
RESEARCH ARTICLE

Transcriptional profiling identifies novel

regulators of macrophage polarization

Kimberline Y. Gerrick1,2,3,4, Elias R. Gerrick5, Anuj Gupta1,2, Sarah J. Wheelan1,2,

Srinivasan Yegnasubramanian1,2, Elizabeth M. JaffeeID
1,2,3,4*

1 The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine,

Baltimore, MD, United States of America, 2 Department of Oncology, The Johns Hopkins University School

of Medicine, Baltimore, MD, United States of America, 3 The Bloomberg-Kimmel Institute for Cancer

Immunotherapy, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America,

4 The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, The Sidney Kimmel

Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States of America, 5 Department of

Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States

of America

* ejaffee@jhmi.edu

Abstract

Macrophages are key inflammatory immune cells that display dynamic phenotypes and

functions in response to their local microenvironment. Major advances have occurred in

understanding the transcriptional, epigenetic, and functional differences in various macro-

phage subsets by in vitro modeling and gene expression and epigenetic profiling for bio-

marker discovery. However, there is still no standardized protocol for macrophage

polarization largely due to the lack of thorough validation of macrophage phenotypes follow-

ing polarization. In addition, transcriptional regulation is recognized as a major mechanism

governing differential macrophage polarization programs and as such, many genes have

been identified to be associated with each macrophage subset. However, the functional role

of many of these genes in macrophage polarization is still unknown. Moreover, the role of

other regulatory mechanisms, such as DNA methylation, in macrophage polarization

remains poorly understood. Here, we employed an optimized model of human M1 and M2

macrophage polarization which we used for large-scale transcriptional and DNA methylation

profiling. We were unable to demonstrate a role for DNA methylation in macrophage polari-

zation, as no significant changes were identified. However, we observed significant changes

in the transcriptomes of M1 and M2 macrophages. Additionally, we identified numerous

novel differentially regulated genes involved in macrophage polarization, including CYBB

and DHCR7 which we show as important regulators of M1 and M2 macrophage polarization,

respectively. Taken together, our improved in vitro human M1 and M2 macrophage model

provides new understandings of the regulation of macrophage polarization and candidate

macrophage biomarkers.
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Introduction

Macrophages serve critical roles as first responders in acute insults (bacterial and viral infec-

tions, and early cancerous changes) where they mediate innate inflammatory responses and

influence adaptive immunity. They are extremely plastic cells that display heterogeneous phe-

notypes and functions depending on their environmental cues. They are often simplified into

two broad polarization states that mimic the dichotomous Th1/Th2 nomenclature, termed M1

and M2 macrophages, that are the extreme opposites in terms of their phenotypes and func-

tions. IFNγ and Toll-like receptor (TLR) agonists such as LPS are the major stimuli used to

generate M1 macrophages that express inflammatory cytokines such as IL-1β, IL-12, and

TNFα for intracellular pathogen and tumor cell killing [1, 2]. In contrast, M2 macrophage sti-

muli are more variant due to the less uniform nature of M2 macrophages themselves, as they

can be further subdivided into M2a, M2b, and M2c subsets based on their functions [3, 4].

However, IL-4 and IL-13 are most commonly used to generate M2 macrophages resulting in

high IL-10 and TGFβ production, which are the common denominators of all M2 macrophage

subpopulations that function primarily in parasitic infections and wound healing. Due to the

important roles these macrophage subsets serve in homeostatic and disease immunity, it is

imperative to understand the underlying molecular and genetic differences for reliable and

comprehensive biomarker identification.

In vitro modeling of these macrophage subsets has been extensively utilized for molecular

and biomarker profiling [5–9]. Yet, these studies have limitations due to the lack of thorough

validation of functional M1 and M2 macrophage models, as assessed by cytokine production.

While many of these studies evaluate the expression of M1 and M2-associated cell surface

markers and genes, these analyses alone are not sufficient to assess macrophage functionality.

This is because, despite the fact that the dichotomous nomenclature suggests very clear distinc-

tions in these two macrophage subsets, macrophages in vivo can exhibit both M1 and M2-asso-

ciated cell surface marker and gene expression patterns, making it difficult to discern the exact

function and impact of these cells [10–12]. As cytokine production by a particular macrophage

subset is the major defining feature of its function, it is imperative to query the cytokine profile

in addition to its cell surface and gene expression profile in order to accurately characterize the

regulatory mechanisms of macrophage polarization.

