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Abstract

Genomic imprinting results in monoallelic expression of genes in mammals and flowering
plants. Understanding the function of imprinted genes improves our knowledge of the regu-
latory processes in the genome. In this study, we have employed classification and cluster-
ing algorithms with attribute weighting to specify the unique attributes of both imprinted
(monoallelic) and biallelic expressed genes. We have obtained characteristics of 22 known
monoallelically expressed (imprinted) and 8 biallelic expressed genes that have been exper-
imentally validated alongside 208 randomly selected genes in bovine (Bos taurus). Attribute
weighting methods and various supervised and unsupervised algorithms in machine learn-
ing were applied. Unique characteristics were discovered and used to distinguish mono and
biallelic expressed genes from each other in bovine. To obtain the accuracy of classification,
10-fold cross-validation with concerning each combination of attribute weighting (feature
selection) and machine learning algorithms, was used. Our approach was able to accurately
predict mono and biallelic genes using the genomics and proteomics attributes.

Introduction

Most diploid organisms, including mammalians, receive two copies of each gene from their
parents and express both alleles equally in their cells. For normal development, each individual
needs to receive both the maternal and paternal genomes. For many genes in mammalian spe-
cies, both the maternal and paternal alleles are equally expressed. However, the expression of
some genes is determined by imprinting, an epigenetic event in which only one of the alleles
inherited from one of the parents get silenced and inactivated[1]. Consequently, in a limited
group of genes which are imprinted, one of the parental alleles is expressed preferentially [2].
The epigenetic mechanism in the form of imprinting leads to monoallelic expression of some
genes depending on parent-of-origin of the allele [3]. Therefore, if the paternal allele of the
gene is imprinted, the other allele from the mother would be expressed and vice versa. This
results in unequal expression of two alleles of a gene, which is in contrast to Mendelian genet-
ics. The imprinting mechanism in mammalian species is mainly conserved. Genomic
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imprinting leads to allele-specific gene expression[4, 5]. It has been shown that many human
diseases including Prader-Willi syndrome (PWS)[6], Beckwith-Wiedemann syndrome
(BWS) [7] and some types of cancer [8, 9] are strongly associated with defective expression in
imprinted genes. Large offspring syndrome (LOS) is an example of abnormal imprinting in
bovine and ovine that causes abnormally high rates of growth which is phenotypically and epi-
genetically similar to BWS in human [10]. The conservation pattern between different organ-
isms has greatly facilitated the study of imprinting mechanisms in some human genetic
disorders [11]. On the other hand the importance of imprinted genes is increasing, because
there are some evidences that imprinting defects are associated with complex disorders like
diabetes, obesity, developmental abnormalities and behavioral disorders.

Although single imprinted genes could be observed in the genome, imprinted genes typi-
cally located in clusters with 3 to 12 genes with a length of 20 kb to 3.7 Mb of DNA[11].The
clustering of imprinted genes is the key mark that the imprinting process is not specific to the
gene and can act through cis orientation with elements controlling the expression of multiple
genes. Experiments identified key controllers as imprint control element (ICE) or imprint con-
trol region (ICR) in seven imprinted clusters. It has been showed that deleting this element in
mouse leading to loss of imprinted expression following transmission through the maternal or
paternal germline [12]. In fact, when ICE is un-methylated, it operates as an initiator which
epigenetically repress genes in a cis position manner [13]. Although DNA methylation, histone
modifications and non-coding RNAs (ncRNAs) are key mechanisms in genomic imprinting,
the genomic sequence is still important [14].

Most of imprinted genes play important roles in the growth regulation of fetus and placenta
in the process of development [15, 16]. Many imprinted genes have been identified in human
and mouse while few imprinted genes have been identified in cattle, might indicate the limita-
tions of the bovine data set. Computational prediction of imprinted genes using attributes in
the genomic DNA sequences alone has been used for mouse and human genomes [17, 18]. It
has been reported that imprinted genes in mammals include only one percent of the whole
genome. However, a wide range of imprinted genes from 100 [18] to 600 genes [17] and even
more than 2000 genes [19] is reported in the literature. The variation may be due to ignorance
of tissue-specific and conditional imprinting statues for some of imprinted genes. Interest-
ingly, there are many genes that are imprinted in human or mouse but not imprinted in cattle
[3]. Although the genome of bovine with the highest percentage of annotated genes and a high
sequence coverage is the most characterized genome among livestock, few imprinted genes
have been experimentally identified [20]. At present, only 25 imprinted genes experimentally
validated in cattle and this list could be expanded by adding new imprinted genes [21, 22].
With a complete catalog of imprinted genes in different mammalian species, it is feasible to
understand the role of genomic imprinting in the evolutionary process [23]. With this quantity
of confirmed imprinted genes in the bovine, there is a chance to find other genomic character-
istics common to bovine imprinted genes.

In this study, several sequence attributes were selected to find common characteristics
shared among imprinted genes. Because of known association of differential methylation with
imprinting status in this region, GC contents and CpG islands were tested. It has been sug-
gested that high-density CpG islands, tandem repeat patterns, and retrotransposons were
selective characteristics of imprinted Differentially Methylated Regions (DMRs) [24]. Gene
expression, histone modifications and transcription factor (TF) binding sites are strongly cor-
related with methylation mechanism in DNA [25]. The epigenetic regulation through methyla-
tion of CpG islands is an important mechanism in the differentiation of embryonic stem cells
into specific cells and tissues [24]. Attributes of 20 known imprinted genes in human, mouse,
and cattle species were previously described and compared by Khatib et al. (2007). They
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observed higher values for GC contents, CpG islands and tandem repeats in imprinted genes.
In several imprinted genes, DMRs were related to monoallelic gene expression pattern [3].
DNA methylation occurs largely in repetitive elements including satellite sequences, centro-
meric repeats, and CpG islands in or near promoter sequences. CpG islands are GC rich areas
in DNA with high proportions of CpG dinucleotides.

