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Purpose: Multi-transmit MRI systems are typically equipped with dedicated hard-
ware to sample the reflected/lost power in the transmit channels. After extensive cali-
bration, the amplitude and phase of the signal at the feed of each array element can be 
accurately determined. However, determining the phase is more difficult and moni-
toring errors can lead to a hazardous peak local specific absorption rate (pSAR10g) 
underestimation. For this purpose, methods were published for online maximum 
potential pSAR10g estimation without relying on phase monitoring, but these meth-
ods produce considerable overestimation. We present a trigonometric maximization 
method to determine the actual worst-case pSAR10g without any overestimation.
Theory and Method: The proposed method takes advantage of the sinusoidal rela-
tion between the SAR10g in each voxel and the phases of input signals, to return the 
maximum achievable SAR10g in a few iterations. The method is applied to determine 
the worst-case pSAR10g for three multi-transmit array configurations at 7T: (1) body 
array with eight fractionated dipoles; (2) head array with eight fractionated dipoles; 
(3) head array with eight rectangular loops. The obtained worst-case pSAR10g values 
are compared with the pSAR10g values determined with a commonly used method 
and with a more efficient method based on reference-phases.
Results: For each voxel, the maximum achievable SAR10g is determined in less than 
0.1 ms. Compared to the reference-phases-based method, the proposed method re-
duces the mean overestimation of the actual pSAR10g up to 52%, while never under-
estimating the true pSAR10g.
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1  |   INTRODUCTION

Compared to the conventional clinical systems, ultra-high 
field MRI (UHF-MRI) can achieve superior image quality.1-3 
However, the shorter wavelength of the transmitted radiofre-
quency (RF) into the body of the patient results in a greater 
B1 inhomogeneity. To address this problem, several parallel 
transmission approaches (pTx) have been developed to mod-
ulate the amplitude and phase of the input signal.4-7

This shorter wavelength also produces greater electric 
field (E-Field) variability and greater power absorption by 
the body tissues,8-10 making the local specific absorption rate 
(SAR) limits more restrictive than the global SAR limits (as 
described in IEC 60601-2-33).11

Moreover, each amplitude and phase setting produces a 
different spatial distribution of  the local SAR with the am-
plitude and the location of the peak value difficult to predict. 
Since local SAR cannot be measured during an MRI exam-
ination, it is usually evaluated with simulations. Software 
tools to perform online simulations using patient-specific 
body models12 and deep learning methods for image-based 
subject-specific local SAR assessment13 are being developed. 
However, at this moment, local SAR is still evaluated by off-
line simulations using generic patient models.14-17 In this ap-
proach, after domain reduction by 10g-averaged Q-matrices 
(Q10g)

18,19 and Virtual Observation Points (VOPs)20 the sim-
ulation results are stored in the MRI system to calculate a 
predicted peak local SAR level based on the phase and ampli-
tude settings used at the scanner during an MR experiment.

Dedicated hardware to sample the reflected/lost power in 
the transmit channels is usually present in the MRI system. 
Assuming that the amplitude and phase of the RF waveform 
are properly monitored on each transmit channel and that there 
are no calibration errors, Q10g or VOP matrices can be used to 
calculate the peak local SAR (pSAR10g) online. However, al-
though the amplitude and phase of the signal at the feed of each 
array element can be accurately determined, the phase depends 
on the length of the cable and the actual load of the coil. These 
effects need to be taken into account in the calibration.

Therefore, simpler approaches to circumvent this dif-
ficulty by making conservative assumptions can be valid 
alternatives to advanced strategies for RF waveform monitor-
ing.21-23 For example, assuming all forward power is accepted 
(no reflections) a more conservative pSAR10g estimation is 

obtained (no safety risk). However, phase monitoring errors 
can lead to a hazardous pSAR10g underestimation error.

Furthermore, in many cases it can be necessary to take 
into account tolerance, resolution, and malfunctions of the 
phase monitoring systems. Or even, some older MRI systems 
may just have an amplitude-only monitoring system.

For all these reasons, methods to predict the maximum 
potential peak local SAR (worst-case pSAR10g) for a transmit 
array when amplitudes are known but phases may be arbi-
trary will be appreciated.

Several methods are available in the literature.24-27 Two 
of the most well-known methods, that we refer to as total-  
power-based (TP) method and reference-phases-based (RP) 
method, were presented by Bardati and Orzada, respectively. 
Bardati et al24 showed that the amplitudes and phases which 
produce the maximum SAR in each location can be obtained 
by solving the eigenvector problem for the corresponding 
Q-matrices. This method, which does not exploit the knowl-
edge of the power distribution among the channels, actually 
provides the worst-case pSAR10g for the given amount of 
total transmit power.26,27 Therefore, this TP method results in 
significant overestimation and consequent over-conservative 
scanning constraints in many cases.