Despite the lack of functional validation of macrophage polarization in previous transcrip-

tional profiling studies, M1 and M2 macrophage polarization results in distinct transcriptional

programs [8, 13]. Additionally, there is growing evidence that epigenetic mechanisms such as

histone acetylation and methylation regulate the transcriptional differences observed in these

two macrophage subsets [13–16]. While these studies provide an important foundation for the

complex regulatory mechanisms governing macrophage polarization and identified novel sub-

set biomarkers, they are still limited due to the lack of high throughput methodologies and val-

idation of the functional consequences of newly identified genes associated with macrophage

polarization, and the dearth of studies addressing the role of other regulatory mechanisms.

Additionally, these studies have been predominantly described in murine macrophage polari-

zation, which is substantially different from the human system [17].

Differences in the transcriptional programs of polarized human and murine macrophages

have been identified [11, 18, 19]. Given the discrepancy between species and the lack of a compre-

hensively validated polarization protocol, we sought to evaluate current polarization protocols for

their validity in generating human M1 and M2 macrophages. In this study, we discovered that the

conventional macrophage polarization stimuli, IL-4 and IL-13, insufficiently polarized M2 macro-

phages at the functional level. Subsequently, we employed an optimized in vitro model of M1 and

M2 macrophages, which we used to interrogate and correlate transcriptional changes with DNA
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methylation changes using RNA-Sequencing (Seq) and Methyl-CpG-Binding (MBD)-Seq. We

identified many novel regulated genes that had not been previously identified; however, none of

these genes were found to be regulated by DNA methylation. Because of the importance of tran-

scriptional regulation in macrophage polarization and the need for robust markers distinguishing

these two macrophage subsets, we also experimentally validated the functional roles of a subset of

our novel genes. We identified cytochrome b-245 heavy chain (CYBB), a gene encoding a reactive

oxygen species (ROS)-generating enzyme, to be important for human M1 macrophage polariza-

tion, which supports previous findings of oxidative stress as a critical regulator of macrophage

function. Furthermore, we show for the first time, 7-dehydrocholesterol reductase (DHCR7), a

gene encoding a critical enzyme in the cholesterol biosynthesis pathway, as important regulator of

M2 macrophage polarization. Thus, our results offer new insights into macrophage biology and

describe novel markers of macrophage polarization.

Materials and methods

M1 and M2 macrophage generation

Whole blood from healthy donors were obtained from the Johns Hopkins Hospital Hemapheresis

and Transfusion Center, following protocols approved by the Institutional Review Board of the

Johns Hopkins University and from Biological Specialty Corporation (Colmar, PA), following

Food and Drug Administration approved protocols. Informed written consent was provided for

each donor in accordance with the Declaration of Helsinki. PBMCs were isolated using Ficoll cen-

trifugation, followed by CD14+ isolation using CD14 Microbeads (Miltenyi). Monocytes were cul-

tured as previously described [8], with the following modifications: monocytes were plated in

6-well plates at a density of 7.0 x 105 cells/cm2 and cultured for 6 days in RPMI supplemented

with 20% fetal bovine serum (FBS) (Atlas), 1% L-glutamine, 1% sodium pyruvate, 1% non-essen-

tial amino acids, 1% penicillin streptomycin (Life Technologies), and 100 ng/mL M-CSF (Pepro-

tech) to generate macrophages. Macrophages were cultured for an additional 72 hours in the

presence of RPMI containing 5% FBS and all other reagents described above and supplemented

with 20 ng/mL IFNγ (Peprotech) plus 75 ng/mL LPS (055:B5, Sigma Aldrich) for M1 polarization

or 20 ng/mL IL-4 (Peprotech) plus 20 ng/mL IL-13 (Peprotech) for the first 48 hours, followed by

the addition of 10 ng/mL LPS for the last 24 hours for M2 polarization.

Flow cytometry

Macrophages were harvested using cell dissociation buffer (Invitrogen) for flow cytometric

analyses. Cells were stained in LiveDead Aqua (Invitrogen) and then incubated with human

FcR blocking reagent (Miltenyi). For purity analyses post CD14+ isolation, cells were stained

with anti-CD14 FITC clone TÜK4 (Miltenyi) and anti-CD3 PE clone REA613 (Miltenyi). For

M1 and M2 macrophage phenotypic analyses, cells were stained with anti-CD206 FITC clone

DCN228 (Miltenyi), anti-CD163 PEDazzle clone GHI/61 (BioLegend), anti-CD80 BV421

clone 2D10 (BioLegend), and anti-CD86 AF700 clone FUN-1 (BD Pharmingen). Isotype con-

trols were also stained in parallel. Data for Figs 1 and 2 were collected on a Gallios flow cytom-

eter (Beckman Coulter) and subsequent data on a Cytoflex flow cytometer (Beckman Coulter).

