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Abstract

Motivation: Molecular profiling of patient tumors and liquid biopsies over time with next-generation sequencing
technologies and new immuno-profile assays are becoming part of standard research and clinical practice. With the
wealth of new longitudinal data, there is a critical need for visualizations for cancer researchers to explore and inter-
pret temporal patterns not just in a single patient but across cohorts.

Results: To address this need we developed OncoThreads, a tool for the visualization of longitudinal clinical and
cancer genomics and other molecular data in patient cohorts. The tool visualizes patient cohorts as temporal heat-
maps and Sankey diagrams that support the interactive exploration and ranking of a wide range of clinical and mo-
lecular features. This allows analysts to discover temporal patterns in longitudinal data, such as the impact of muta-
tions on response to a treatment, for example, emergence of resistant clones. We demonstrate the functionality of
OncoThreads using a cohort of 23 glioma patients sampled at 2-4 timepoints.

Availability and implementation: Freely available at http://oncothreads.gehlenborglab.org. Implemented in Java

Script using the cBioPortal web API as a backend.
Contact: nils@hms.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

New profiling technologies, including next-generation sequencing,
have significantly expanded our molecular understanding of can-
cer. Projects such as The Cancer Genome Atlas, the International
Cancer Genome Consortium and the Human Tumor Atlas
Network have set out to comprehensively characterize tumor sam-
ples by generating multi-omic datasets which support the identifi-
cation of molecular subtypes and new, targeted treatment
opportunities (Rozenblatt-Rosen et al., 2020; The International
Cancer Genome Consortium, 2010; Tomczak et al., 2015).

These projects have sparked the development of new tools to
visualize and explore these large datasets, including the cBioPortal
for Cancer Genomics, a widely used platform for the analysis and
visual exploration of cancer genomic datasets (Cerami et al., 2012;
Gao et al., 2013); genomic browsers like UCSC Xena (Goldman
et al., 2020) and others (Nusrat et al., 2019); and cohort visualiza-
tion tools like StratomeX (Kern et al., 2017; Lex et al., 2012; Streit
et al., 2014).

Despite the advancement of cancer-specific visualizations and
portals, temporal visualizations are often lacking. cBioPortal offers
a temporal view for individual patients which supports a range of
data types, including procedure and treatments (Cerami et al., 2012;
Gao et al., 2013). Another temporal visualization is the “fishplot’,
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which shows the development of tumor subclones in an individual
over time (Dang et al., 2017; Miller et al., 2016). However, neither
approach scales well for entire cohorts, as subclone evolution is
highly individual and cohort visualizations with individual patient
timelines become cluttered even for a small number of patients and
time points. Tools like EventFlow (Monroe et al,, 2013) and
DecisionFlow (Gotz and Stavropoulos, 2014) tackle this problem by
aligning shared events in cohorts in blocks with transitions between
events displayed as flows. Another approach has been implemented
by Perer and Sun (2012), where events in a cohort are grouped into
timepoints and displayed in matrices showing the co-occurrence of
events. While these approaches are useful for analyzing event
sequences, as well as for selecting and comparing cohorts (Malik
et al., 2015), they do not integrate multiple features for events, such
as mutation data and expression data for sample collection events.
A more flexible block-based technique is Domino, which is a visual-
ization technique for the creation of multiple connected visualiza-
tions (Gratzl et al., 2014). Despite not being developed specifically
for temporal data, a wide range of temporal visualizations can be
implemented and modified directly in the tool. However, due to its
high flexibility and the novel underlying concept, it is difficult to
apply for users who are not visualization experts.