In order to reduce the pSAR10g overestimation, Orzada 
et al proposed a method to approximate the maximum achiev-
able pSAR10g for a given amplitude distribution among the 
channels using some correction factors to prevent underesti-
mation.27 However, to determine these correction factors this 
method solves a nested optimization problem that requires 
arbitrary reference phases, many iterations and random start-
ing points. The overestimation of this method depends on the 
reference phases and suitable reference phases depend on the 
considered transmit array. With this RP method, after the cor-
rection factors have been determined, real-time pSAR10g ap-
proximation is feasible although considerable overestimation 
can still occur (in the investigated cases a mean overestima-
tion up to 200% was obtained27).

In this work, we propose a general method to determine 
the maximum achievable pSAR10g when only the waveform’s 
amplitudes in the transmit channels are known. The proposed 
method does not depend on arbitrary choices, and it neither 
overestimates nor underestimates the actual worst-case pSAR10g 
for a given amplitude distribution among the channels. Taking 
advantage of the sinusoidal relation between the local SAR in 

Conclusion: The proposed method can widely improve the performance of parallel 
transmission MRI systems without phase monitoring.
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each voxel and the phases of input signals, it always returns the 
maximum achievable pSAR10g in a few milliseconds.

The proposed method is applied to determine the worst-
case pSAR10g when the power distribution over the chan-
nels is known, for three multi-transmit array configurations 
at 7T: eight fractionated dipole antennas for prostate im-
aging29,30; eight fractionated dipole antennas for brain 
imaging31; and eight rectangular surface coils for brain 
imaging.32 The obtained worst-case pSAR10g values are 
compared with the approximate maximum pSAR10g values 
determined with the RP method27 and with the commonly 
used TP method.24 The results show that the proposed 
method can widely improve the performance of pTx MRI 
systems with unknown phase settings.

2  |   THEORY

The local SAR in each voxel j can be calculated from the 
electric field E and the properties of the tissue within the 
voxel (mass density � and electrical conductivity �).

where Ex, Ey and Ez are the x, y and z-components of the 
E-field. For multi-transmit systems the E-field in each 
voxel is the superposition of the E-fields transmitted by all 
channels.

Now we define the normalized complex electric field 
vectors Ẽx, Ẽy, and Ẽz, which contain the Cartesian E-field 
components that are transmitted by each channel with a unit 
excitation, and the drive column vector s, which contains the 
complex-valued channel amplitudes:

where Nc is the number of channels. The local SAR expression 
can be written in matrix form as follows:

The matrices Qx, Qy, and Qz have rank 1 and, hence they 
have only one non-zero eigenvalue. Accordingly, the matrix 
Q = Qx + Qy + Qz can have at most rank 3 and three non-zero 

eigenvalues, regardless of the number of channels (if at least 
Nc ≥ 3).

When the amplitude ||sn
|| and phase �n of the signal in 

each transmit channel are known, the application of so-called 
Q-matrices makes the local SAR calculation easy.

For MRI, the safety limits are expressed in terms of the 
10g-averaged local SAR (IEC 60601-2-3311). Therefore, the 
entries of the Q-matrices are averaged on a cube containing 
10 g of tissue in order to obtain the 10g-averaged Q-matrices 
Q10g.

19

Subsequently, the 10g-averaged SAR (SAR10g) in each 
voxel and the peak 10g-averaged SAR (pSAR10g) over the 
whole body are calculated as follows:

Since the local SAR limits are typically defined for peak 
10g-averaged SAR levels, this study will only consider 
10g-averaged SAR levels. To avoid symbols densely packed 
with subscripts and superscripts, the subscript “10g” is from 
this point onwards omitted. Whenever SAR or pSAR are 
mentioned, it actually refers to, respectively, SAR10g and 
pSAR10g.

As already mentioned in the introduction, although al-
most every pTx system monitors the amplitude and phase 
of the signals being emitted, for example, by means of bi-  
directional couplers,23 without extensive calibration, a deviat-
ing loading condition of a transmit array element may result in 
a hazardous deviating phase in comparison to simulated field 
distributions (pSAR underestimation error). Moreover, in 
many cases, it can be necessary to take into account tolerance, 
resolution, and malfunctions of the phase monitoring systems.