FlowJo software version 10.4.2 (Tree Star) was used to analyze the results. Cells were gated to

exclude dead cells before differential expression analyses.

RNA extractions and RT-qPCR

RNA was extracted using the RNeasy Mini kit (Qiagen), genomic DNA digested with TURBO

DNase (Ambion), and RNA purified using spin columns (Qiagen). cDNA synthesis was
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performed using the Superscript VILO cDNA synthesis kit (Invitrogen). Real-time quantita-

tive PCR was performed using Taqman Gene Expression Assays (Applied Biosystems) on a

StepOnePlus Real Time PCR System thermal cycler (Applied Biosystems) and analyzed by the

StepOne software V2.1. Transcript levels were quantified using the ΔΔCt method and normal-

ized to the housekeeping gene TBP. The expression levels of canonical M1 genes are reported

relative to M2 macrophages and conversely, the expression levels of canonical M2 genes are

reported relative to M1 macrophages.

RNA-sequencing and differential gene expression analysis

RNA from 4 biological replicates were used for RNA-sequencing, which was done by the Sid-

ney Kimmel Comprehensive Cancer Center (SKCCC) Next Generation Sequencing (NGS)

Core. Libraries were prepared using the TrueSeq Stranded Total RNA kit (Illumina) and
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Fig 1. IL-4 and IL-13-polarized M2 macrophages are deficient in IL-10 and CCL17 secretion. (A) Differential cytokine secretion
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https://doi.org/10.1371/journal.pone.0208602.g001
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sequenced on HS2500 Rapid Run instrument (Illumina). RSEM-1.2.29 was used to align raw

sequencing files to hg19 reference genome and to calculate transcript expression levels, which

were then used for differential gene expression analysis using DESeq2 package [20].

DNA extractions and MBD-sequencing

Genomic DNA from the same biological replicates used for RNA-Seq was extracted using

DNeasy Blood and Tissue Kit (Qiagen) and submitted for MBD-sequencing, which was also

done by the SKCCC NGS Core (PMID: 28733453). Sonicated genomic DNA (target modal

size 200–500 bp) was enriched for methylated DNA using the EpiMark Methylated DNA

Enrichment Kit (New England Biolabs) according to manufacturer’s protocol. A matched

unenriched total input fraction was also analyzed for each sample. The enriched methylated

and total input fractions were then subjected to NGS library preparation using the Thruplex
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library preparation kit (Rubicon). Alignments were performed with bowtie 2.2.5 and dupli-

cated alignments were removed by samtools 0.1.19.

Methylation peak identification and differential enrichment analysis

Bedtools was used to compute the per-base genome coverage. Methylation peaks were identi-

fied using methylation peak Seeker (methSeek) a modified version of a bacterial small RNA

search tool [21]. Briefly, methSeek scans along the genome within transcript promoters to

identify regions with coverage above a defined threshold as methylation peaks. The parameters

were as follows: promoters were defined as 5000 bp upstream and 2000 bp downstream a tran-

scriptional start site, the 5’ end of a methylation peak had a read depth greater than or equal to

10 and the 3’end had a read depth less than 10. methSeek was used to identify methylation

peaks in M1 and M2 samples from 4 biological replicates, which was then compiled into a mas-

ter list. To condense the master list, methylation sites with start and stop coordinates within

100 bp of each other were merged as one methylation site with the new start and stop coordi-

nates set to more upstream 5’ and downstream 3’ coordinates. Bedtools was used to compute

the coverage of each methylation site for all samples. DESeq2 package was then used for differ-

ential methylation enrichment analysis.

ELISA

Supernatant from macrophage cultures were harvested and measured for IL-1β, IL-6, IL-12,

TNFα, CCL2, CXCL9, CXCL10, CXCL11, IL-10, CCL17, and CCL22 expression using custom

multi-analyte ELISArray kits (Qiagen), according to the manufacturer’s instructions. Samples

were diluted to stay within the dynamic range of the assay and the dilution factors were

accounted for when calculating the corrected absorbance values. Absorbance was measured

using a microplate reader (Molecular Devices).

siRNA transfection

siRNA-mediated gene knockdown was performed as described [22], with the following modi-

fications: monocytes were cultured as described above for 6 days. The next day, cells were

incubated in the presence of 0.4 mL RPMI containing 5% FBS, 1% L-glutamine, 1% sodium

pyruvate, and 1% non-essential amino acids. Per well, cells were transfected with 50 nM