OncoThreads was designed for cancer researchers and developed
to address the lack of temporal cohort visualization tools, which
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Fig. 1. A schematic view of the components of OncoThreads. Molecular data can be visualized in two separate views, the block view (a), which aligns shared events of patients
as blocks and the timeline view (b), which shows a timeline for each patient. Features of interest can be found and selected in the Feature Explorer (c) and added to the Feature

Manager (d), which supplies them to the visualization. The application also enables feature modification using different types of transformations depending on the type of the

feature (e)

specifically integrate multiple molecular data types and clinical data.
OncoThreads provides exploratory visualizations of longitudinal
cancer molecular data across patient cohorts and supports a wide
range of biological data types, including mutations, copy number
alterations, mRNA expression and protein expression. Furthermore,
OncoThreads offers a temporal cohort visualization based on heat-
maps and Sankey diagrams as well as a timeline overview for all
patients. Moreover, it provides a feature explorer to discover fea-
tures of interest—variables that are defined for each patient and
timepoint, such as tumor stage or mutation burden—and feature
modification in order to adjust their visual representation and facili-
tate interpretation. We demonstrate the ability of OncoThreads to
enable the exploration of longitudinal cancer molecular data in a
comprehensive case study with a cohort of 23 glioma patients
(Section 3, also Supplementary Video and Figures). Moreover, we
assess the usefulness of the design sprint approach (Knapp et al.,
2016) for the development of exploratory visualizations.

2 Materials and methods

2.1 OncoThreads overview

OncoThreads enables researchers to dynamically visualize longitu-
dinal clinical and molecular data across an entire patient cohort,
allowing for the identification of patterns in cancer evolution. For
example, researchers can visualize tumor stage, mutations, mRNA
expression levels or tumor mutation burden at multiple timepoints
for an entire patient cohort. The application consists of several com-
ponents for the selection of features and temporal visualization
(Fig. 1).

OncoThreads displays time as a vertical flow from top to bottom
in order to accommodate large patient cohorts, which are presented
horizontally. The selected features can be visualized in two separate
views. In the block view, samples and events are aligned in blocks in
order to show general event patterns of the cohort over time
(Fig. 1a). The timeline view shows a timeline for each patient reflect-
ing the actual temporal distance between samples and events
(Fig. 1b). A user can alternate between these two views as data are
explored. In order to keep track of the exploration, every action is
saved in an accessible log and undo/redo functionality is provided.

Additionally, users can export the current view, including detailed
metadata about the displayed features, in multiple file formats
(PNG, PDF or SVG).

Data can either be loaded using the cBioPortal API or local files.
With the Feature Explorer, features can be ranked and selected
according to attributes, such as their variability over time (Fig. 1c).
Additionally, features can be transformed in the Feature Manager,
for example, to change a feature’s color scale or to convert a con-
tinuous feature to an ordinal feature by binning or to aggregate
genes into gene sets (Fig. 1d and e).

2.2 Block view

The main visual element of the OncoThreads cohort visualization is
a block. OncoThreads supports two types of blocks: timepoint
blocks and event blocks. A timepoint block represents the samples
of a patient cohort at a certain timepoint with associated clinical,
genomic or other molecular data (e.g. samples acquired at initial
and recurrent surgeries, or prior to and following a therapy). An
event block represents events that occur between two timepoints
(e.g. treatment with a drug). Timepoint blocks are always visible,
while event blocks can be added as desired; when both are visible,
event and timepoint blocks alternate (Fig. 1a and also see Section 3).
The rows of a block represent a set of features. Upon loading a
study, data within the blocks is visualized as a heatmap. Data within
blocks can be rearranged to explore the data by sorting the entire
heatmap with respect to a feature at a specific timepoint, or trans-
forming it into a Sankey diagram by grouping.