According to the original definition, CpG islands is defined as a region with GC content
greater than 50%, at least 200 bp length and CpGs observed to expected ratio above 0.6 [26].
CpG islands are commonly regarded as epigenetic key regulatory elements. Although CpG
islands are generally un-methylated, a significant number of CpG islands are methylated in
genes promoter regions. Methylation in the promoter region is generally related to the silenc-
ing of genes related to different types of cancers [27]. Thus, gene silencing can generally occur
after hyper-methylation of CpG islands in the promoter region which leads to inactive tran-
scription. The level of DNA methylation has also been found to be related to gene length [28].
Other studies showed that retrotransposons or tandem repeats are unconfidently predictors of
imprinting statues [29, 30]. Repetitive elements are nucleotide patterns that, in contrast to
unique sequences, occur multiple times in the genome. In fact, a substantial part of the mam-
malian genome consists of repeats. In accordance with previous reports in human and mouse,
imprinted genes in cattle have remarkably fewer Short Interspersed Elements (SINEs) in num-
ber compared to biallelic expressed genes. Also, imprinted genes were found significantly
underrepresented Long Interspersed Elements (LINEs) and Long Terminal Repeats (LTRs) in
compare to biallelic expressed genes, which is in contrast with studies on human and mouse.
Cowley et al. (2011) by observing no differences in repeat element prevalence at imprinted ret-
rogene loci, concluded that the SINE depletion and LINE abundance were not required fea-
tures for imprinting. Several studies reported differences between imprinted loci and biallelic
expressed genes in the occurrence of the repeated sequences biallelic. A general agreement is
that SINEs to be depleted at imprinted loci with increased frequency of LINEs. By taking the
high density of LINE-1 elements around X-inactivated genes into account, it can be confirmed
that the monoallelic expression of autosomal genes is flanked by high densities of repetitive
sequences [31].

Additionally, some studies suggested a correlation between codon usage and the level of
gene expression [32, 33]. Therefore, in the current study codon usage by mono and biallelic
genes was considered as a feature. To our knowledge, this is the first study that amino acid and
codon usage attributes were used for determining characteristics of imprinted and biallelic
expressed genes.

The purpose of machine learning methods is learning functional relationships from data
without defining a priori [34-36]. In computational biology, the purpose is to obtain predictive
models without strong assumptions about underlying mechanisms, which are less well known
or unknown [37]. Since bioinformatics was introduced, researchers used machine learning to
accelerate studies on biomolecular structure prediction, gene finding, genomics and proteo-
mics [38]. We have hypothesized that data mining approaches would find unique attributes of
mono and biallelic genes. Classification algorithms try to build a classification model given
some examples of the classes we are trying to model. The obtained model can then be used to
improve our knowledge on available data. The performance of a machine learning algorithm
for classification tasks can be intensively influenced by the relevance of attributes. This perfor-
mance can be easily diminished if redundant attributes are used [39]. Attribute weighting
models create a set of more relevant attributes by reducing their size [40]. In some functional
examples, different supervised and unsupervised machine learning algorithms were used by
Ebrahimi et al. (2011) to capture attributes that related to thermostability of proteins [41].
Beiki et al. (2012) also used different supervised and unsupervised machine learning
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algorithms to classify and predict of olive cultivars [42]. Hosseinzadeh et al. (2012) used
machine learning approaches to classify different types of lung cancer [43]. Clustering is a
grouping process so that the objects in each cluster have high similarity with each other but
they have high dissimilarity with objects in other clusters [44]. Discovering the relationship
between input attributes and a target attribute is the main characteristics of supervised meth-
ods. The discovered relationship is then used in the structure of the model. Discovering struc-
ture by exploring similarities or differences among individual data is the ability of a relevant
unsupervised algorithm [45]. Clustering is considered to be the most important problem of
unsupervised learning method. Meanwhile, with little or no knowledge, relevant patterns and
structures can be found directly from datasets by clustering [46]. Clustering problems can be
solved easily by K-Means [47], which is a simple unsupervised learning algorithm. The process
uses a simple method to classify a given dataset through a certain number of clusters (assumed
k clusters) fixed a priori. Representative objects instead of the mean value of objects in each
cluster are used by the K-Medoids methods as reference points.

The aim of the present study was to identify unique characteristics to distinguish mono
from biallelic expressed genes in the bovine genome using supervised and unsupervised
machine learning algorithms and attribute weighting methods.

Materials and methods
Dataset

A list of 30 genes containing 22 verified imprinted and 8 biallelic expressed genes in the bovine
were compiled from the Metalmprint (http://bioinfo.hrbmu.edu.cn/Metalmprint) and Gen-
elmprint database (http://www.geneimprint.com). The list consisted of GRB10, PEG10, SGCE,
MEST, NAPIL5, IGF2R, MAOA, GNAS, PEG3, NDN, MEG3, RTL1, APEG3, NNAT, TSSC4,
HI9, IGF2, PHLDA2, CDKN1C, MEGY, PLAGLI and ASCL2 as experimentally validated
imprinted genes and COPG2, ASB4, SLC38A4, HTR2A, SFMBT2, SDHD, CD81 and DCN as
biallelic expressed genes. There are conflicting reports surrounding the status of SNRPN and
ZIM2 genes to be mono or biallelic expressed genes. Therefore, we did not use these genes in
our analysis. Furthermore, XIST gene is also a particularly challenging example due to its pat-
tern of expression,; it is randomly expressed in rodent, human and embryonic tissues [48],
while it is just expressed paternally in the rodent extraembryonic tissues [49]. As such, XIST
gene was also not included in our analysis. In spite of the fact that almost majority of genes in
the genome have biallelic expression patterns, low number of validated non-imprinted genes
were available in the bovine genome. Therefore, we randomly selected 200 genes from bovine
genome to increase the number of genes in biallelic dataset. Therefore, with 8 validated non-
imprinted genes and 200 randomly selected genes, initial dataset comprised 208 non-
imprinted and 22 imprinted genes (S1 Table).

Extracted attributes from genomic and protein sequences

The initial dataset contained 200 attributes in three levels containing DNA structure, tran-
scription level as codon usage and amino acids composition. CpG islands, SINEs, LINEs,
LTRs, described for the DNA sequence, were extracted from the UCSC Genome Browser web-
site (http://genome.ucsc.edu/cgi-bin/hgGateway; February 2006 build), using table tools.
UCSC Repeat Masker tracks were used for finding of repeated elements. Also, GC contents
were analyzed using the R environment (http://www.r-project.org) via BS genome package
(BSgenome.Btaurus.bosTau8). The Uni-Prot Knowledgebase (Swiss-Prot and Tremble) data-
base was used for extracting protein sequences. A number of attributes such as count and fre-
quency of each amino acid and negatively and positively charged amino acids were extracted
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using various bioinformatics tools and softwares from the ExPASY website (http://www.
expasy.org). Codon usages of genes shown by the frequency of each codon types were obtained
from www.bioinformatics.org/sms2/codon_usage.html.