ON-TARGETplus SMARTpool siRNAs (Dharmacon) and 24 µL HiPerfect transfection

reagent (Qiagen) diluted in 0.4 mL Opti-MEM medium for six hours. Six hours after transfec-

tion, cells were supplemented with RPMI medium described above and 100 ng/mL M-CSF

overnight. The following day, cell culture medium was refreshed and macrophages were polar-

ized to generate M1 or M2 macrophages using the conditions described in the previous sec-

tion. In transfections knocking down M1 macrophage-associated genes, macrophages were

polarized to M1. Conversely, in transfections knocking down M2 macrophage-associated

genes, macrophages were polarized to M2. Following polarization, RNA, cells, and supernatant

were collected for RT-qPCR, flow cytometry, and ELISA, respectively. Cells were transfected

with ON-TARGETplus SMARTpool non-targeting controls (designated siControl) as negative

controls and siGLO red transfection indicator to determine transfection efficiency.

Gene set enrichment analysis (GSEA)

The top differentially expressed gene list ranked by greatest log2 fold change was analyzed

using the Broad Institute’s GSEA software [23]. Significantly enriched gene sets were identified

using the FDR < 0.01 cutoff.

Transcriptional profiling of M1 and M2 macrophages
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Statistical analyses

GraphPad Prism version 7.0 software was used for all statistical analyses. Data are presented as

mean ± SEM of at least 3 independent experiments. Student t-test was used to assess differ-

ences between groups. Statistical significance was defined as p-value < 0.05.

Results

LPS rescues IL-10 and CCL17- deficiencies in IL-4 and IL-13-polarized M2

macrophages

In order to study the underlying biological differences in human macrophage subsets, we uti-

lized an in vitro model that simplified these subsets into two polarized states, termed M1 and

M2 macrophages. Conventional protocols use IFNγ and LPS to generate M1 macrophages and

IL-4 and IL-13 to generate M2 macrophages [1, 3, 24]. In the process of validating previously

published protocols for M1 and M2 macrophage polarization, we found that while the tradi-

tional polarization conditions produced M1 macrophages with expected cytokine, cell surface,

and gene expression profiles (Fig 1) and M2 macrophages with expected cell surface and gene

expression profiles (Fig 1B and 1C), M2 macrophages lacked enhanced secretion of the hall-

mark M2 cytokines IL-10 and CCL17 when compared to M1 macrophages (Fig 1A). Notably,

there was a complete absence of IL-10 secretion from M2 macrophages, which was surprising

as IL-10 is a major cytokine for M2 function [25–27]. Because LPS is known to be a major

inducer of IL-10 production in macrophages [28–30], and while cytokine exposure can be sep-

arated in vitro, it is unlikely that these cytokines are entirely separated within the tissue micro-

environment. Thus, we hypothesized that the addition of LPS to M2 polarization conditions

would rescue this deficiency. To this end, we found that LPS exposure following initial culture

with IL-4 and IL-13 rescued the IL-10 deficiency observed with the standard polarization pro-

tocol (Fig 2A), while maintaining other M2 macrophage characteristics (Fig 2B and 2C). This

is concurrent with a previous study that observed restored IL-10 production from IL-4-primed

macrophages upon LPS stimulation [31]. Additionally, CCL17 and CCL22, other canonical

M2 cytokines, were further upregulated in these conditions, indicating an important role for

LPS exposure in M2 polarization and not just regulation of IL-10 in this model (Fig 2A).

DNA methylation is not the primary mechanism regulating macrophage

polarization

We used the optimized protocol (designated M2 in subsequent figures) that generated pheno-

typic and functional M1 and M2 macrophages to further query the regulatory mechanisms

underlying biological differences in M1 and M2 macrophages. While there is evidence that

transcriptional regulation is a key regulatory mechanism of macrophage polarization [5–9],

there is a paucity of information on the role of DNA methylation in regulating macrophage

polarization. To interrogate global DNA methylation changes between these two macrophage

subsets, we performed MBD-Seq and developed a bioinformatic methylation peak finder tool,

methylation peak Seeker (methSeek), that identified DNA methylation peaks using a read

depth-centric approach. methSeek utilizes a sliding window approach to define the 5’ and 3’

ends of methylation peaks that meet user-defined coverage thresholds. We first interrogated

methylation peaks in promoters, since promoter methylation is the most well documented

location of regulatory DNA methylation sites [32–37]. Of the methylation peaks identified by

methSeek in all donor samples, none were significantly differentially enriched (defined by |

log2FC(M1/M2)| > 1.0) between M1 and M2 macrophages (Fig 3A). We also interrogated

intragenic methylation peaks, none of which were significantly differentially enriched between