Sorting enables the exploration of the distribution of values of a
feature. Each block can be sorted individually with respect to a fea-
ture (called the primary feature). Since sorting may change the order
of the patients to be different across timepoints, the connecting lines
are curved and may cross. In order to eliminate crossing lines, the
patients can be realigned with respect to the patient order in any of
the blocks (Fig. 2a). Moreover, we also implemented multidimen-
sional sorting, which sorts based on multiple features at once. When
a block is sorted repeatedly by different features, the previous order
of patients is retained and applied in case of ambiguities. This can be
seen in Figure 2a, where the second timepoint is sorted by all three
features.
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Fig. 2. Visualization operations in OncoThreads. Blocks represent timepoints, which are ordered vertically. (a) Heatmap view with multiple sample-level clinical features (mu-
tation count, MGMT status and neoplasm histologic grade). Patients are connected by lines. Multidimensional sorting is applied to the second timepoint, which is primarily
sorted by neoplasm histologic grade, while the secondary order is given by the other features. Patients in the other blocks have been aligned based on the order of this time-
point. (b) The same data with all blocks grouped by MGMT status. Grouped blocks show proportions of patients instead of single patients. Within the primary grouping
(MGMT status) the other features are grouped as well. Bands show the proportion of patients transitioning between feature values of two blocks
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Fig. 3. The framework shows four basic steps for feature exploration. (1) Column scores and row scores can be selected to assess both variability within timepoints and across
timepoints for each feature in the Feature Explorer. Scores are calculated for each timepoint or patient and aggregated using a method of choice (grey box). (2) Features can be
ranked by the calculated scores using LineUp (Gratzl et al., 2013). (3) Features of interest can be selected in LineUp and added to the visualization

The block view visualization can be transformed iteratively into
a Sankey diagram by grouping timepoints to analyze the data as
groups of patients rather than individual patients (Fig. 2b). A
grouped block shows information about the proportions of patients
based on the primary feature, rather than showing individual patient
data (see also the case study in Section 3 and Supplementary Video).
It therefore represents an aggregated view, while the heatmap shows
the data in more detail. Due to the independent grouping and
ungrouping of blocks, detail can be viewed selectively for certain
timepoints, while others stay grouped and show proportions.
Furthermore, grouping is especially useful for large cohorts since it
might not be possible to visualize the entire cohort as a heatmap de-
pending on the screen width.

If the primary feature is categorical, the proportions in
grouped blocks are displayed as horizontal bars with widths cor-
responding to the size of the proportion. The proportions and dis-
tributions of other features are shown within the groupings of the
primary feature to allow a comprehensive comparison of the com-
positions of different grouped blocks. Values of continuous fea-
tures are summarized by visualizing their distributions using
color gradients or boxplots. For continuous features many
patients have unique values, which would lead to one patient per
group. Consequently, a continuous feature has to be binned be-
fore grouping to transform it into a categorical feature as
described in Section 2.4.1. A Sankey diagram is created whenever
two adjacent blocks are grouped. The connection between blocks
changes to bands showing the fraction of patients transitioning
between the proportions of the blocks. To highlight that the
bands originate from the primary feature and not from the last
row of the grouped block, the colors of the primary feature are
repeated as a proxy at both ends of the connections (Fig. 2b).

By default, patient samples are aligned with the first available
timepoint for each patient as the first timepoint in the visualization.
However, a cohort may have variability in the first available time-
point, or it may be of interest to analyze a cohort relative to an event
instead, such as the administration of a treatment. Therefore, we
implemented flexible timepoint alignment. Patient columns can be
selected in an ungrouped block and moved up or down using a con-
text menu. Section 3 shows how this functionality is applied in a
sample dataset.

In order to track a subset of patients in the visualization,
OncoThreads allows a user to select individual patients as well as
groups of patients. The selected patients or patient groups are high-
lighted in all blocks and bands allowing the user to gain an under-
standing of the composition of a subset of patients in all blocks
simultaneously.

2.3 Timeline view

In the timeline view, data are visualized as a series of adjacent verti-
cal timelines, one timeline for each patient. Users can switch be-
tween the block view and the timeline view to analyze different
aspects of the data. The timeline view can address questions such as
the relationship between the duration of a therapy and time to pro-
gression. In this view, only one feature is displayed for each sample.
Different events are encoded using different colors, and the duration
of an event is encoded by the length of the bar (Fig. 1b). Similar to
the block view, patients can be selected interactively. Selected
patients are retained in both views. Therefore, patients can be ana-
lyzed as an aligned cohort in the block view and their temporal pat-
terns can be viewed by switching to the timeline view.