Attributes were individually extracted for 11 genomic sub-domains. These attributes con-
sisted of genes as whole, exons, introns, 5’-untranslated region (5’-UTR), 3’-untranslated
region (3°-UTR), +1, +10, +100 kb upstream, -1, -10, and -100 kb downstream. Consequently,
genomic coordinates for total numbers of SINEs, LINEs, LTRs and simple repeats in genes
sequence length, exons, introns, 5’-UTR, 3’-UTR, +1 kb, +10 kb, +100 kb, -1 kb, -10 kb, and
-100 kb regions of both mono and biallelic expressed genes were calculated. Additionally,
number of CpG islands (CpGi), number of CpG dinucleotide (CpGn) and CpGi length, in
these regions were assessed. Number of SINEs, LINEs, LTRs, simple repeats, CpGi and CpGn
were also calculated per kb of gene regions sequence (from start to end). In the cases of ambig-
uous attributes, such as loss of intron in some genes, the missing values filled by average attri-
bute values.

The dataset was imported into the RapidMiner (RapidMiner7.5.003, www.rapidminer.
com), and imprinted and biallelic expressed genes were set as the target or label attribute. In
addition, differences between imprinted and biallelic expressed genes regarding attributes
were statistically tested using Mann-Whitney U test. Distributions of these attributes across
imprinted and biallelic expressed genes were then visualized as boxplot graphs using BoxPlotR
web tools[50].

Data cleaning

To eliminate repeating characteristics, attributes with correlation coefficient higher than 0.95
were not considered. Furthermore, numerical attributes with standard deviation lower than or
equal to 0.1 were removed. The final refined dataset was considered as the main source and
labeled as Mds dataset.

Attribute weighting

Attribute weighting is a method of choice to identify attributes contributing to objects. This
method was used to identify important attributes and their contribution to allele-specific
expression. The procedure suggested by Ebrahimi et al. (2011) was used as the main guide to
do attribute weighting. Eleven attribute weighting algorithms consisting weight by informa-
tion gain, weight by information gain ratio, weight by principle component analysis, weight by
correlation, weight by rule, weight deviation, weight by chi squared statistic, weight by Gini
index, weight by uncertainty, weight by relief, weight by support vector machine were used in
the main dataset.

In weight by information gain algorithm, the relevance of each attribute was evaluated by
computing the information gain in class distribution. Higher weight for an attribute means it
is more appropriate than others. In weight by information gain ratio, the information gain
ratio for the class distribution is an indicator of the relevance of each attribute. Weight by prin-
ciple component analysis (PCA) operator creates attribute weights using a component gener-
ated by the PCA. In PCA an orthogonal transformation is used to convert values of correlated
attributes into observations of uncorrelated attributes. The weight of each attribute shows its
importance with respect to the class attribute. In weight by correlation operator, the weight of
each attribute with respect to the label attribute is calculated using correlation. The weight of
each attribute show its relevance. In weight by Rule operator, the importance of each attribute
of the given example set is identified by constructing a single rule for each attribute and esti-
mating errors. In weight deviation operator, weights are created from the standard deviation
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of all attributes. Normalization of values is done by the average, minimum, or maximum of the
attribute. In weight by chi-square statistic, the relevance of an attribute was computed based
on the value of the chi-square statistic with respect to the class attribute. The chi squared statis-
tic is used to find out whether a distribution of observed frequencies differs from expected fre-
quencies. In chi-squared statistics, frequencies are used instead of means and variances.
Weight by Gini index is another operator that identify relevant attributes by calculating the
Gini index of the class distribution. In weight by uncertainty operator, the relevance of an attri-
bute was identified by calculating the symmetrical uncertainty with respect to the class. Weight
by Relief is another operator which measures the relevance of attributes by sampling examples
and comparing the value of the current attribute for the nearest example of the same and of a
different class. Obtained weights are normalized into the range of 0 and 1. Weight by Support
Vector Machine (SVM) is an operator that attribute weights are coefficients of the normal vec-
tor of a linear SVM [51].

Selection of Attributes

A value between 0 and 1 was obtained for each attribute, after performing attribute weighting
models on the Mds. This value shows the relevance of the attribute with regards to the
imprinted or biallelic expressed gene as a target attribute. Variables were selected with weights
more than 0.50 and consequently 11 new datasets were created (Awds) (Table 1). These data
sets were named based on their attribute weighting models (Info Gain, Info Gain Ratio, PCA,
Correlation, Rule, Deviation, chi squared, Gini index uncertainty, relief and SVM) and then
supervised and unsupervised models were used. Each model of the supervised or unsupervised
algorithm was performed 12 times, first on the Mds and then on the new eleven datasets
(Awds).

Supervised classification

Finding the correlation between input and target attributes was the main aim of supervised
methods. The supervised classification was applied on the main dataset and the eleven newly
created datasets from attribute weighting.

Decision trees. Four tree models i.e. decision tree, decision stump, random tree, and ran-
dom forest were performed on Mds and Awds.

Neural network and Bayesian models. In quantitative modeling, the artificial neural net-
work is an important analysis tool. Pattern classification, time series analysis, and prediction
and clustering are examples of data mining tasks that can be done by neural network [52].
Four neural network models consisting, deep learning, neural net, autoMPL, and perceptron
were performed on all datasets. Nowadays, deep learning is considered the highest usage fields
in machine learning in computational biology [53-60]. Deep Learning was trained with sto-
chastic gradient descent and in this process, back-propagation was used. Neural network
learns a model by a feed-forward neural network trained using back-propagation algorithm
(multi-layer perceptron). The feed-forward neural network or multilayer perceptron (MLP),
are widely used neural network models in practice [52]. AutoMLP is an algorithm which can
be used for learning rate and adjustment size of neural networks during training. The percep-
tron is the simplest kind of feed-forward neural network. The single layer perceptron is a linear
classifier efficiently trained by a simple update rule for all classified data points.

Three Bayesian models consisting Naive Bayse, Bayse Kernel, and W-BayesNet were per-
formed on all dataset. A Naive Bayes classifier is a simple probabilistic classifier based on
Bayes’ theory with strong independence assumptions. In other words, a Naive Bayes classifier
assumes that a specific attribute is not related to any other attributes. Naive Bayes is a popular
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Table 1. Attributes selected by different algorithms of attribute weightings.

