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Abstract

Globally, about 1% of pregnant women are persistently infected with the hepatitis C virus 

(HCV)1. Vertical transmission occurs in 3–5% of cases2 and accounts for most new childhood 

HCV infections1,3. HCV-specific CD8+ cytotoxic T-lymphocytes (CTLs) play a vital role in the 

clearance of acute infections4–6, but in the 60–80% of infections that persist these cells become 

functionally exhausted or select mutant viruses that escape T-cell recognition7–9. Increased HCV 

replication during pregnancy10,11 suggests that maternofetal immune tolerance mechanisms12 may 

further impair HCV-specific CTLs, limiting their selection pressure on persistent viruses. To 

assess this possibility, we characterized the circulating viral quasispecies during and after 
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consecutive pregnancies. This revealed a loss of some escape mutations in class I epitopes in 

pregnancy associated with emergence of more fit viruses13. CTL selection pressure was reimposed 

after childbirth, when escape mutations in these epitopes again predominated in the quasispecies 

and viral load dropped sharply14. Importantly, viruses transmitted perinatally were those with 

enhanced fitness due to reversion of escape mutations. Our findings indicate that 

immunoregulatory changes of pregnancy reduce CTL selection pressure on HCV class I epitopes, 

thereby facilitating vertical transmission of viruses with optimized replicative fitness.

We first studied a woman (subject M001) with a chronic genotype 2b HCV infection 

(additional patient details are available in online Methods). Viremia was nearly 106 IU ml−1 

at study enrollment during the third trimester of the initial pregnancy, fell 10,000-fold after 

delivery, and remained low (less than 104 IU ml−1) through a 26 month inter-pregnancy 

period (Fig. 1a). Viral levels rebounded to 106 IU ml−1 during the second pregnancy, before 

again dropping 10,000-fold following delivery and becoming undetectable 17 months later. 

Neither pregnancy resulted in vertical transmission. Clonal sequencing of circulating viral 

genomes revealed a total of 13 amino acid substitutions after the first pregnancy and 

additional substitutions during the second pregnancy and postpartum period (Fig. 1b). A 

close phylogenetic relationship of the HCV genomes over time was consistent with viral 

evolution within this subject rather than superinfection (Supplementary Fig. 1).

Large swings in viremia and non-synonymous evolution of the HCV genome through 

consecutive pregnancies could be indicative of changes in CTL selection pressure against 

epitopes, and perhaps viral fitness for replication7,13,15. An arginine to threonine substitution 

at position 495 (R495T) that arose after the first pregnancy was located in a known HLA 

B*5101 restricted epitope16 within the envelope glycoprotein E2 (Fig. 1b, c). A CTL line 

expanded from the blood of this patient recognized the wild-type 492/9 (YPPRPCGIV) 

epitope but not the postpartum R495T variant (YPPTPCGIV) (Fig. 1d, left panel). 

Surprisingly, the R495T immune escape substitution reverted to wild-type sequence during 

the second pregnancy and was then replaced by a unique CTL escape substitution R495K 

after delivery (Fig. 1b–d). The three variants observed at position 495 before, during, and 

after the second pregnancy were tested for their impact on replication of the cell culture-

adapted genotype 2a virus (JFHxJ6)17. The R495T substitution did not affect RNA 

replication when compared with the R495 wild-type sequence (Fig. 1e), but it considerably 

impaired production of infectious virus (Fig. 1f). Position 495 (492 in the reference H77 

strain18) is highly conserved (arginine or lysine) in genotypes 1–6 and appears critical for 

viral entry based on alanine substitutions in HCV pseudotyped lentiviruses19. The 

conservative R495K substitution that emerged after the second pregnancy had no effect on 

infectious virus production (Fig. 1f) but provided for escape from the CTL response (Fig. 

1d, left panel). Clearance of viremia 17 months after the second delivery was associated 

with emergence of a 492/9 CTL response cross-reactive to this R495K mutant (Fig 1d, 

center and right panels).