2.4 Feature operations

OncoThreads supports a wide range of data types, including gene-
specific data like mutations or expression as well as clinical data,
which may be timepoint- and patient-specific or just patient-specific.
Clinical data are pre-loaded upon study selection, while gene-specif-
ic data are queried on-demand using the HUGO gene symbol and
the datatype of interest. OncoThreads includes a Feature Manager
to transform features and change the order of currently displayed
features. Additionally, a Feature Explorer is provided for the discov-
ery of features to be added to the visualization via guided explor-
ation (Streit et al., 2014). For convenience, known features of
interest can also be selected using a drop-down menu in the toolbar
of the visualization.

2.4.1 Feature Manager

Features are added to the view exactly as the data are provided,
which may not be optimal for visualization. For example, applica-
tion of a log scale might enhance the interpretation of continuous
data with a wide range of values or combining multiple genetic fea-
tures can enable pathway-based analysis. Therefore, the Feature
Manager enables users to transform features (Fig. 1d and e). All cur-
rently displayed features can be modified. Continuous features can
be log transformed or binned to transform them to an ordinal fea-
ture, categorical features can be converted to ordinal features and
vice versa, and binary features can be inverted. Moreover, features
of the same kind can be combined. For example, binary features
encoding for the presence of mutations in specific genes can be com-
bined using a Boolean operator in order to quickly identify patients
or groups of patients showing a combination of these mutations. In
addition, every feature can be renamed and the color scale can be
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Fig. 4. The examples in (a) and (c) show high variability within a timepoint, but no variability across timepoints for categorical and numerical data. Examples in (b) and (d)

show the opposite pattern

changed. The Feature Manager also enables changing the order of
the features in the view, either manually or through sorting by an at-
tribute like datatype, source (clinical, expression, mutation, etc.) or
name. In Section 3 and in the Supplementary Video, we demonstrate
the usage of the feature operations in a case study.

2.4.2 Feature Explorer
The Feature Explorer supports guided exploration and selection of
features (Fig. 1c). It provides an overview of all clinical features and
any genomic or molecular features that have been added, including
range for continuous features, or data types, data source, etc. In add-
ition, the Feature Explorer provides variability scores to highlight
features that may be of biological interest due to high variability
within a timepoint or across timepoints. These scores are measures
of statistical dispersion that indicate the extent to which a distribu-
tion is stretched or squeezed. Users can select different scores using a
drop-down menu and can see the ranking of every feature based on
these scores (Fig. 3). This ranking is shown with an interactive tech-
nique called LineUp (Gratzl ez al., 2013) which helps users prioritize
features, evaluate them and understand any correlations among
them. Similarly to StratomeX (Lex et al., 2012; Streit et al., 2014),
features can be selected in LineUp and added to the visualization.
We examine two types of variability of features in OncoThreads:
within timepoint and across timepoints (Fig. 4). Variability within a
timepoint examines how consistent the data for a feature is across
all patients at each timepoint. Variability across timepoints exam-
ines how a feature changes over time for individual patients.
Figure 4a shows data with high within timepoint variability, but low
variability across timepoints. In contrast, Figure 4b shows low vari-
ability within timepoints and high variability across timepoints. A
similar concept can be applied for numerical data (Fig. 4c and d).

However, different methods are required to calculate variability
scores for the different data types.

Variability scores can be calculated both within timepoints (row
scores) and across timepoints (column scores). We can aggregate
these scores to obtain a single score for every feature. For example,
consider a feature in four timepoints. We can calculate variability
scores for this feature for each timepoint. These scores can then be
aggregated to a single score by selecting the maximum, minimum or
average of the four timepoint scores (Fig. 3). Scores for all features
can be compared within the Feature Explorer, allowing a user to
rank features and find correlations among them. ModVR measures
variation around the mode (Wilcox, 1973). It is a standardized form
of the variation ratio, a measure of statistical dispersion in nominal
data, or the proportion of cases that are not in the ‘mode’ category.
The ModVR values range from 0, indicating low variability, to 1,
indicating high variability. The coefficient of unalikeability meas-
ures variability for categorical data. It represents the proportion of
observations that differ. The higher the value, the more unalike the
data are (Kader and Perry, 2007). The coefficient of variation (CV)
is the ratio of the standard deviation to the mean. A CV <1 indicates
low variance, whereas a CV >1 indicates high variance. For categor-
ical features the rate of change is the number of values that changed
relative to the total number of value transitions. For continuous fea-
tures it represents the rate of the average change to the observed
range. Developers can implement additional scores for this exten-
sible ranking framework.