Chi-squared statistic

Information gain

Deviation

Gini index

Information Gain ratio

Principle Component
Analysis

Correlation

Relief

Rule

Uncertainty

SVM (Support Vector
Machine)

CpGn 3UTR, Ala, Arg, CpGi introns, CpGn 5UTR, CpGn introns, SINE 100kbUp,
Avg CpG 100kbUp length, Pro, GC 10kbdwn, Avg CpG 5UTR length

Ala, CpGn 3UTR, Avg CpG 3UTR length, Pro, SINE 100kbUp, Pro/CCT, Arg, Avg
CpG 100kbDwn length, Ile, Lys,

SINE 10kbUp, CpGn introns, Avg CpG 5UTR length, CpG 100kbDwn length, N
amino aicds, CpG 100kbUp length, Avg CpG 100kbUp length, His/CAC, CpGi gene/
kb, Pro/CCG, CpGn gene/kb, CpGn 5UTR, CpGi introns, LINE Introns, SINE
Introns, Avg CpG introns length, simplrep/kb Gene, GC introns, Asn

CpG 100kbUp length, length first intron

Ala, CpGn 3UTR, Pro, Pro/CCT, CpGn introns, SINE 100kbUp, Avg CpG gene
length, His/CAC,

CpGi introns, N amino aicds, Arg, GC 10kbup, CpGn gene, Avg CpG 5UTR length,
CpGn gene/kb,

Pro/CCG, CpGi gene/kb, SINE 10kbUp, Avg CpG 100kbDwn length, SINE Introns,
Avg CpG 100kbUp length, simplrep/kb Gene

CpGn gene, GC 10kbup, CpGn 5UTR, Ala, GC first exone, GC introns, GC 3UTR, GC
5UTR, GC 10kbdwn, GC 1kbup, length first exone, CpGi gene, AvgCpG5’-UTR
length, CpGiexnos, CpGi introns, AvgCpG 10kbUp length, CpGi 100kbUp, SINE
100kbUp, LINE 100kbUp, simplrep 100kbUp, Arg, Gly, His, Thr, Ncharg (Asp+Glu),
NchargeFreq, Pcharge (Arg+Lys), N amino aicds,

CpGn3’-UTR

CpG 100kbUp length

Ala, CpGn gene, CpGn 3UTR, SINE 10kbUp, CpGn 5UTR, Avg CpG 5UTR length,
CpGi introns, SINE 100kbUp, GC introns, His/CAC, Avg CpG gene length, Ile, CpGn
introns, Pro/CCG, CpGi gene, CpGi 100kbUp, Arg, GC 1kbup, Avg CpG 100kbDwn
length, Pro, simplrep/kb Gene, Lys, SINE 10kbDwn, GC genes, CpGi exnos, GC
10kbdwn, N amino acids, Leu/CTG, Pro/CCT, GC 1kbdwn, SINE 1kbUp, Ncharg
(Asp+Glu), Avg CpG exons length, length first exone, GC 100kbdwn, GC exons,
Pcharge (Arg+Lys), CysTGC, Arg/AGA

GC 100kbdwn, GC 10kbdwn, CpGi 100kbDwn, CpGi 1kbDwn, GC 100kbup, GC
10kbup, GC introns, CpGn 100kbUp, GC 1kbdwn, Avg CpG 100kbUp length, CpGi
1kbUp, Ala, Avg CpG 5UTR length, CpGi 100kbUp, CpGn 10kbUp, GC genes, CpGi
10kbDwn, SINE 100kbUp, CpGn 100kbDwn, LINE 100kbUp, Tyr/TAC, simplrep
100kb Dwn, Tyr/TAT

GC 3UTR, GC 5UTR, GC 10kbdwn, GC 1kbup, Ncharge Freq, GC first exone, GC
10kbup, Avg CpG 10kbUp length, GC introns, length first exone, Avg CpG 5UTR
length, N amino aicds, Ala, Arg, CpGn gene, Ncharg (Asp+Glu)

CpGn 3UTR, CpGi introns, CpGn introns

CpG 100kbDwn length, Avg CpG 100kbDwn length, SINE 100kbUp, CpGi 3UTR, Ala,
Avg CpG gene length, SINE 10kbUp, CpGn 3UTR, Avg CpG 10kbDwn length, CpGn
gene, CpGn 1kbDwn,

Pro/CCT

Seqlength = length of sequence, CpGi = CpG island, CpGi gene/kb = CpG island per kb of gene region,

CpGn = number of CpG dinucleotide, CpGn gene/kb = number of CpG dinucleotide per kb of gene region, CpGn

exons = number of CpG dinucleotide in exon region, LINE/kb Gene = number of LINE elements per kb gene region,
SINE/kb Gene = number of SINE elements per kb gene region, LINE+SINE+LTR /kb Gene = number of LINE and
SINE and LTR per kb gene region, 1-10-100 kb UP and Dwn = 1, 10, 100 kb up and down stream,

simplrepExones = simple repeat in exon region.

https://doi.org/10.1371/journal.pone.0217813.t001

machine learning algorithm performing well in many domains, and mostly used in binary sen-
timent classification [61-63]. The Naive Bayes (Kernel) operator can be used for numerical
attributes which are in contrast with the Naive Bayes operator. The kernel is a non-parametric
estimation technique that is used as a weighting function.
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Unsupervised clustering

Unsupervised learning involves methods that group instances with any kinds of pre-specifica-
tion. The unsupervised clustering was applied on the main dataset and the eleven generated
data sets from attribute weighting.

K-means and k-medoids

K-means operator predicts the distance of objects to clusters using kernels. Considering the
property of kernels, for calculating one distance all elements of a cluster must be generally
added. K-means is known as one of the simplest algorithms of the parametric unsupervised
technique [46]. K-medoids algorithm is a partitioned clustering algorithm which is slightly
modified from the K-means algorithm. They both attempt to minimize the squared-error but
the K-medoids algorithm is more robust to noise than K-means algorithm. In K-means algo-
rithm, means are chosen as the centroids but in the K-medoids, data points are chosen to be
the medoids. A medoid can be defined as that object of a cluster, whose average dissimilarity
to all the objects in the cluster is minimal.

Accuracy of models

To identify the performed classification and to estimate the accuracy of using each attribu-
te,10-fold cross validation (10-fold CV) with stratified sampling was applied to train and test
models on all patterns. Some random subsets are generated by stratified sampling in order to
make sure that there is no difference between class distribution in the subsets and in the whole
example set and almost the same rate of two values of class labels were in each subset. To do
this, 10 parts were generated from all records randomly, the training phase was performed on
9 parts and testing phase was done on the 10" part. The accuracy for true and false and total
accuracy was calculated after repeating the process for ten times. The mean of the accuracy for
all ten tests was reported as the final accuracy. The same cross-validation was used for all the
evaluation methods and each method had the same training and testing sets used during the
genetic algorithms run.

Results
Data cleaning

The initial dataset contained 230 imprinted (monoallelic) and biallelic expressed genes with
200 attributes. 22 genes have been experimentally validated as imprinted genes and 208 genes
were biallelic. After taking into account the standard deviation of each attribute and Pearson
correlation coefficients between them, the amount of attributed used in the current study
decreased to 164 more informative non-redundant attributes (Mds).

