 2 h under an Ar atmosphere. Four mass ratios of B4C relative
to coke (0%, 3%, 6% and 9%) were chosen to synthesize the products, which were denoted
as 0GC27, 3GC27, 6GC27 and 9GC27, respectively, when the needle coke was used as raw
material. The samples prepared with different mass ratios of B4C relative to pitch coke (0%,
3%, 6% and 9%) were denoted as 0PIC27, 3PIC27, 6PIC27 and 9PIC27, respectively.

2.2. Characterization of the Graphitized Samples

X-ray diffraction measurements were carried out on a Brucker D8 X-ray diffractometer
using Cu Kα radiation (λ = 0.15406 nm). Silicon was used as an internal standard to
calibrate the instrumental error in XRD [15]. The interlayer spacing of the graphite samples
was calculated using the Bragg equation.

X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi) was used to characterize the
bonding state of boron in the samples. The total amount of boron with respect to carbon in
the samples was estimated by calculating the ratio between the C1s and B1s peak areas and
considering sensitivity factors, i.e., boron atoms were assumed to be doped uniformly into
the deeper graphite layers.

2.3. Models and Computational Details

All the calculations were performed using the DMol3 package of Materials Studio on
the basis of DFT [16,17]. The Perdew–Burke–Ernzerhof (PBE) model under the general-
ized gradient approximation [18] and double-numeric quality basis set with polarization
functions were chosen to deal with the electron exchange–correlation interactions. All-
electron relativistic calculations were used to treat the core electrons. Linear combination
of atomic orbitals was employed to describe the interactions formed between the electrons
and ions. Brillouin zone integrations were performed with a 5 × 5 × 1 Monkhorst–Pack
k-point mesh to calculate total energies. To optimize the geometric structure, the energy
convergence standard of the system was set to 1 × 10−5 Ha, atomic force < 0.02 Ha/Å, and
maximum ion displacement 0.005 Å for the calculations. Because the weak interactions
were not well-described by the standard PBE functional, the empirical dispersion-corrected
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density functional theory approach proposed by Grimme [19,20] was used to describe the
interactions between model layers.

In order to reveal the mechanism of the effect of the substituted boron atoms on
the interlayer spacing in the graphite lattice, the corresponding periodic boron-doped
graphite (ABA stacking) supercell structure was established. The mass ratio of boron was
set at ~1.78% based on the results obtained from our experiments. Two kinds of boron-
doped graphite models were optimized and the calculations of the partial density of states,
Mulliken partial charges, total charge density, electrostatic surface potential and Poisson’s
ratio were based on the optimized structure.

3. Results and Discussion
3.1. Characterization of Boron-Doped Graphite

Boron-doped graphite was successfully prepared using needle coke and pitch coke as
raw materials and B4C powder as the graphitization catalyst. The states of boron in the
samples were characterized using XPS, and the XPS B1s core-level spectra of the samples as
well as their deconvolution are depicted in Figure 1. For the 3GC27, 6GC27, 9GC27, 3PIC27,
6PIC27 and 9PIC27 samples, the B1s band could be deconvoluted into three binding-energy
peaks at 186.9, 188.7 and 190.3 eV, corresponding to the B atoms in the B4C clusters, the
sub-B structure and the O–B bonding structure, respectively [21,22]. The total amounts of
boron with respect to carbon in the 3GC27, 6GC27, 9GC27, 3PIC27, 6PIC27 and 9PIC27
samples were 0.9%, 1.55%, 2.15%, 0.94%, 1.36% and 2.52%, respectively, as listed in Table 1;
the amounts were estimated by calculating the ratio of C1s to B1s. To better visualize
these results, Figure 2 shows the percentiles of each boron state according to Table 1. For
the samples prepared using needle coke as the raw material, the content of B4C clusters
and B-O did not vary much with the addition of a greater amount of catalyst, whereas
the amount of sub-B significantly increased as the mass ratio of the catalyst increased.
Furthermore, the same phenomenon was discovered when pitch coke was used as the raw
material as shown in Figure 2, suggesting that an adjustment to the amount of catalyst
most substantially impacted the sub-B content.
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Figure 1. B1s XPS spectra of the boron-doped graphite studied. (a) Boron-doped graphite prepared
using needle coke (GC) as raw material; (b) Boron-doped graphite prepared using pitch coke (PIC) as
raw material.