A second subject (M003) presented with jaundice at week 26 of pregnancy with apparent 

acute genotype 1a HCV infection. Jaundice and alanine aminotransferase (ALT) elevations 

resolved in the final weeks of the first pregnancy, while viremia climbed to greater than 107 
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IU ml−1 (Fig. 2a). A transient 1,000-fold decline in viremia and spikes in ALT followed the 

first delivery. Viremia remained elevated through the second pregnancy and again 

transiently fell 1,000-fold after delivery. The viral quasispecies was stable during the last 6 

weeks of the first pregnancy, but rapidly evolved after delivery of the first child (Fig. 2b). Of 

13 amino acid substitutions observed at week 25 post-partum, eight occurred within 

described or predicted HLA class I epitopes and diminished T-cell recognition by 

postpartum PBMCs and/or CTL lines (data not shown). Two of these substitutions, leucine 

to phenylalanine at position 1403 (L1403F) and lysine to arginine at position 2471 

(K2471R), transitioned through the same “gain, loss, gain” pattern of mutation observed for 

the 492/9 epitope in subject M001 and were therefore evaluated for their impact on T cell 

recognition and HCV replication.

The L1403F substitution was located in the overlap of two well-described HLA-B*0801 

restricted epitopes in the NS3 protein (1395/9 HSKKKCDEL and 1402/9 ELAAGKLVAL, 

the common L1403 residue is underlined)20 (Fig. 3a). L1403F allowed more efficient escape 

from postpartum 1395/9 and 1402/9 CTL lines when antigen was delivered to target cells by 

mRNA transfection than when supplied as exogenous peptide, indicating that L1403F likely 

disrupted antigen processing20 (Fig. 3b). L1403F was dominant in the viral quasispecies 

from 25 weeks after the first delivery until the start of the second pregnancy (Fig. 3a). 

Nevertheless, a transition to wild-type sequence began by the second trimester, reaching 

more than 95% of sequenced clones by the third trimester. Interestingly, the wild-type 

L1403 that arose midway through the second pregnancy was encoded by a novel codon, 

TTG, rather than the conventional CTC codon found at other time points, suggesting de 

novo selection of the wild-type leucine variant in pregnancy (Supplementary Fig. 2). Later 

synonymous replacement of the TTG codon by CTC suggests selective codon usage bias, 

possibly owing to constraints on secondary RNA structure or to the abundance of 

complementary wAG tRNA anti-codon in the human liver21. Twelve weeks after delivery, 

the L1403F substitution began to reappear in association with detectable 1395/9 and 1402/9 

IFN-γ T-cell responses in the blood (Fig. 3c), but was soon replaced by unique escape 

substitutions (K1398R and A1409T) within the separate HLA B*0801 epitopes that 

eliminated peptide recognition (Fig. 3a, b). Incorporation of L1403F in the genotype 1a 

H77S.322 cell culture-adapted virus had little impact on viral RNA replication. Infectious 

virus yields were only 20% relative to wild-type however (Fig. 3d, e), suggesting that 

L1403F may interfere with NS3/4A function during virus assembly23. The later K1398R/

A1409T substitutions similarly reduced infectious virus production but also appeared 

somewhat detrimental for RNA replication (Fig 3d, e), perhaps because K1398 is located 

within the helicase RNA-binding motif IV13.

The second reverting substitution in M003, K2471R, was located at position 6 of the HLA-

B*1501 restricted epitope 2466/9 (SQRQKKVTF)24 in the NS5B protein and accompanied 

by substitutions at position 2 within the same epitope (Fig. 4a and Supplementary Fig. 3). 

The predominant 2466/9 variant to emerge after the first pregnancy (and 12 weeks after the 

second pregnancy) was the double mutant Q2467K / K2471R (SKRQKRVTF). This variant 

demonstrated complete escape from an M003 2466/9 CTL line (Fig 4b, right panel). Late in 

the second pregnancy the K2471R substitution at position 6 reverted to wild-type while 

position 2 switched to a common Q2467L polymorphism found in 16% of curated genotype 
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1a viruses25. Reversion of K2471R in context of Q2467L (SLRQKKVTF) substantially 

restored recognition by the 2466/9 CTL line, although not to the degree of the original wild-

type epitope (Fig. 4b, right panel). The 2466/9 epitope was in close proximity to another 

HLA-B*1501 restricted epitope designated 2450/9 that acquired a stable T-cell escape 

substitution at position 3 (H2453Y) after the first delivery (Fig. 4a and 4b, left panel). 