2.5 Design process

We employed the design sprint methodology (Knapp et al., 2016) to
enable our multi-institutional team to develop consensus goals as
well as to obtain user feedback prior to undertaking a full develop-
ment and implementation process. We also set out to evaluate the
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Fig. 5. Exploring the glioma dataset of a study by Johnson et al. (a) Overview of the exploration. (b) Detailed view of the final step. Time is vertical, and two timepoints are

shown. We can observe that most patients are classified as grade II at timepoint 1, and that most patients progress to grade III or IV at timepoint 2. Furthermore, all patients
with a high mutation count received prior TMZ treatment and methylation of MGMT and mutations in mismatch repair genes co-occur with high mutation count (magenta

box)

success of applying a design sprint to visualization problems. We
performed the design sprint with a group of six people with back-
grounds in biology, biomedical informatics and visualization over
five consecutive days, for 6h each day. The overall goal for our
effort was to ‘develop the “go-to” visualization approach for longi-
tudinal cancer molecular data through an agile framework that will
have measurable technical and scientific impact’.

As part of the process, we interviewed three cancer researchers
for 30 min each in addition to the authors to identify the most im-
portant challenges that needed to be addressed, which raised ques-
tions such as ‘How might we visualize an entire cohort over time?’;
‘How might we integrate multiple data types into one visualiza-
tion?’; ‘How might we define timepoints?’; and ‘How might we en-
able the flexible analysis of a cohort relative to any event, for
example, diagnosis or treatment?’

We examined existing tools and visualization strategies, includ-
ing StratomeX (Lex et al., 2012), Domino (Gratzl et al., 2014),
streamgraphs and Sankey diagrams; these inspired sketches from
which we decided to utilize heatmaps and Sankey diagrams as the
core components of the visualization. The visualization consists of
connected blocks with the rows representing multiple features at dif-
ferent points in time. In order to facilitate finding patterns in the
data, users can switch between the heatmap and the Sankey diagram
as well as sort the visualization by a chosen feature. We reviewed an
existing cancer evolution study (Johnson et al., 2014) and used one
of its main findings to define a path through the data which we
could implement as a prototype of linked slides with the presenta-
tion software Apple Keynote. Given the time constraints of the
design sprint, the prototype allowed for just a single path, rather
than all possible paths of exploration.

We tested the prototype with four cancer researchers, all of
whom successfully arrived at the scientific conclusion that we
intended and found the tool useful overall. However, users also
identified many opportunities for improvement; the primary issues
were that users struggled due to the limited interactivity of the
prototype and that the Sankey visualization in the prototype was
confusing and did not provide an advantage over the heatmap.

Based on the feedback we received, we made two major changes
to the concept: (i) instead of sorting the whole visualization by a sin-
gle feature, we enabled independent sorting for each block, and
similarly (ii) transform from a heatmap to a Sankey diagram itera-
tively by grouping blocks individually. The independent sorting and
grouping of blocks prevents the visualization from changing too
quickly, which we identified as a potential reason for misinterpret-
ation of the prototype visualization. Moreover, selectively viewing
blocks in detail enhances the exploration by adding flexibility.