Transcriptional profiling of M1 and M2 macrophages
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M1 and M2 samples (S1 Table). Interestingly, sample variance analysis using Principal Com-

ponent Analysis (PCA) showed that the samples were more similar based on donor origin

than on macrophage polarization status. (Fig 3B). This suggests that macrophage polarization

is not primarily regulated by DNA methylation. Furthermore, the observed differences in

DNA methylation are predominantly due to inherent biological differences among individuals

and not differential macrophage polarization. Thus, we concluded that DNA methylation may

not be regulating differences in M1 and M2 macrophages. This led us to investigate whether

differential transcriptional programming alone is a major regulator.

Transcriptome analysis reveals novel genes associated with functional M1

and M2 macrophages

Although differential transcriptional profiles in M1 and M2 macrophages have been well-doc-

umented, these studies were performed based on the conventional IL-4 and IL-13-polarization

conditions to generate M2 macrophages. Because we generated phenotypic and functional M2

macrophages to interrogate transcriptional differences in M1 and M2 macrophages, we

hypothesized that our RNA-Seq dataset would yield novel markers to distinguish these two

macrophage subsets. We analyzed sample variance in the RNA-Seq dataset using PCA, which

revealed that 82% of the variance in all samples was due to different macrophage polarization

states and not donor origin (Fig 4A). This indicates that opposing macrophage polarization

conditions results in very distinct transcriptomes that regulate macrophage polarization. To

define the top differentially expressed genes, we selected for genes with an adjusted p-

value < 0.05 and |log2FC(M1/M2)| > 1.0. Of the 26,341 genes interrogated in RNA-Seq, 2,200

genes met these criteria (Fig 4B, red data points, S2 Table). Many of these genes are previously

reported canonical genes of M1 and M2 macrophages (Fig 4B), which confirmed the validity

of our optimized macrophage polarization protocol. However, 1,826 of the 2,200 top differen-

tially expressed genes are not known canonical genes of macrophage polarization, when com-

pared to previously published datasets [6, 8, 9]. Thus, we hypothesized that these genes might

have important and novel roles in macrophage polarization.
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CYBB and DHCR7 regulate macrophage polarization

To dissect which of these genes had a functional consequence on macrophage polarization, we

selected a set of genes that were highly differential in our dataset but not previously described

as canonical markers of macrophage polarization. After applying an abundance cutoff, genes

were prioritized based on differential expression, and the top 14 genes (Table 1), which we

confirmed by RT-qPCR (Fig 4C and S1 Fig, designated untransfected M1 and M2), were

selected for further analyses. Of these genes, 4 have been previously associated with differential

expression in M1 and M2 macrophages, whereas 10 are novel as of this study [5–9]. However,

few of these genes have been shown to have an effect on human macrophage polarization. Sub-

sequently, we performed siRNA-mediated gene knockdown of each of these genes (S1 Fig)

and tested whether knockdown of these genes during polarization conditions resulted in alter-

ations in canonical M1 and M2 cell surface and cytokine expression profiles. As a proof-of-

principle experiment, we first knocked down cytochrome b-245 beta chain (CYBB), an M1

macrophage-associated gene that encodes the catalytic subunit of NADPH oxidase responsible

for generating reactive oxygen species (ROS), in M1 macrophages. We selected CYBB as our

model gene because the protein product, NADPH oxidase, has been shown to be important

for the inflammatory functions of M1 macrophages derived from both murine and human

models [38–43]. Knockdown of CYBB in M1 macrophages resulted in significant downregula-

tion of CD80 cell surface expression and TNFα and CXCL9 secretion using our panel of

canonical markers of macrophage polarization (Fig 5A and 5B). This shows that CYBB expres-

sion promotes M1 macrophage polarization and its effects are abrogated upon gene knock-

down, resulting in dampened M1 characteristics that are reminiscent of M2 macrophages.

These results are consistent with previous studies showing the critical role of various NADPH

oxidase subunits including the CYBB gene product and their superoxide and ROS products in

the inflammatory and cytotoxic functions of M1 macrophages [38–43]. Furthermore, this

highlights oxidative stress as an important and conserved regulator of macrophage polariza-

tion across multiple species.

Accordingly, we knocked down the other 13 genes to determine their role in macrophage

polarization. Upon siRNA-mediated knockdown of 12 of these genes, we did not observe dif-

ferences in the expression of canonical cell surface markers or cytokines (S2 Fig). This indi-

cates that while 12 of these 13 differentially expressed genes are possibly important in and

associated with macrophage function, they do not directly regulate previously identified mark-

ers associated with M1 and M2 polarization.