Incorporation of the postpartum escape mutations from both B*1501 epitopes (H2453Y / 

Q2467K / K2471R in Fig. 4c) into the H77S.3/GLuc2A system impaired viral replication as 

determined by secreted luciferase activity22. The delivery sequence (H2453Y / Q2467L in 

Fig. 4c) replicated as well as the original wild-type sequence despite the residual H2453Y 

escape mutation in the 2450/9 epitope. These data indicate first that in pregnancy the 

quasispecies at 2466/9 shifted from an effective CTL escape sequence to one optimized for 

viral replication. Second, the equivalent replication of virus with H2453 (wild-type) vs. 

Y2453 (2450/9 escape mutant) (Fig. 4c) is consistent with the notion that the CTL escape 

mutations that were stable through pregnancy were less detrimental to viral replication than 

reverting substitutions, or were well-balanced by compensatory mutations26. Nevertheless, it 

is important to note that few HCV strains have been adapted to replicate in cell culture. 

Because HCV replication and the capacity for mutation in cell culture is so finely balanced, 

we did not examine the simultaneous impact of all substitutions on virus production. We 

cannot exclude the possibility that enhanced virus replication during pregnancy due to loss 

of some escape mutations is at least partially offset by the other more stable substitutions in 

the HCV genome.

Both infants (C003 and D003) born to M003 were HCV-RNA negative at birth, but HCV-

RNA positive upon subsequent testing at 19 and 12 weeks respectively, indicating perinatal 

or late intrauterine viral transmission27 (Fig. 2a). Viruses sequenced from C003 at week 25 

and D003 at week 12 closely approximated those present in maternal plasma at delivery 

(Fig. 2b). Viral sequences from D003 contained each of the class I escape mutations that 

were stable in M003, but not the NS3 or the NS5B mutations that had transiently reverted to 

wild-type during the second pregnancy (Supplementary Figs. 2 and 3). C003 inherited the 

maternal B*0801 class I allele and D003 inherited the B*1501 allele, but in both children 

the 1395/9, 1402/8 and 2466/9 epitopes remained intact through more than a year of follow-

up (data not shown). Transmission of more fit wild-type/revertant viruses could conceivably 

favor a persistent course of infection in infants, particularly if they lack the restricting 

maternal class I allele28 or if they fail to exert effective and timely CTL pressure on 

targetable HCV epitopes, as suggested by the absence of evolution of the B*0801 epitopes 

in C003 and B*1501 epitope in D003. Additional studies that address the kinetics and 

effectiveness of acute phase CTL responses of perinatally infected infants and consider 

inheritance patterns of maternal and paternal class I alleles are needed to understand the role 

of infant CTL responses in HCV evolution and protection from persistence.

The phenomenon of “reversion” of unfit CTL escape mutations has been previously 

described after viral transmission to recipients lacking the restricting HLA allele and has 

been inferred from HLA-virus sequence polymorphism studies24,29,30. Observed reversion 

of three escape mutations in four epitopes targeted by subjects M001 and M003 provides, to 

the best of our knowledge, the first examples of this phenomenon within individuals with 

established chronic hepatitis C. As a surrogate readout of in-vivo intrahepatic HCV-specific 
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CTL activity, this evolution of viral class I epitopes indicates, first, that intrahepatic CTLs 

exert a degree of ongoing selection pressure on epitopes prior to pregnancy and, second, that 

these CTLs may be silenced by the immunoregulatory changes of pregnancy. Collectively, 

our findings strongly suggest that the increase in viremia often observed during 

pregnancy10,11 is related to relaxed HCV-specific CTL immunity, coupled perhaps with 

increased replicative fitness of the virus. Increases in replication during pregnancy are 

important, as some studies have linked high maternal viral loads, particularly > 107 IU ml−1 

as seen in subject M003, with an increased risk of vertical transmission2,31. It is noteworthy 

that numerous known immunoregulatory changes of pregnancy parallel those found in 

chronic HCV infection and could conceivably exacerbate HCV-specific CTL dysfunction in 

pregnancy, including expansion of T-regulatory cells32 and enhanced expression of 

immune-suppressive molecules including negative co-stimulatory ligands and receptors33,34, 

HLA-G 35,36 and indoleamine 2,3-dioxygenase (IDO)37,38.

Postpartum reacquisition of escape mutations coincident with detectable IFN-γ responses in 

the peripheral blood in M003 indicates that CTLs targeting these epitopes regain function 

and likely contribute to the coincident declines in viremia that often follow delivery14. 