Attribute selection via attribute weighting

A list of 20 most important attributes selected by algorithms of attribute weighting has been
shown in Table 2. This table highlights the most important attributes selected that were chosen
by several weighting algorithms.

The frequency of SINE 10 and 100 kb up in the sequence of genes were attributes selected
by these algorithms. It indicates the importance of repetitive elements in distinguishing
imprinted from biallelic gene. Based on Fig 1A and 1B the imprinted genes have lower SINE in
10 and 100 kb up regions in comparison to biallelic expressed genes (P<0.000). Fig 1D shows
the web chart of repetitive elements in gene region of imprinted and biallelic expressed genes.
This figure demonstrates that SINE, LINE and LTR are more important than simple repeat for
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Table 2. The most important attributes selected by different attribute weighting algorithms.

Attributes Sig. Chi Info | Deviation Gini Info Gain | PCA | Correlation | Relief | Rule | Uncertainty | SVM | Mds
Test' Squared Gain Index Ratio

1. CpGn3’-UTR ok v 4 4 v 4 v 4 v v v
2. Ala ork v v v v v v 4 v 4
3 SINE 100kbUp ok v v v v v v v v
4 AvgCpG5-UTR length o 4 4 v v v v v v
5 Arg o v v v v v v v
6 CpGi introns rE v v v v v v v
7 GC introns * v v v 4 v v v
8 N amino aicds o 4 v v v v v v
9 CpGn gene e v v v v v v
10CpGn introns * v v v v v v
11 AvgCpG 100kbUp o v v v v v
length

12 AvgCpG3’-UTR o v v v v v
length

13CpGn 5-UTR o v v v v v
14 GC 10kbdwn o v v v v v
15 GC 10kbup o v v v v v
16 Pro * v v v v v
17 SINE 10kbUp * v v v v v
18 CpGi 100kbUp v v v v
19 GC 1kbup o v 4 v v
20 CpG 100kbUp length o v v 4 v

1. Significant test:

*** = very high significant p<0.001
** = high significant p<0.01 and

* = significant p<0.05

https://doi.org/10.1371/journal.pone.0217813.t002

distinguishing biallelic from imprinted genes. Fig 1C shows the frequency of repetitive ele-
ments in 10kb up region of imprinted and biallelic expressed genes. Average length of CpG
islands in 5°-UTR was also an important attribute that selected by several attribute weighting
parameters (Fig 2A). Mann-Whitney U test revealed a significant difference (P<0.000) for
average length of CpG islands in 5-UTR between imprinted and biallelic expressed genes (S2
Table). In amino acid attributes alanin (Ala), argenine (Arg) and proline (Pro) were the most
important amino acid attributes selected by algorithms. Frequency (fraction) of codon usage
(Pro/CCG) in imprinted and biallelic expressed genes have been shown in Fig 2B. According
to the boxplot of Ala and Pro frequencies (Fig 2C and 2D) it can be concluded that imprinted
genes have higher Ala and Proin their protein sequences. The frequencies of Ala and Pro
amino acids were significantly different between proteins produced by imprinted and biallelic
expressed genes (P<0.000). Fig 2E, shows significant differences in the frequency of Ala, Arg,
Asn, Ile, Leu, Lys, Phe, Pro and Val amino acids in protein sequence between imprinted and
biallelic expressed genes.

Figs 3 and 4 show that CpG islands and CpGn are higher in imprinted genes than biallelic
genes in defined regions. Fig 4, shows barplot of CpGn in different regions. Mann-Whitney U
test revealed significant differences for CpGn gene (P<0.002), CpGn 3’-UTR (P<0.000),
CpGn 5°-UTR (P<0.000) and CpGn 1kb down (P<0.014) between imprinted and biallelic
expressed genes.
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Fig 1. Boxplot of some important attributes of imprinted (M) and biallelic (BI) expressed genes. (A). Boxplot of SINE 10 kb up region. P-value (0.000), determined
by the Mann Whitney test. As shown in the figure imprinted genes had higher SINE element in 10 kb upstream region in comparison the biallelic expressed genes. (B).
Boxplot of SINE 100 kb up region. P-value (0.000), determined by the Mann Whitney test. As shown in the figure imprinted genes had higher SINE element in 100 kb
upstream region in comparison the biallelic expressed genes. (C). Web chart of repetitive elements in 10kb up region of imprinted and biallelic expressed genes.
SINE elements are significantly higher in biallelic expressed genes in comparison of imprinted genes. (D). Web chart of repetitive elements in gene region of
imprinted and biallelic expressed genes. As shown in the chart repetitive elements of LINE, SINE and LTR are significantly higher in imprinted genes in comparison of
biallelic expressed genes.

https://doi.org/10.1371/journal.pone.0217813.g001

Supervised classification

Decision tree. Decision tree, decision stump, random tree and random forest with four
criteria consisting gain ratio, information gain, Gini index and accuracy were run on the Mds
and Awds. The accuracy of supervised classification algorithms on various datasets were calcu-
lated by 10-fold cross validation and was shown in Table 3 and S3 Table. The accuracy for the
majority of models was greater than 90 percent. The highest accuracy was estimated by ran-
dom forest with info gain criteria on the chi-squared data set (95.22) and the lowest accuracies
achieved by random tree with Gini index criteria on the deviation dataset (85.65). Fig 5A,
shows the random forest with info gain criteria on chi Squared dataset. This model had the

PLOS ONE | https://doi.org/10.1371/journal.pone.0217813  June 6, 2019 10/22


https://doi.org/10.1371/journal.pone.0217813.g001
https://doi.org/10.1371/journal.pone.0217813

@ PLOS|ONE

Characterization of bovine imprinted genes

§ . . e . .
@ .
x 9
(=4 o @ © v | ® .
> 5 o « | o)
~ © O ]
0 1 =
£ 2 <
o 3 S > .
2 g . T 3 g -
s 8 $ ' 3 o § 7 !
2 ! 0 59 -] v '
& . 9 g 2 :
a2 o Q E - '
o 2 — Q . !
< o y 3 2 |
H a ©
£ e I 4 . o
® o ; = B a— & f
=3 : H
£ g g . : £ :
o x .
=) 3 2 g 0 ! !
s > < : —
5 o ® o — - H
> e ! H
< 3 H &
.
|——————— | !
& v _
o S o o .
T T T T
Biallelic Imprinted Biallelic Imprinted
@ 0008
o 0000 GG genes
A 0000
vai o 0158 o126
0513 - 0.010
Ty Ao ¢ 100kbup - GesuTR
o
-
s ©
IS 0373 \ 039
< o . ¥ s =
) b e
c T n
s
o136 0098 081
2 e 002
@ - u
& g * = GC 10Kbup. W/ W GOSUR
=] 2,
s oo & = — - an 0%
o 3 X
c . <
£ . L ===/ \» S
] —_— s
: 0000 / <
6_0' o | Pro & \ -y auie o = - 0.026
' ’:| ® 6C Thoup GC tkbown
: o008, oy 120 > 7
| 0019 b
: » 9376 oa1s 0036
i i 0.000
o 1 caon L PO s . GC 100k i ¢ 10kt
T T teu
Biallelic Imprinted