Interestingly, we identified 7-dehydrocholesterol reductase (DHCR7), an M2 macro-

phage-associated gene that encodes an enzyme that catalyzes the final step of cholesterol

biosynthesis, to be important for M2 macrophage polarization. Upon DHCR7 gene knock-

down, M2 macrophages did not display significant changes in their cell surface marker

expression but displayed significant reduction of IL-10 and TARC secretion (Fig 5C), pro-

viding a role for DHCR7 in regulating M2 macrophage functionality. These data therefore

support a role for the cholesterol pathway in macrophage polarization. This notion was

supported by gene set enrichment analysis, which demonstrated that the cholesterol

homeostasis pathway was significantly upregulated in M2 macrophages (S3 Fig) [23].

Moreover, certain cholesterol intermediates and derivatives have been shown to promote

M2 macrophage phenotypes by indirectly suppressing transcription of pro-inflammatory

transcription factors, NFkB and AP-1, via liver X receptors (LXRs) activation [44–46].

Taken together, these data implicate CYBB and DHCR7 as key regulators of M1 and M2

macrophage polarization, respectively.
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Discussion

Much of our understanding of the regulation of human macrophage subsets comes from in
vitro models of M1 and M2 macrophages. However, there is still an incomplete characteriza-

tion of these macrophage subsets and their regulatory mechanisms. Here, we developed an

optimized model of M1 and M2 macrophages to evaluate the role of DNA methylation in their

differential transcriptomes using high throughput approaches. Although we did not find a sig-

nificant role of DNA methylation in macrophage polarization, we found significantly distinct

transcriptional changes that generated a list of genes that had not been previously associated
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with macrophage polarization. These results provide a more comprehensive model of human

macrophage subsets, a more global understanding of epigenetic and transcriptional regulation

of macrophage polarization, as well as the characterization of critical regulators of M1 and M2

macrophages. Importantly, these findings provide valuable insights into macrophage activa-

tion and macrophage-directed therapeutic strategies.

By interrogating macrophage cytokine production, we validated that the established M2

macrophage stimuli, IL-4 and IL-13, did not sufficiently functionally polarize M2 macro-

phages; the addition of LPS was necessary to generate fully phenotypic and functional M2

macrophages. This highlights the importance of functional validation in combination with

phenotypic validation, given the complex and heterogeneous nature of macrophages. While

the use of LPS to generate M2 macrophage subsets is not novel, its use in the context of IL-4

and IL-13-primed macrophages is not widely used. Importantly, our results provide evidence

that the macrophage polarization methodologies we used should be ubiquitously employed for

studies involving macrophage polarization. Furthermore, these results have larger implications

for macrophage polarization. Despite being a canonical stimulus for M1 macrophages, the fact

that LPS is essential for M2 macrophage production of IL-10 and CCL17 in our model suggests

that the functional response of macrophages to LPS and other stimuli are indeed context-

dependent. Additionally, these findings suggest that these macrophage subsets are likely not

confined to discrete compartments in physiological and pathological settings. They are likely

exposed to various and perhaps opposing cytokines that coordinately influence their function.

Thus, while the dichotomous nomenclature of macrophage polarization is useful for mecha-

nistic studies, it still has its limitations in depicting the pleiotropic nature of macrophages.

Therefore, it is important to note the spectrum model of macrophage activation, where M1

and M2 macrophages are at the opposite ends and macrophages with overlapping M1 and M2

features lie in the middle of this spectrum. Indeed, in our studies, knock down of CYBB in M1

macrophages and DHCR7 in M2 macrophages did not fully polarize one macrophage subset

into the other, rather it resulted in a macrophage with characteristics of both macrophage sub-

sets. Future studies pairing in vitro macrophage models with in vivo macrophages would be

extremely informative for understanding the full range of macrophage activation states.

Table 1. Genes selected for siRNA-mediated gene knockdown.