The interlayer spacings of the samples were calculated using XRD and the Bragg
equation and are listed in Table 2. Moreover, the interlayer spacings of the samples as
a function of the amount of catalyst used are displayed in Figure 3. For the samples
prepared using needle coke and pitch coke, the interlayer spacings of the samples heated
to 2700 °C apparently decreased with an increase in the amount of catalyst up to 3%, then
slightly decreased upon further increasing the catalyst loading, revealing that boron doping
can significantly improve the degree of graphitization [23,24]. The interlayer spacing of
9GC27 and 9PIC27 were 0.33545 nm and 0.33537, respectively. It is worth noting that the
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interlayer spacing of 9PIC27 was slightly lower than that of ideal graphite (0.3354 nm).
When combined with the results obtained from the XPS analysis indicating the obvious
increase in sub-B content in the boron-doped graphite samples after adjusting the amount
of catalyst, it can be deduced that the decrease in the interlayer spacing of the samples was
associated with the increase in the sub-B content. Sub-B atoms play an important role in
decreasing the interlayer spacing of graphite, accounting for the fact that the interlayer
spacings of some boron-doped graphite samples were lower than that of ideal graphite
(0.3354 nm) [11].

Table 1. Boron concentration in the samples, obtained using XPS.

Sample I.D. B4C Clusters (at.%) Sub-B (at.%) B-O (at.%) B (at.%)

GC27 0.32 0.45 0.13 0.90
6GC27 0.32 1.16 0.07 1.55
9GC27 0.37 1.67 0.11 2.15
3PIC27 0.27 0.54 0.13 0.94
6PIC27 0.30 0.92 0.14 1.36
9PIC27 0.32 2.00 0.20 2.52
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visualization of the data in Table 1.

Table 2. Interlayer spacings (d002) of the samples studied.

Sample I.D. d002 (nm) Sample I.D. d002 (nm)

0GC27 0.33654 0PIC27 0.33647
3GC27 0.33557 3PIC27 0.33553
6GC27 0.33547 6PIC27 0.33546
9GC27 0.33545 9PIC27 0.33537
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3.2. Effect of Substitutional Boron on the Interlayer Spacing

Two boron-doped graphite models were established, as shown in Figure 4a,b, to reveal
the effect of sub-B on the interlayer spacing of graphite. The value of E in Figure 4 presents
the total energy of each boron-doped graphite model after optimizing the geometry. It can
be seen that the total energy of boron-doped graphite model (b) after geometry optimization
was the lowest, indicating that the structure in model (b) was the most stable. The interlayer
spacings calculated for pristine graphite and model (b) are listed in Table 3. The interlayer
spacing of model (b) was 0.3323 nm, lower than that of 9GC27 (0.33545 nm) and 9PIC27
(0.33537 nm). Although the interlayer spacing of model (b) did not match the experimental
results, the interlayer spacing calculated for the graphite decreased after boron doping,
which was consistent with the variations in interlayer spacing observed in the experiment.
Therefore, model (b) was used to further investigate the effect of the Poisson contraction
on the interlayer spacing using Poisson’s ratio and the effect of the electronic structure of
boron-doped graphite on the interlayer spacing using the partial density of states, Mulliken
partial charges, total charge density and electrostatic surface potentials.
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atoms are carbon; E is the total energy of the models after optimization of the geometry.

Table 3. Calculated interlayer spacings (d002) of pristine graphite and model (b).

Sample I.D. d002 (nm)

Pristine graphite 0.3369
Model (b) 0.3323
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3.2.1. The Effect of Poisson Contraction on the Interlayer Spacing

The decrease in the lattice parameter (c) caused by Poisson contraction along the c-axis
(∆c0)p can be expressed as follows [14]:

(∆c0)p = −3
√

3(dC−B − dC−C)

(
c0,G

a0,G

)(
− s13

s11

)
· xB (1)

where a0,G and c0,G are the lattice parameters of the non-doped graphite sample; dC−B
and dC−C correspond to the bond length of C–B and C–C, respectively; xB is the atomic
fraction of boron in model (b); s13 and s11 are the components of the elastic compliance
tensor; and −s13/s11 is the Poisson’s ratio. The values of a0,G, c0,G, dC−B, dC−C, s11 and
s13 were obtained from the optimized boron-doped graphite model (b) and are listed in
Table 4, in which the bond length is the mean value of the length of the B–C or C–C bonds
at different locations. Hence, the variable value of lattice parameter c derived from Poisson
contraction, (∆c0)p, was calculated to be −0.0003 nm.