While function may be restored to CTLs targeting revertant epitopes in the postpartum 

period, it remains unknown whether the same is true of T-cells that target persistently intact 

epitopes. Outside of pregnancy, chronic phase CTLs targeting intact epitopes are 

phenotypically distinct39 and may be more profoundly exhausted than those targeting 

escaped epitopes8. Study of this highly unusual postpartum revival of HCV-specific cellular 

immunity could provide unique insight into mechanisms of T-cell silencing and 

interventions to restore function in the chronic phase of infection. Such mechanisms are 

likely to be relevant to other persistent viruses, such as human immunodeficiency virus and 

particularly hepatitis B virus, where viral load dynamics during and after pregnancy parallel 

those of HCV40. Finally, and perhaps most importantly, our data indicate that relaxation of 

cellular immunity and emergence of viruses that lack key escape mutations in the pregnant 

mother may result in vertical transmission of HCV variants with sharply enhanced fitness 

for replication. Together these findings highlight the fine balance between replicative fitness 

and evasion of host immunity that shapes HCV quasispecies, and suggest that a systemic 

reduction of cellular immunity during pregnancy provides a unique niche for re-emergence 

of fit virus variants with consequences for both mother and child.

Methods

Subjects

HCV-infected subjects M001 and M003 were recruited from The Ohio State University 

Substance Treatment, Education, and Prevention in Pregnancy (STEPP) program, a clinic 

that provides prenatal care and addiction treatment services for pregnant women with 

substance abuse histories. Follow-up visits for mothers and their infants were accomplished 

at Nationwide Children’s Hospital. Approval for this study was provided by institutional 

review boards at the Ohio State University and Nationwide Children’s Hospital and 

informed consent was obtained for all subjects. Subject M001 was enrolled at the age of 26 

years in the 35th gestational week of pregnancy. She had HCV genotype 2b viremia and a 
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reported history of persistent HCV infection for more than 5 years. Both of her pregnancies 

were delivered at term by cesarean section due to prior cesarean section. Subject M003 

presented at the age of 34 years in the 26th gestational week of pregnancy with jaundice, 

elevated alanine aminotransferase (ALT) levels, and HCV genotype 1a viremia. Her 

symptoms were attributed to acute HCV infection on the basis of a reported needle stick in 

the first trimester of pregnancy, a negative HCV serologic test 18 months prior, and 

exclusion of other infectious and non-infectious causes of acute hepatitis. She received two 

doses of betamethasone at 31 weeks gestation to promote fetal lung maturity and delivered 

infant “C003” vaginally at 34 weeks gestation. No corticosteroids were given during her 

second pregnancy, and she delivered infant “D003” vaginally at 38 weeks gestation.

Viral sequence analysis

Clonal sequencing of the HCV open reading frame was performed on EDTA plasma 

samples collected from M001 and M003 through two consecutive pregnancies and 

postpartum periods. Viral RNA was purified with the QIAamp Viral RNA Mini Kit 

(Qiagen) and cDNA was synthesized with Transcriptor Reverse Transcriptase (Roche). 

M001 (genotype 2b, low viral loads) viral genomes were amplified in seven overlapping 

fragments spanning nucleotides 1 to 8577 using Phusion Hot Start DNA polymerase (New 

England BioLabs). M003 (genotype 1a) viral genomes were amplified in five overlapping 

fragments spanning nucleotides 22 to 9018 of the open reading frame using the Expand 

Long Template PCR System (Roche). Fragments that did not amplify with standard primer 

pairs were subdivided into smaller fragments for amplification. Second round PCR was 

performed with nested, semi-nested, or identical primer pairs. To confirm that the M003 

L1403F escape mutation had indeed reverted to wild-type during the second pregnancy, the 

NS3 sequence was re-amplified with alternative primer pairs using cDNA template derived 

from an independent RNA extraction. Specific primer pairs and sequencing conditions are 

available upon request. Second round PCR products were cloned into TOPO XL vector 

(Invitrogen) or Zero Blunt TOPO vector (Invitrogen). All plasmid products were sequenced 

by the Laboratory for Genomics & Bioinformatics at the University of Oklahoma Health 

Sciences Center.