Gene Name Gene Symbol Log2FoldChange(M1/M2) Adjusted p-value

Clusterin CLU 4.8831722 6.95E-78

Phospholipase A2 Group XVI PLA2G16 4.16649866 2.64E-13

ATP Binding Cassette Subfamily G Member 1 ABCG1 3.65030094 5.92E-09

Basic Helix-Loop-Helix Family Member E41 BHLHE41 2.68190157 2.02E-26

BCL2 Like 14 BCL2L14 2.457426634 5.72E-35

Cytochrome b-245 CYBB 2.350189727 3.24E-41

Integrin Beta Chain Beta 3 ITGB3 -4.8025146 2.06E-43

Serpin Family B Member 4 SERPINB4 -4.2730023 2.59E-11

A-Kinase Anchoring Protein 5 AKAP5 -3.795068132 1.41E-33

7-Dehydrocholesterol Reductase DHCR7 -3.593065496 6.84E-29

Sestrin 3 SESN3 -3.541094785 8.89E-35

Interferon Induced Protein with Tetratricopeptide Repeats 1 IFIT1 -3.426918128 8.79E-45

Alpha-2-Macroglobulin A2M -3.372507505 4.19E-22

Fatty Acid Desaturase 2 FADS2 -3.091196156 1.49E-11

The Log2FoldChange(M1/M2) and adjusted p-values were calculated using the DESeq2 analysis package.

https://doi.org/10.1371/journal.pone.0208602.t001
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Using our optimized protocol for macrophage polarization, we found no evidence of DNA

methylation regulating macrophage polarization; however, this finding may be a result of the

nature of MBD-Seq, as its sensitivity is enhanced for regions with a high density of methylated

CpG, such as CpG islands [47–50]. Perhaps differences in DNA methylation sporadically

across the genome are present, but may not have been captured at the single nucleotide level

by MBD-Seq. Nevertheless, subtle changes in DNA methylation may still be important for

macrophage polarization, as they can work concomitantly with histone modifications to
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https://doi.org/10.1371/journal.pone.0208602.g005
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remodel the nucleosome for coordinated transcriptional regulation [15, 51–55]. While current

studies of the epigenetics of macrophage polarization focus mainly on histone acetylation and

methylation in murine macrophages [14, 56–66], further elucidation of the role of DNA meth-

ylation in human macrophage polarization would provide a deeper understanding of the com-

plete epigenetic landscape in M1 and M2 macrophages.

Our findings also provide new insights into effective epigenetic therapies directed at repro-

gramming macrophage functions. In recent years, two major classes of epigenetic drugs, his-

tone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors, have

demonstrated significant potential as immunomodulatory agents in diseases such as cancer

[67–69]. Despite this, the lack of significant differences in DNA methylation between M1 and

M2 macrophages in our dataset and the fact that DNMT inhibitor activity depends on their

integration into the genome of highly proliferative cells such as cancer cells [70, 71] and not in

less proliferative macrophages [72–75], suggest that DNMT inhibitors may not be the most

effective epigenetic drug for macrophage modulation. However, it is important to recognize

that DNMT inhibitors can still indirectly affect macrophage function by directly modulating

cancer cells and other immune cells in the local microenvironment. Alternatively, HDAC

inhibitors may serve as more promising epigenetic modifiers, as their effects are not limited to

highly proliferative cells. Indeed, HDAC inhibitors such as vorinostat and trichostatin A have

been shown to alter macrophage gene expression in response to LPS [56, 76, 77], highlighting

their utility as macrophage reprogramming agents.

We also identified CYBB and DHCR7 as regulators of macrophage polarization. Previous

studies have shown the importance of CYBB in the bactericidal and inflammatory activity of

macrophages, due to the role of the protein product, NADPH oxidase, in TLR- and IFNγ-

dependent oxidative burst and pro-inflammatory cytokine synthesis [38–41]. These functions

are hallmark features of M1 macrophages, and therefore are highly consistent with our results

showing the increased expression and functional significance of CYBB in M1 macrophage

polarization. Macrophage redox status strongly influences its phenotype and function and has

been studied extensively in inflammatory disorders such as atherosclerosis, chronic granulo-

matous disease, and cancer, where macrophage redox imbalance exacerbates disease progres-

sion. Accordingly, this implies the exciting potential of targeting CYBB in addition to other

members of the ROS signaling pathway for macrophage reprogramming and immunomodula-

tory therapies.