Fig 2. Boxplot and Web chart of some important attributes of imprinted (M) and biallelic (BI) expressed genes. (A). Boxplot of length of CpG islands in 5 UTR,
P-value (0.000), determined by the Mann Whitney test. As shown in the figure imprinted genes had higher Average length CpG islands in 5-UTR region in contrast
biallelic expressed genes. (B). Boxplot of codon usage (Pro/CCG) in imprinted (M) and biallelic (BI) expressed genes P-value (P<0.000) determined by the Mann
Whitney test. Frequency of using the Pro/CCG in the imprinted genes were higher than biallelic expressed genes. (C). Boxplot of Ala amino acid frequency. P-value
(0.000), determined by the Mann Whitney test. As shown in the figure the frequency of Ala amino acid in protein sequence derived for imprinted genes was higher than
the biallelic expressed genes. (D). Boxplot of Pro amino acid frequency. P-value (0.000), determined by the Mann Whitney test. As shown in the figure the frequency of
Pro amino acid in protein sequence derived for imprinted genes was higher than the biallelic expressed genes. (E). Web chart of amino acids in protein sequences of
imprinted (M) and biallelic (BI) expressed genes. P-value determined by the Mann Whitney test. The protein sequence derived attributes showed that frequency of
some of the amino acids was different among imprinted and biallelic expressed genes. (F). Web chart of GC content in several regions of imprinted (M) and biallelic
(BI) expressed genes. P-value determined by the Mann Whitney test. In the several region GC content of imprinted genes was significantly higher than biallelic
expressed genes.

https://doi.org/10.1371/journal.pone.0217813.g002

highest accuracy among studied induction models (95.22), with Kappa value of 0.63, imprint
recall of 50.00 and imprint precision of 100.00. Fig 5B and 5C, represents models with random
forest with Gini index and info gain criteria on the Info Gain data set, respectively. The accura-
cies of both models were 94.35, with 40.91 and 45.45 imprint recall and 100.00 and 90.91
imprint precision, respectively. Based on algorithms of attribute weighting, the number of CpG
(CpGn) in 3’-UTR region was found to be one of the main attributes (Table 2). Fig 5B, shows
the application of this attribute for distinguishing imprinted and biallelic genes. Values higher
than 59 indicate imprinted genes and values lower than 59 refers to biallelic expressed genes.

Neural network and Bayesian models. Table 4 presents the performance of different neu-
ral network algorithms and Bayesian models using provided data sets. These models had an
average accuracy of 86 percent. The highest predicted accuracy achieved by W-BayesNet on
the SVM dataset (96.52%) and the lowest accuracies achieved by perceptron on the PCA data
set (29.13%). W-Bayes Net on SVM were performed with Kappa value of 0.763, imprint recall
of 72.73, and imprint precision of 88.89 (54 Table).
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Fig 3. Bar plot of number of CpG (CpGi) in imprinted (M) and biallelic (BI) expressed genes. As shown in the barplot number of CpG islands was different between
imprinted and biallelic expressed genes in some studied region.

https://doi.org/10.1371/journal.pone.0217813.9003

Unsupervised clustering

Unsupervised clustering algorithms consisting K-means and K-Medoids were implemented
on the Mds and Awds. Each kind of clustering was not able to completely distinguish between
mono (imprinted) and biallelic expressed genes. The accuracy of unsupervised clustering algo-
rithms on various datasets obtained by 10-fold cross validation and was shown in Table 5.

Test accuracy of classifiers. To test the accuracy of the classifiers on a new set of genes,
the imprinted bovine genes identified by Chen Z et al (2016) were used. 50 classifiers with
accuracy more than 92 percent were tested on 35 genes that identified as imprinted by Chen Z
etal (2016) [64]. Number of classifiers successfully detected gene as imprinting shown in
Table 6 and S5 Table. We found that except for 5 genes, our models were able to classify the
remaining genes as imprinted.

Discussion

SVM dataset with the average accuracy of 91.71% in induction models and 94.20% in Neural
Network and Bayesian models had the highest accuracy among evaluated datasets. Therefore,
this pattern could be better than others in distinguishing imprinted and biallelic expressed
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genes. This dataset comprised as the length of CpG in 100 kb down, average length of CpG in
100 kb down, SINE 100 kb UP, CpGi 3’-UTR, Ala, average length of CpG in gene region, SINE
10 kb up, CpGn 3’-UTR, average length of CpG 10 kb down and Pro/CCT.

The performance of gene expression is influenced by the composition of the nucleotide in
the coding region like GC content and codon usage. Although, these two important attributes
are strongly connected to gene expression, the molecular functions behind these attributes are
not completely obvious[65]. The GC content of imprinted genes in several regions was higher
than biallelic expressed genes (Fig 2F). These observations are in agreement with the results
presented by Khatib et al. (2007). However, in contrast to these results, it was reported by Wal-
ter, et al. (2006) that the GC content of genes with imprinted expression is like a subset of
genes in the mouse genome which are randomly selected. In addition, Hutter et al. (2006)
compared human and mouse genomes and reported no statistically significant differences
between control and imprinted genes in these species. Such contradiction might indicate a dif-
ferent evolutionary pathway for cattle genome compared to those of mouse and human.

Furthermore, previous studies suggested a positive correlation between codon usage bias
and the level of gene expression [32, 65, 66]. It could be an important element for the stability
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Table 3. The accuracy of four different tree induction models (each with four criteria, Accuracy, Gain Ratio, Gini Index and Information Gain) on twelve datasets
computed by10-foldcross validation.