2.6 Availability and implementation

OncoThreads is a web application available at http://oncothreads.
gehlenborglab.org and its source code is available at https:/github.
com/hms-dbmi/oncothreads under the MIT license. OncoThreads is
implemented in JavaScript using the libraries React (https:/reactjs.
org/), mobx (https://mobx.js.org) and D3 (https://d3js.org/) (Bostock
et al., 2011) for the application structure, state management and
visualization, respectively. React-bootstrap (https:/react-bootstrap.
github.io) has been used to apply bootstrap styles to the React
components. We retrieve data from the cBioPortal using their REST
(Representational State Transfer) API with the promise-based
library axios (https://github.com/axios/axios). Additionally, Onco
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Threads can be obtained as an Electron app (https://electronjs.org)
available for download at https:/github.com/hms-dbmi/oncoth
reads/releases.

3 Results: case study in low-grade glioma cohort

In a study by Johnson et al. (2014), the authors explored the genom-
ic evolution of low-grade glioma by analyzing a cohort of 23
patients with samples from an initial resection as well as one or
more recurrences. Samples were profiled with whole-exome
sequencing and patients were clinically annotated. Among the find-
ings of the paper was the impact of the chemotherapy temozolomide
(TMZ) on low-grade gliomas; in six patients, tumor samples
acquired after treatment with TMZ showed hypermutation and pro-
gression to high-grade glioblastoma in the context of MGMT silenc-
ing and loss of mismatch repair.

Figure Sa illustrates specific steps in an exploration of the data
from Johnson et al. that demonstrates how the features of
OncoThreads support the discovery of relevant subgroups within
the patient cohort. After selection of the relevant dataset [Low-
Grade Gliomas (UCSF, Science 2014)], a single feature, neoplasm
histologic grade, is automatically rendered in the block view. By
using the Feature Explorer and applying the Rate of Change score,
we find that several features, including mutation count, show vari-
ability over time and are therefore especially interesting for analyz-
ing differences between initial resection and recurrence. To explore
the temporal patterns in more detail, we add mutation count and
group both timepoints 1 and 2 by neoplasm histologic grade. This
allows us to visualize specific trends in the data; for example, we ob-
serve that all patients have grade II tumors in the first timepoint
block, but many develop a higher grade tumor at later timepoints.
We also observe significantly increased mutation counts in grade IV
tumors at timepoint 2 (Supplementary Fig. S1). We can now ask
what factors may have influenced tumor development from grade II
to grades Il and IV.

In the Feature Manager we add TMZ treatment, and subse-
quently group the event block between timepoints 1 and 2 by
TMZ treatment. We can then see that there is a notable flow from
patients receiving TMZ to patients having a high grade in the se-
cond sample, suggesting that TMZ treatment may result in a
higher grade recurrence (Supplementary Fig. S2). To further as-
sess the effect of TMZ treatments for all patients, we realign the
entire cohort relative to the treatment. We also want to see if the
patients who received TMZ and developed a high-grade recur-
rence also have a high mutation count. Since mutation count is a
continuous feature, we have to bin it first to transform it into a
categorical feature as described in Section 2.4.1. Based on the dis-
tribution of mutations indicating that there are six samples exhib-
iting very high mutation counts, we create bins for low (<150
mutations) and high (>150 mutations) mutation counts. Based on
this exploration we can formulate the hypothesis that TMZ treat-
ments correlate with high mutation count and grade IV at recur-
rence (Supplementary Fig. S3).

Given this correlation between TMZ treatment and increased
mutational burden, we next look for additional evidence to func-
tionally connect these two features. TMZ is a mutagen, and TMZ-
induced mutations are believed to be mitigated by MGMT protein
and the mismatch repair pathway (Liu and Gerson, 2006).
Leveraging the available molecular data, we add additional tracks to
show the mutational status of mismatch repair pathway genes
MLH1, MSH6 and MSH3, and then use the Feature Manager to
combine those tracks into a single track showing the overall mis-
match repair pathway mutation status. We also add a track showing
the MGMT methylation status of each sample. Now, examining
those samples with high mutation count following TMZ treatment,
we see that all samples show methylation of MGMT, indicating
silencing of the gene and subsequent lack of protein, and almost all
have mutations in mismatch repair pathway genes, which together
support a potential causative role for TMZ in inducing hypermuta-
tion in these tumors (Fig. 5b).