Phylogenetic analysis

Neighbor-Joining41 trees of near full-length viral protein sequences from M001 were 

assembled with archived genotype 2a and 2b viral protein sequences from the Los Alamos 

database while those of M003, C003, and D003 were assembled with archived genotype 1a 

sequences. Amino acid sequences were aligned with MUSCLE42, and evolutionary 

distances were calculated with the p-distance model43. Bootstrap consensus trees were 

inferred from 1000 replicates, and branches reproduced in at least 80% of bootstrap 

replicates are displayed. Evolutionary analyses were completed using MEGA v544.

Identification of potential class I escape mutations

To identify the CTL escape mutations that revert to wild-type during the second pregnancy, 

we first attempted to identify substitutions arising in predicted class I epitopes after the first 

pregnancy (see Supplementary Table 1 for maternal class I haplotypes). Predicted epitopes 

for both subjects included experimentally confirmed epitopes listed in Los Alamos25 (http://
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hcv.lanl.gov) and IEDB45 (http://www.immuneepitope.org) databases. For the genotype 1a 

virus we also included epitopes or adaption sites predicted from HLA-associated sequence 

polymorphism studies30,46. Where the maternal viral sequence in the first pregnancy did not 

match the epitope sequence found in the database, the epitope was excluded if the predicted 

smm IC50 binding score47 of the maternal sequence exceeded 5,000 nM. With this approach 

eight substitutions arising after the first pregnancy in M003 fell within predicted epitopes 

while only the R495T substitution fell within a predicted class I epitope for M001.

Generation of HCV-specific CD8+ T-cell lines from peripheral blood

T-cell lines specific for class I epitopes 492/9 (YPPRPCGIV) in subject M001 and 1395/9 

(HSKKKCDEL) and 1402/9 (ELAGKLVAL) in subject M003 were derived by antigen 

stimulation of cryopreserved postpartum peripheral blood mononuclear cell (PBMC) 

samples. Briefly, 2–6×106 thawed PBMCs were re-suspended in 2 ml RP10-IL2 media 

(RPMI 1640, 10% fetal calf serum (FCS), and penicillin/streptomycin, with recombinant 

IL2 (50 U ml−1) in a 24 well plate and stimulated with the respective peptide at a final 

concentration of 10 μg ml−1. Fresh RP10-IL2 media was added every 3–4 days. After 11–16 

days, CD4+ cells were depleted (Dynabeads; Invitrogen) and remaining cells were 

stimulated with anti-CD3 antibodies and irradiated heterologous feeder PBMCs. After 3–4 

weeks in culture, the epitope specificity of each cell line was determined by IFN-γ ICS or 

ELISpot assay. In some cases CTL lines were subcloned to derive lines with greater epitope 

specificity. Class I HLA restriction was confirmed using peptide-pulsed partially HLA-

matched heterologous B-lymphoblastic cell lines (BLCLs) in the IFN-γ ICS assay.

IFN-γ ELISpot assay

The affinity of CTL lines for wild type versus mutant epitopes was tested by a titration of 

the respective peptides in the IFN-γ ELISpot assay. IFN-γ producing CD8+ T-cells were 

enumerated with the IFN-γ ELISpot (U-CyTech) after a 42 hour stimulation with peptide 

(wild-type or variant) and autologous irradiated BLCLs in duplicate as previously 

described15. Direct IFN-γ ELISpot assays of fresh or frozen PBMCs using peptide pools or 

individual peptides were performed without additional antigen presenting cells.

Intracellular cytokine stain assay

CD8+ T-cell lines were stimulated with either peptide-pulsed or HCV mRNA-transfected 

autologous BLCLs with anti-CD28 and anti-CD49d co-stimulation as previously 

described15. GolgiPlug (BD Biosciences) was added after 1 hour of incubation. After 16 

hours cells were stained for CD8, CD4, CD3, intracellular IFN-γ and vitality and were 

analyzed on a Becton Dickinson LSRII flow cytometer as previously described15.

HCV mRNA transfection of BLCLs

Peptides bearing the initial L1403F substitution did not escape recognition by M003 1395/9 

or 1402/9 T-cell lines as efficiently as peptides bearing the separate K1398R and A1409T 

substitutions when tested by IFN-γ ICS (Fig. 3b), leading us to hypothesize that the L1403F 

mutation might escape the M003 CTL responses more by disrupting intracellular epitope 

processing than by impairing T-cell receptor recognition20,48. To test the effect of 
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intracellular antigen processing we adapted the method described by Timm et al20 to 

transfect HCV mRNA variants bearing these epitopes into autologous antigen presenting 

cells. Briefly, representative NS3 viral sequence clones from week –6 (wild-type), week 40 

(L1403F), and week 152 (K1398R/A1409T) were used as template for a third round PCR 

that would be used to generate the mRNA. The forward primer included a T7 promoter with 

the Kozak consensus sequence and M003 nucleotides 3947–3963 (5′-

TAATACGACTCACTATAGGGAGAGCCACCATGGACGAGTGCCACTCCACG-3′). 