Table 4. The a0,G, c0,G, dC−B, dC−C, s11 and s13 values obtained from model (b).

Sample I.D. a0,G c0,G dC−B dC−C s11 s13

Model b 0.2459 nm 0.6738 nm 0.1485 nm 0.1412 nm 0.0009656 −0.0001537

The decrease in the lattice parameter c of graphite caused by boron doping (∆c) can
be expressed using the following equation:

∆c = cB,G − c0,G (2)

where cB,G is the lattice parameter of the boron-doped graphite. The value of cB,G obtained
from the optimized boron-doped graphite model (b) was 0.6646 nm. Therefore, the ∆c
value calculated from Equation (2) was −0.0092 nm, which is significantly lower than
(∆c0)p (−0.0003 nm), indicating that the decrease in the interlayer spacing caused by boron
doping was much larger than that derived from Poisson contraction. Poisson contraction
contributes less to the decrease in the interlayer spacing.

3.2.2. The Electronic Structure of the Boron-Doped Graphite

Figure 5a exhibits the partial density of states (PDOS) of B, C1C2C3 and BC1C2C3,
labeled in Figure 5b, where the dotted lines represent the Fermi level (EF). As shown
in Figure 5a, the p orbitals of boron and carbon atoms in model (b) showed obvious
hybridization phenomena around −2.4 eV, indicating a strong interaction between the
boron and carbon atoms. The Mulliken partial charges of the boron-doped graphite samples
were calculated to study the charge transfer between the atoms in boron-doped graphite,
as displayed in Figure 5b. It is clear that the charge was mainly transferred from the
boron atoms bearing partial positive charges to the nearest neighboring carbon atoms
bearing partial negative charges after boron doping, which can be attributed to the higher
electronegativity of carbon with respect to boron. Moreover, the total value of the Mulliken
partial charges around the boron atoms was −0.14, while that of the carbon atoms in the
adjacent carbon layer near the boron atoms was 0.14, implying the presence of electron
transfer between the layers around the boron atoms. The same phenomenon was also
found in model (a) (Supplementary Figure S1, see details in Supplementary Materials).

Figure 6 depicts the charge density of graphite and boron-doped graphite along the (010)
crystal plane, which clearly shows the charge cloud distributed around the atoms. The red
and blue regions correspond to the regions with high and low electron density, respectively.
Figure 6a shows that the Π electron clouds between the layers of the graphite partially
overlapped, which is consistent with the previous report in [25]. Compared with graphite,
the charge density between the layers in the boron-doped graphite varied significantly due
to the relative displacement of the layers. However, the Π electron clouds around the boron
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atoms between the layers of graphite still partially overlapped, indicating that boron doping
increased the overlapping of the Π electron clouds between the layers. For model (a), there
was no relative displacement between the layers, and the charge density between the layers
in the boron-doped graphite was slightly enhanced (Supplementary Figure S2). The increase
in the overlap of the Π electron clouds between the layers was the result of electron transfer
between the layers and the decreased interlayer spacing.
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The electrostatic surface potential (ESP), refering to the electrostatic potential mapped
on the van der Waals surface, can be used to describe the electrophilicity or nucleophilicity
of a surface. The regions with positive potentials are electron-deficient sites for nucleophilic
attack. Conversely, the regions with negative potentials are electron-rich sites that pref-
erentially interact with electrophilic reactants. The ESP-mapped van der Waals surfaces
of graphite and boron-doped graphite along the (001) crystal plane are shown in Figure 7.
The ESPs of both graphite and boron-doped graphite were positive and vulnerable to
nucleophilic attack. The mean ESP value of the carbon layer with boron atoms shown
in Figure 7b was 0.156 Ha e−1, higher than that of pure graphite (0.146 Ha e−1, listed in
Table S1). The electrostatic surface potential around the boron atoms significantly increased
due to the electron-deficient nature of boron, while the electron accumulation in the B-C
bonds led to a decrease in the ESP at their corresponding sites. On the other hand, the
overall color of Figure 7b is lighter than that of Figure 7a, implying that the global ESP
value, and hence the electrophilicity, of the boron-doped graphite layer slightly increased
due to the redistribution of the electrons in the Π bond and the electron-deficient nature of
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the carbon layer resulting from boron doping. Moreover, the global ESP value of model (a)
also slightly increased, the same as that of the model (b) (Supplementary Figure S3).
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3.2.3. Effect of the Electron Redistribution Caused by Boron Doping on the Interlayer Spacing