4 Discussion

4.1 Application

The results of the case study demonstrate how the visual exploration
features of OncoThreads support users in efficiently generating test-
able hypotheses and identifying supporting evidence through an ef-
fective combination of visualization and data integration tools. For
example, OncoThreads helps researchers to explore the influence of
a specific treatment on tumors in an entire patient cohort and to
find patterns for the prediction of the outcome of a therapy.
Furthermore, it may be used to discover patterns of genetic predis-
positions that can affect the effectiveness of a drug or help analyze
the effects of different drug dosages.

Currently, OncoThreads utilizes variation around the mode
(ModVR) for categorical data, and variance or CV for numerical
data (Evren and Ustaoglu, 2017) to rank features based on variabil-
ity (Fig. 1c). However, these variability scores are implemented in
an easily extensible framework, such that additional scores or aggre-
gation approaches can be added, for example, calculating the vari-
ability score of a single timepoint rather than the aggregate across
all timepoints to enable a query like ‘How do the features compare
to each other based on their variability in timepoint 2?2’

In the future, additional user interactions could trigger more
complex queries in OncoThreads. An example of such a query could
be: ‘Find all features that show a similar pattern in a specific time-
point’. Such a query would help users to identify correlations among
features. In addition to queries involving sample features, event fea-
tures could be taken into account in scoring functions to evaluate
their relationship to sample features of subsequent timepoints. In
general, these scoring mechanisms could guide users to features that
provide additional insights and to generate new hypotheses.

With the undo and redo operation OncoThreads allows going
back to previous steps during the exploration process. Yet, when a
new action is performed after undoing, the previous path of explor-
ation is lost. Therefore, it would be desirable to incorporate visual-
ization provenance approaches such as Vistories (Gratzl et al., 2016)
or Trrack (Cutler et al, 2020) into OmncoThreads. In those
approaches, the user’s actions are saved in a graph that captures all
relevant interactions. Therefore, it is possible to go back to parts of
the exploration that would be lost in regular undo/redo implementa-
tions. Moreover, those approaches allow the presentation of the
results of the exploration by enabling the creation of a ‘replay’ that
communicates the results by showing certain steps of the explor-
ation with annotations.

In the future, we plan to improve scalability in the number of
features and timepoints. One promising direction is to integrate se-
quential pattern mining and clustering techniques into the visual ex-
ploration of longitudinal patient data. These techniques can
effectively learn patterns from complex sequential data and facilitate
the identification of disease states. Moreover, we plan to enhance
the representation of patient-specific data, as well as tumor hetero-
geneity. Although OncoThreads has been developed specifically for
cancer data, it can also be applied to many other kinds of multidi-
mensional temporal data.

4.2 Design sprint

To the best of our knowledge, the design sprint technique has not
been documented for the development of a biomedical data visual-
ization tool before. In the examples described by Knapp et al.
(2016), the design sprint methodology is used for the development
of tools and products without exploratory functionality. For ex-
ample, when a website is designed for selling a product there are a
few well-defined steps that a user has to conduct to purchase the
product. In contrast, an explorative visualization can be used in
many different ways and no clear endpoint is defined. Therefore, we
recommend adapting the technique to visualization problems, espe-
cially to deal with the complexity of modeling their exploratory and
interactive nature. For example, defining the workflow of the
planned tool before conducting user interviews might introduce bias
in the downstream process. It might be more useful to define
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required steps without specifying their order. Moreover, during pro-
totyping, it is likely not feasible to implement all possible explora-
tory steps in the given timeframe, so we had to limit the exploration
to one path. Similarly, time for sketching needs to be increased.
Nevertheless, we found that the approach can be applied effectively
to efficiently develop and test ideas despite the complexity of the
data and to create a shared vision for the team. While the design
sprint technique allowed us to get early feedback from users, a valid-
ation of OncoThreads with an insight-based evaluation approach
(Saraiya et al., 2005) could provide more information about the
quality of the hypotheses generated with OncoThreads.
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