The reverse primer included a stop codon, coding sequence for a positive control wild-type 

A*3101 restricted NS5B epitope (VGIYLLPNR), and M003 nucleotides 4458–4441 (5′-

TCATCGGTTGGGGAGGAGGTAGATGCCTACTTGAGTGCGGGAGACAGC-3′). PCR 

product sequences were confirmed and used to generate mRNA with a poly (A) tail using 

the mMESSAGE mMACHINE T7 Ultra Kit (Ambion). mRNA was cleaned with the 

RNeasy Micro Kit (Qiagen). 106 autologous BLCLs were electroporated with 14 μg viral 

mRNA as described15 and incubated in RP10 media for 24 hours before being mixed with 

CD8+ T-cells at an 8:1 E:T ratio in an IFN-γ ICS assay as described above.

Viral replicative fitness assays

Plasmids—To assess the relative fitness of the E2 mutants in mother M001 (genotype 2b) 

and NS3 and NS5B escape mutants found in mother M003 (genotype 1a) we utilized the 

genotype 2a JFHxJ6 (Cp7) chimera17,49, 1a H77S.322, and 1a H77S.3/GLuc2A22 infectious 

virus systems. Mutant plasmids were constructed in the JFHxJ6 and H77S.3 backgrounds by 

QuickChange and QuikChange Lightning Multi site-directed mutagenesis kits (Stratagene). 

For M001, the unmodified J6xJFH plasmid contained an arginine at position 495 (position 

492 in H77 numbering system) that matched the week –4 “wild-type” M001 sequence and 

was used to construct the R495T and R495K variants. For M003 NS3, the pH77S.3 was first 

modified with an alanine to glycine substitution at position 1405 in order to match the M003 

week –6 “wild-type” 1395–1410 sequence. This modified backbone, designated “H77S.

3/wt-NS3”, was then used for generation of the M003 escape mutants. For M003 NS5B, 

mutants were generated on an altered pH77S.3/GLuc2A backbone that contained a cysteine 

to serine substitution at 2466 to match the M003 wild-type 2450–2474 sequence (“H77S.

3/wt-NS5B”). All mutations were verified by DNA sequencing. Negative controls included 

replication defective NS5B RNA-polymerase mutants GND49 and H77S.3/AAG22 for the 

RT-PCR RNA-replication assays, and a JFHxJ6 plasmid lacking envelope glycoproteins 

(ΔE1E2) for testing the infectivity of the M001 E2 mutants.

Cells—Huh-7.5 cells50 were used for all fitness assays and maintained in DMEM high 

glucose medium containing 10% fetal bovine serum and 1X penicillin/streptomycin at 37 °C 

in a 5% CO2 environment.

RNA transcription and transfection—Plasmid DNA was linearized by XbaI restriction 

digestion before the transcription reaction. RNA was then synthesized from the linearized 

DNA using a MEGAscript kit (Ambion). The transcribed RNA was confirmed by 

spectrophotometry and electrophoresis. RNA was transfected by electroporation as 

previously described51.
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RNA replication—HCV-RNA per μg of total RNA was quantified every 24 hours by 

quantitative reverse transcription PCR as described51 for the M001 E2 and M003 NS3 

experiments. For M003 NS5B, culture supernatant from the H77S.3/GLuc2A RNA-

transfected cells was collected every 24 hours and replaced with fresh medium as 

described22. Daily secreted Gaussia luciferase activity (minus background), an indicator of 

RNA-replication within the cells, was plotted as a fold-change compared to that of 6 hours 

after transfection. Averages and standard errors were calculated from at least two 

independent electroporations.