Based on the analysis of the electronic structure of model (b), the mechanism of the
effect of the sub-B atoms on the electronic structure and interlayer spacing of graphite is
illustrated in Figure 8. As the boron atoms substituted for the carbon atoms in the graphite
lattice, the electronic balance in the Π bond between the two layers was broken. Due to
the electron-deficient nature of the boron atoms, 0.14 electrons were transferred from layer
A (boron-free) to layer B (boron-containing), which was calculated via the analysis of the
Mulliken partial charges. The electrons in the Π bond of layer A were then redistributed,
which resulted in electron-deficient Π bonds in layer A. In addition, the Π electrons in
layer B were also redistributed. The Π electrons around the boron atoms from layer A
consequently accumulated around the carbon atoms (closest to the boron atom) because of
the greater electronegativity of the carbon atoms. Due to the electron-deficient nature of
the boron atoms and the electron transfer between the layers, both layers A and B were
electron-deficient, leading to a decrease in the repulsion force of the Π electrons between
the layers. According to our ESP analysis, the mean ESP value of the carbon layer with
boron atoms (shown in Figure 7) was 0.156 Ha e−1, higher than that of pure graphite,
because the boron–carbon layer was in an electron-deficient state. Thus, the ESPs of the
electron-deficient layers A and B (shown in Figure 8) increased, resulting in an increase in
their attraction to the Π electrons of the adjacent layer. Layers A and B, with high ESPs, could
effectively increase their attraction to the Π electrons of the adjacent layer. Therefore, the
interlayer spacing of boron-doped graphite decreased because of the increase in the attraction
force between layers A and B and the Π electrons of the adjacent layer and the decrease in the
repulsion force of the Π electrons between the layers. However, the repulsion forces between
the nuclei and the repulsion force of the Π electrons between the layers increased when the
interlayer spacing decreased, which obstructed a further reduction in the interlayer spacing
until the attraction and repulsion forces between the layers reached a balance. Notably, the
electrons between the layers were redistributed, and the electron density gradually increased
as the interlayer spacing decreased to a value that was possibly greater than that of graphite
before boron doping when the system was balanced.
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4. Conclusions

The boron atoms that substitute for carbon atoms in graphite lattices effectively de-
crease the interlayer spacing. In addition, the mechanism of the effect of the substitutional
boron on the interlayer spacing was revealed based on DFT calculations. According to the
Mulliken partial charge analysis, boron doping broke the balance of the electrons between
the layers and led to a small amount of electron transfer from an adjacent layer to a layer
containing boron atoms. Due to the electron-deficient characteristic of boron atoms and the
electron transfer between the layers, both the layer containing boron atoms and its adjacent
layer were in an electron-deficient state, which resulted in a decrease in the repulsion of
the electrons between the layers and an increase in the ESP of the layers. Correspondingly,
the attractive force between the electrons in the adjacent layers (the layer containing boron
atoms and its adjacent layer) increased, as determined by our ESP analysis. The increase in
the attraction forces between the carbon layers and the Π electrons in the adjacent layer
and the decrease in the repulsion forces of the Π electrons between the layers resulted in
a decrease in the interlayer spacing. The electron density between the layers increased
gradually as the interlayer spacing decreased. In short, the electron redistribution induced
by boron doping played an important role in decreasing the interlayer spacing, while
Poisson contraction contributed less.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15124203/s1, Figure S1: Mulliken partial charges of some
atoms in model (a). Inset: The serial numbers of the atoms in the layers of model (a). Carbon:
dark grey; boron: pink; Figure S2: Charge density diagram within the (010) plane of boron-doped
graphite of model (a) across the boron atoms; Table S1: The maximum, mean and minimum value
of ESPs of pure graphite and boron-doped graphite of model (b); Figure S3: Electrostatic surface
potentials mapping within the (001) plane of boron-doped graphite of model (a) across the boron
atoms visualized using a chromatic scheme from red (positive ESP) to blue (neutral ESP).
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