While DHCR7 had been previously identified as an M2-associated gene in a published

microarray-based screen using the traditional M2 polarization condition [9], this is the first

time that DHCR7 has been experimentally validated to be important for M2 macrophage

polarization. The exact mechanism of DHCR7-mediated regulation of M2 macrophage polari-

zation remains unclear. Interestingly, a previous study demonstrated that desmosterol accu-

mulation upon inhibition of DHCR24, another terminal enzyme in the cholesterol

biosynthesis pathway, in macrophage foam cells directly suppressed inflammatory-response

genes [45]. Although DHCR24 and DHCR7 both synthesize cholesterol, their substrates, des-

mosterol and 7-dehydrocholesterol (7DHC), respectively, have very distinct properties and

functions [78–80]. As such, one possible explanation for our findings is that the accumulation

of 7DHC upon DHCR7 inhibition may interact differently with inflammatory mediators to

induce the expression of inflammatory genes. Future studies will be necessary to determine

how DHCR7 and its substrate 7DHC interact with inflammatory mediators and if other mem-

bers of the cholesterol biosynthesis pathway are also involved. Given the need for additional

robust markers of macrophage polarization, it will also be important to evaluate the utility of

DHCR7 as a marker to distinguish M2 macrophages from M1 macrophages in vivo and as a

target of macrophage repolarization therapies. Furthermore, these results are particularly
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exciting because they uncover the cholesterol pathway as another potential target for macro-

phage reprogramming therapies. The role of cholesterol homeostasis in macrophage immunity

has been extensively studied in atherosclerosis, where cholesterol activates pro-inflammatory

signaling pathways via engagement with macrophage pattern recognition receptors such as

TLRs or engulfment by macrophages to accumulate cellular cholesterol [46]. One way to mod-

ulate macrophage function is through the use of statins, which are used to treat atherosclerosis

by reducing plasma cholesterol levels. In fact, several statins have been shown to inhibit macro-

phage secretion of MMP-9 [81] and expression of IL-6 and TNFα in response to LPS [82, 83].

It would be of great interest to determine if the macrophage modulatory activity of statins in

atherosclerosis could also be observed in other inflammatory diseases such as cancer and

autoimmunity.

In addition to CYBB and DHCR7, we also knocked down 16 other genes in our siRNA

screen but did not observe obvious phenotypic and functional changes at the protein level.

However, it is important to note that protein changes may still be occurring given that our

analyses were not exhaustive. It is likely that these genes do not regulate certain markers of

macrophage polarization but are still important for macrophage function. This highlights the

need for a more comprehensive panel of markers of macrophage polarization for improved

phenotypic and functional characterization. Nevertheless, the subtle protein alterations

observed may also be due to the fact that these genes are not the master regulators of their

pathways or that they are part of a redundant pathway in which multiple genes in a given path-

way need to be knocked down to observe significant changes. How these genes function in

macrophage polarization and whether these genes can be used as markers of different macro-

phage subsets remain to be elucidated. Finally, there is a plethora of other novel genes in our

dataset that remain to be explored for their biomarker potential.

Supporting information

S1 Table. List of the methylation peaks identified by methSeek. Methylation peaks identified

by methSeek in promoter and intragenic regions are listed.

(TXT)

S2 Table. Top differentially expressed genes from RNA-Seq dataset. These genes were

selected based on the following criteria: adjusted p-value < 0.05 and |log2FC(M1/M2)| > 1.0.

Genes are sorted based on decreasing log2(fold change(M1/M2)).

(TXT)

S1 Fig. RT-qPCR validation of differential expression and knockdown levels of the genes

selected for siRNA knockdowns. Expression levels of (A) M1-associated genes in untrans-

fected M1 and M2 macrophages (red and blue bars, respectively) and M1 macrophages

exposed to siControl and siRNAs (purple and light blue bars, respectively). (B) M2-associated

genes in untransfected M1 and M2 macrophages (red and blue bars, respectively) and M2

macrophages exposed to siControl and siRNAs (turquoise and coral bars, respectively).
�p<0.05 and error bars represent SEM of 3 biological replicates

(EPS)

S2 Fig. Knockdown of 12 genes does not significantly alter the expression of a subset

canonical cell surface markers and cytokines associated with macrophage polarization.

Differential cell surface marker expression of (A) M1 macrophages exposed to siRNA (B) M2

macrophages exposed to siRNA. MFI indicates mean fluorescence intensity. Differential cyto-

kine secretion profiles of (C) M1 macrophages exposed to siRNA (D) M2 macrophages

exposed to siRNA. Canonical M1 and M2 markers and cytokines are highlighted in the pink
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and blue background, respectively. �p<0.05 and error bars represent SEM of at least 3 biologi-

cal replicates.

(EPS)

S3 Fig. The cholesterol homeostasis pathway is significantly upregulated in M2 macro-

phages. Gene set enrichment analysis (GSEA) enrichment plot showing the significant enrich-

ment of the cholesterol homeostasis gene set in M2 macrophages compared to M1

macrophages (FDR< 0.01) (left panel). Heatmap of the significantly differentially expressed

genes that were enriched in the cholesterol homeostasis gene set (right panel).

(EPS)
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