Chi Squared | Info Gain | Deviation | Gini Index | Info Gain Ratio | PCA | Correlation | Relief | Rule | Uncertainty | SVM | Mds | Average

Decision Tree 93.04 92.17 90.43 89.57 87.39 90.43 88.70 91.30 | 89.13 90.43 92.61 | 88.26 | 90.29
Accuracy

Gain Ratio 90.43 90.43 90.43 88.70 87.83 90.43 88.26 89.13 | 89.13 92.17 91.74 | 87.83 | 89.71
Gini Index 91.74 91.74 90.43 88.26 87.83 90.43 87.83 91.74 | 89.13 90.43 91.74 | 90.00 | 90.11
Info Gain 93.04 93.04 88.70 88.70 86.96 89.57 91.74 90.87 | 87.83 90.43 91.74 | 91.74 | 90.36
Random Tree 90.00 90.43 90.43 90.00 90.43 90.43 90.00 89.57 | 90.43 90.00 90.43 | 90.43 | 90.22
Accuracy

Gain Ratio 92.17 90.00 90.43 91.74 89.57 90.43 91.74 90.43 | 90.43 90.87 92.17 | 89.57 | 90.80
Gini Index 91.74 90.43 85.65 90.87 90.87 88.70 93.04 89.57 | 90.87 91.30 92.61 | 88.70 | 90.36
Info Gain 90.87 91.30 88.70 92.17 90.00 89.57 91.74 91.30 | 92.61 92.17 92.17 1 90.00 | 91.05
Decision Stump 89.13 89.57 90.43 90.00 89.57 90.43 90.43 89.13 | 90.00 90.00 90.87 | 89.57 | 89.93
Accuracy

Gain Ratio 89.13 89.57 90.43 90.00 89.57 90.43 90.43 89.13 | 90.00 90.00 90.87 | 89.57 | 89.93
Gini Index 90.00 90.00 90.43 90.00 90.00 90.43 90.00 90.00 | 90.00 91.74 90.00 | 90.00 | 90.22
Info Gain 89.57 89.57 90.43 89.57 89.57 90.43 89.57 89.57 | 89.57 91.74 89.57 | 89.57 | 89.89
Random Forest 91.30 90.43 90.43 91.30 90.87 90.43 90.00 90.43 | 91.30 88.70 90.87 | 90.43 | 90.54
Accuracy

Gain Ratio 91.30 93.04 90.43 89.57 92.17 90.43 90.00 90.87 | 90.87 88.26 92.61 | 90.43 | 90.83
Gini Index 93.91 94.35 90.43 92.17 92.61 89.13 90.87 91.74 | 93.04 90.00 93.04 | 91.74 | 91.92
Info Gain 95.22 94.35 88.70 92.61 92.17 88.70 93.04 92.61 | 93.04 90.43 94.35 | 93.04 | 92.36
Average 91.41 91.28 89.81 90.33 89.84 90.03 90.46 90.46 | 90.46 90.54 91.71 | 90.06

This table presents the accuracy percentage of Tree Induction models (Decision Tree, Random Tree, Decision Stump and Random Forest) with four different criteria

(Accuracy, Gain Ratio, Gini Index and Information Gain). The lowest and the highest accuracies are bold.

https://doi.org/10.1371/journal.pone.0217813.t003

of mRNA and identification of translational efficiency [65]. Also in some species, it has been
shown that there is a correlation between preference of codon usage and the abundance of the
respective tRNA [67-71] which at last can affect translational efficiency of the gene products
[70]. Fig 1D shows the boxplot of codon usage (Pro/CCG) in imprinted (M) and biallelic (BI)
expressed genes.

Differences in the occurrence of repeated sequences between biallelic expressed genes and
imprinted genes have been reported in several studies. Usually, high CpG islands, transcription
factor binding sites (TFBS) and repetitive elements are the sequence characteristics of
imprinted genes[72, 73]. For analyzing known and hypothetical imprinted genes, these attri-
butes are normally used [3, 19]. Fewer and smaller introns can be seen in imprinted genes
compared to non-imprinted genes. They have also some degrees of repetitive sequences and
contain an unusually high number of retrotransposable elements [74]. In present study intron
counts in imprinted and biallelic expressed genes were not significantly different (P<0.184).
However, imprinted genes showed significantly lower frequencies of SINE in 10 and 100 kb up
compared to biallelic expressed genes in bovine. Depletion of SINEs is adapted with reasonably
increased frequency of LINEs in imprinted genes. Interestingly, Cowley et al. (2011) found no
significant differences in LINE or SINE in the mono and biallelic expressed genes neither in
mouse nor human. In the study of Greally (2002) several sequence attributes of human
imprinted genes were compared to non-imprinted genes. He demonstrated that fewer SINE
transposons-derived sequences can be seen in imprinted loci than biallelic loci and the number
of SINEs is directly correlated with the imprinting status.
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Fig 5. Decision Tree generated from Random Forest models with different criteria. (A). Random Forest of the Chi-Squared Statistic dataset with Information Gain
criteria. (B). Random Forest of the Info Gain dataset with Gini Index criteria. (C). Random forest of the Information Gain dataset with Information Gain criteria.

https://doi.org/10.1371/journal.pone.0217813.9005

Additionally, the frequency of SINE in the flanking regions of biallelic and imprinted genes
is low (Allen et al., 2003). Cowley et al. (2011) suggested that LINEs and SINEs are genomic
attributes which are not directly correlated with imprinting status of genes. Khatib et al. (2007)
found higher GC content, CpG islands, and tandem repeats in imprinted genes than non-
imprinted genes in bovine. Additionally, the frequency of SINEs in imprinted genes of bovine
was lower than biallelic expressed genes. These findings are in agreement with findings in
human and mouse. In accordance with Khatib et al. (2007), the number of LINEs and LTRs
were found to be significantly lower in imprinted genes compared to biallelic genes in present
study (Fig 3B) which are in contrast to the findings in human and mouse. Allen et al, (2003)
used cluster analysis to examine heterogeneity in monoallelic genes in human and mouse with
respect to sequence attributes. They found biallelic expressed genes display lower number of
LINE-1 sequence, while the imprinted genes were flanked by lower amounts of SINE sequence
[31]. Weidman et al. (2004) reported that the imprinting of IGF2 is strongly associated with
the lack of SINEs. Similarly, Walter et al. (2006) showed that the frequency of SINEs in
imprinted genes (7.32%) is lower than non-imprinted genes (13.9%). They also reported
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Table 4. The accuracy of neural network and Bayesian models on twelve datasets computed by 10-foldcross validation.