Virus titration—Culture supernatant collected from cells at day 3 after RNA transfection 

was inoculated onto naïve Huh-7.5 cells, and the cells were fixed and stained 3 days later for 

HCV NS5A protein for determination of the 50% tissue culture infective dose (JFHxJ6) or 

stained for HCV core protein to quantify the number of fluorescent focus-forming units of 

virus (H77S.3) as described23,51. Means and standard errors were calculated from at least 

duplicate assays.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Evolution and relative fitness of M001 E2 CTL escape variants. (a) Course of hepatitis C 

viremia and alanine aminotransferase (ALT) levels in mother M001 through consecutive 

pregnancies. (b) Viral amino acid substitutions relative to week –4 sequence. Significant 

“new” amino substitutions (those with initial frequencies of < 20% and subsequent 

frequency increases of ≥50%) are depicted by vertical lines, with height proportionate to 

frequency. Substitutions arising within predicted HLA class I epitopes after the first 

pregnancy are highlighted (black arrows and shading). (c) Time course of B*5101 492/9 

escape variant frequencies. (d) IFN-γ production by CTL lines upon stimulation with titrated 

concentrations of wild-type and mutant 492/9 peptides. CTL lines were derived from 

PBMCs collected at early postpartum (left panel) or late postpartum time points (middle and 

right panels) by antigen specific expansion using the wild-type or R495K 492/9 peptides. (e) 

Viral RNA replication monitored by RT-PCR of cells transfected with wild-type (JFHxJ6) 

or mutant RNAs, or a ΔE1E2 control RNA lacking the envelope glycoproteins, plotted as 
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increase over a replication-defective NS5B mutant. (f) Infectious virus production. Viral 

particles produced by the RNA-transfected cells were inoculated onto naïve Huh-7.5 cells 

for titration of infectious virus. TCID50 was calculated and plotted as percent of JFHxJ6.
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Figure 2. 
Viremia and viral evolution through consecutive episodes of vertical transmission. (a) 

Course of hepatitis C viremia and alanine aminotransferase levels in mother M003 through 

consecutive pregnancies and in her infants. (b) Viral amino acid substitutions in subject 

M003 (black) and infants C003 (brown) and D003 (purple) relative to M003 week –6 

sequence. Black arrows and vertical shading highlight substitutions arising within predicted 

HLA class I epitopes. See Supplementary Figures 2 and 3 for detailed viral sequence 

alignments of the B*0801 1395/9, B*0801 1402/9, and B*1501 2466/9 epitopes.
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Figure 3. 
Evolution and relative fitness of M003 NS3 CTL escape variants. (a) Time course of 

B*0801 1395/9 and 1402/9 escape variant frequencies. (b) IFN-γ production of T-cell lines 

specific for wild-type 1395/9 (top panels) and 1402/9 (bottom panels) epitopes upon 

incubation with autologous B-lymphoblastic cell lines and exogenous peptides at 0.5 μg 

ml−1 (left panels) or upon incubation with autologous B-lymphoblastic cell lines transfected 

with wild-type or mutant viral mRNA (right panels). Results were normalized for 

transfection efficiency. (c) Direct IFN-γ ELISpot responses to the B*0801 1395/9 and 

1402/9 minimal epitope peptides and an overlapping NS3 peptide pool. Ex-vivo IFN-γ 

responses to the NS3 peptide pool were not detected late in the second pregnancy but 

transiently surged 12 weeks after delivery, concomitant with IFN-γ responses to both 

minimal B*0801 epitopes using cryopreserved PBMCs. (d, e) In vitro RNA replication and 

infectious virus production of viral variants in an H77S.3 backbone that was modified with 

an A1405G substitution to match the “wild-type” M003 1395–1410 sequence (designated 

H77S.3/wt-NS3).
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Figure 4. 
Evolution and relative fitness of M003 NS5B CTL escape variants. (a) Time course of 

B*1501 2450/9 and 2466/9 escape variant frequencies. (b) IFN-γ production by CTL lines 

specific for wild-type 2450/9 (left panel) and 2466/9 (right panel) upon stimulation with 

titrated concentrations of wild-type and mutant peptides. (c) In vitro RNA replication of 

H77S.3/GLuc2A mutants as indicated by daily secreted Gaussia luciferase activity plotted as 

fold-change of light units over values found 6 hours post-transfection. Mutants were 

constructed in a modified H77S.3/GLuc2A backbone that bore a C2466S substitution to 

match the “wild- type” M003 2450–2474 viral sequence (designated H77S.3/wt-NS5B).
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