Chi Squared | Info Gain | Deviation | Gini Index | Info Gain Ratio | PCA | Correlation | Relief | Rule | Uncertainty | SVM | Mds | Average

Neural Network 90.82 93.51 59.57 89.81 88.59 63.21 91.06 88.77 | 88.34 87.15 94.60 | 91.67 | 85.59
Deep Learning

AutoMPL 90.43 94.35 90.43 90.87 90.00 90.43 91.74 90.00 | 91.30 90.43 95.22 | 91.74 | 91.41
Neural net 90.00 93.04 90.43 90.87 90.00 90.43 90.00 88.26 | 89.13 88.70 94.35 | 91.30 | 90.54
perceptron 81.30 93.91 44.78 83.48 87.83 29.13 90.00 88.26 | 69.57 42.61 90.43 | 92.61 | 74.49
Bayesian Models 89.13 91.74 61.30 88.26 86.96 63.48 88.26 83.04 | 86.52 90.00 93.48 | 87.83 | 84.17
Naive Bayes

BayesKernel 91.74 96.09 60.00 90.87 90.00 59.13 91.74 88.26 | 90.87 91.74 94.78 1 90.43 | 86.30
W-BayesNet 93.48 95.22 90.43 92.61 93.91 90.43 94.35 95.22 | 92.61 90.00 96.52 | 95.22 | 93.33
Average 89.56 93.98 70.99 89.54 89.61 69.46 91.02 88.83 | 86.91 82.95 94.20 | 91.54

This table presents the accuracy percentage of Neural Network models (Deep Learning, AutoMPL, Neural net and perceptron) and Bayesian Models (Naive Bayes, Bayes
Kernel and W-BayesNet). The lowest and highest accuracies are bolded.

https://doi.org/10.1371/journal.pone.0217813.t004

higher GC content and higher number of LINEs sequences in the imprinted genes compared
to non- imprinted genes.

The pattern of distribution of repetitive elements, in combination with other sequence attri-
butes, has been used for prediction of putative imprinted genes in the mouse [17] and human
genomes [18]. Some studies showed that in human genome, SINE elements are enriched in

Table 5. Clustering of 12 datasets (Mds and Awds) into MONO and BI classes by different unsupervised clustering algorithms (K-Means and K-Medoids).

Dataset Type of Expression K- Means K-Medoids
predicted True predicted predicted True predicted

Chi Squared Mono: 22 38 9 5 2
Bi: 208 192 179 225 205

Deviation Mono: 22 1 0 10 0
Bi: 208 229 207 220 198

Gini Index Mono: 22 36 12 4 2
Bi: 208 194 184 226 206

Information Gain Mono: 22 1 0 5 2
Bi: 208 229 207 225 205

Information Gain Ratio Mono: 22 24 4 6 2
Bi: 208 206 188 224 204

PCA Mono: 22 1 0 74 0
Bi: 208 229 207 156 134

Correlation Mono: 22 32 6 6 2
Bi: 208 198 182 224 204

Relief Mono: 22 35 9 6 3
Bi: 208 195 182 224 205

Rule Mono: 22 27 5 25 7
Bi: 208 203 186 205 190

SVM Mono: 22 26 0 47 0
Bi: 208 204 182 183 161

Uncertainty Mono: 22 8 5 9 5
Bi: 208 222 205 221 204

Mds Mono: 22 1 0 10 0
Bi: 208 229 207 220 198

https://doi.org/10.1371/journal.pone.0217813.t1005
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Gene ID
ENSBTAG00000023338
ENSBTAG00000031184
ENSBTAG00000013066
ENSBTAG00000002402
ENSBTAG00000038093
ENSBTAG00000010128
ENSBTAG00000031194
ENSBTAG00000046585
ENSBTAG00000017716

ENSBTAG00000021282

ENSBTAG00000026523
ENSBTAG00000019600
ENSBTAG00000017475
ENSBTAG00000001392
ENSBTAG00000008251
ENSBTAG00000009725
ENSBTAG00000019616
ENSBTAG00000037899
ENSBTAG00000048005
ENSBTAG00000007975
ENSBTAG00000004840
ENSBTAG00000012182
ENSBTAG00000034645
ENSBTAG00000024426
ENSBTAG00000005386
ENSBTAG00000038326
ENSBTAG00000036127
ENSBTAG00000008612
ENSBTAG00000006136
ENSBTAG00000016165
ENSBTAG00000015074

https://doi.org/10.1371/journal.pone.0217813.t006

Table 6. Number of classifiers successfully detected the gene as imprinted.

Gene symbol
PEG3
CDKNIC
IGF2
IGF2R
PEG10
NAPIL5
PHLDA2
RTL1
BEGAIN
H19
SGCE
MEGS
PLAGL1
MEG9
OOEP
GNAS
RDH16
SNRPN
AOX1
APCS
DLK1
MGC157368
MEG3
ALDH8A1
C1S
DIRAS3
PON3
PPP1R9A
SLC2A2
LOC508098
AS3MT
CIR
CDA
KRT7
PTGDS

Number of classifiers successfully detected the gene as imprinting
48
47
47
39
25
21
20
19
18
16
13

—_
(=]

clololclol=mIm mr|lmkik|lm = Mo VI W w W o e e

GC- and gene-rich regions, whereas LINE elements harbor lower GC and are mostly found in
gene-poor regions [75, 76]. Tandem repeats have been implicated in the regulation of mouse

imprinted genes including Rasgrfl, Xist, and Tsix [77-79]. Although the mechanism of

imprinted methylation through tandem repeats is unknown, hypotheses such as siRNA medi-

ated regulation, secondary structure formation, and involvement of germline-specific repeat

binding factors could be take into account. Tandem repeats might continuously produce
siRNA through the use of RNA-dependent RNA polymerase (RARP) and cause multiple

rounds of RNA interference (RNAI) [80]. Such events have been detected in the regulation of
epigenetic phenomena in fission yeast and plants and may operate in mice as well [81-84].
Therefore, these attributes may affect the establishment or maintenance of DNA methylation

at imprinted loci during development, especially during germline development.
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Conclusions

According to our results, attributes related to GC content and CpG in upstream and down-
stream regions of genes, SINE in 10 and 100kbUp and frequency of some amino acids includ-
ing Ala, Arg, Pro were the most important attributes for distinguish imprinted and biallelic
expressed genes. The sequence characteristics presented in the current study predict the
imprinting status of genes in bovine with high accuracy. This method could be applied to
expand the number of imprinted genes in genome of other species. With more imprinted
genes in hand, it would be possible to deepen our understandings regarding the genetic and
epigenetic regulatory mechanism involved in the monoallelic expression of imprinted genes.
Besides, assessment of the method in other genomes might be useful to find an evolutionary
relationship among species and would be beneficial to find monoallelically expressed genes
elsewhere. Also, the next step would be the application of these patterns in the identification of
novel sets of imprinted genes.
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