Therefore, in order to ensure patient safety, it can be use-
ful to determine the maximum pSAR that can be reached by a 
given amplitude set (without phase information).

A method commonly used for this purpose does not ex-
ploit the knowledge of the power distribution among the 
channels.24 With this method, based on the min-max theorem 
in linear algebra, the maximum SAR value of the quadratic 
form s†Q10gs, for any possible set of phases with a given total 
power ‖s‖2

2
= PTot, is determined by multiplying the largest 

eigenvalue �max of Q10g by the total power transmitted by all 
channels together.

(1)

SARj =
�j

2�j

(
Ej
)†

Ej =
�j

2�j

((
Ej

x

)∗
Ej

x
+
(

Ej
y

)∗

Ej
y
+
(

Ez
y

)∗

Ez
y

)

(2)

Ẽ
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This TP method is generally used to define an upper-bound 
for the maximum achievable pSAR (pSARTP) when the power 
in each transmit channel is known.24-27

This upper-bound is only reached for a drive vector s with 
magnitude of the components equal or proportional to the 
magnitude of the components of the eigenvector vmax associ-
ated to the largest eigenvalue. Therefore, Equation (8) often 
results in an overly conservative overestimation of the maxi-
mum achievable pSAR value. Indeed, as already mentioned, 
in most cases only the phase �n of the signal in each trans-
mit channel is unknown and the maximum achievable pSAR 
value is given the known amplitudes set is much lower.27

To reduce this excessive overestimation, a method which 
exploits the knowledge of the signal amplitude in each 
transmit channel to approximate the maximum achievable 
pSAR has recently been published by Orzada et al.27 This 
RP method solves a nested optimization problem to ob-
tain K correction factors � k for K reference sets of phases 
Pk =

[
ei�1,k , ei�2,k ,…, ei�Nc ,k

]T. Because this optimization can 
run into local optima, multiple random starting points were 
used. Subsequently, these correction factors are used to ap-
proximate a conservative upper-bound for the maximum 
achievable pSAR based on reference phases (pSARRP).

where wk =
[||s1

|| ei�1,k , ||s2
|| ei�2,k ,…, ||sNe

|| ei�Nc ,k
]T is a column 

vector with magnitudes equal to the drive vector magnitudes 
and phases equal to the k-th set of reference phases. When the 
obtained upper-bound is higher than the maximum achievable 
pSAR with the same total input power, pSARRP is set equal to 
pSARTP. With this method, the overestimation can be signifi-
cantly reduced compared to the TP method (up to 50%), al-
though large overestimation could still occur (up to 200%).27 
A complicating factor of this RP method is that depends on the 
choice of the reference phase sets P. Suitable reference phases 
depend on the considered transmit array. Thus, this dependency 
on the reference phase sets make its performance variable.

In this work, we propose an alternative method that allows 
fast calculation of the maximum achievable pSAR without 
any over- or under-estimation. For this purpose, the local 
SAR equation is reformulated to bring out the sinusoidal re-
lation with the phases of the drive vector s. In fact, Equation 
(5)) can be reformulated as follow:

where ||sn
|| and �n are, respectively, the amplitude and phase 

of the input signal in each channel, and |||Q
j
m,n

||| and �j
n,m

 are, re-
spectively, the amplitude and phase of the Q10g matrix entries.
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Then, using Euler's formula

The second phase-dependent term of this expression is 
a linear combination of cosine functions, which results in 
a sinusoidal SAR variation. Figure 1 highlights this sinu-
soidal relation between SAR and drive vector phases. In 
particular, it shows an example of how the SAR varies in 
a voxel when only the phase of two input signals change 
(Equation 12).

Therefore, each local maximum is a periodic repetition 
of the global maximum. Thus, finding a local maximum is 
equivalent to finding a global maximum.

With a number of channels larger than two, the sinusoidal 
SAR variation is more difficult to view, however it follows 
a similar trend. The local maximum values are on multi-  
dimensional parallel “straight” lines. (Supporting Information 
Figure S1, which is available online).
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F I G U R E  1   Sinusoidal relation between SAR in a voxel and the 
phase of signal in the transmit channels n and m. The local maximum 
achievable SAR is a periodic repetition of the global maximum, and it 
can be achieved from any starting point following the direction of the 
maximum ascent
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minimum) SAR in each voxel can be determined by solving 
the corresponding stationary points equations:

This is a system of equations where the Nc gradient com-
ponents need to be zero:

for l = 1, 2,…, Nc.

The solutions of this system of equations can produce a 
maximum or a minimum SAR. Since we want to determine 
the maximum SAR, we are interested in the solutions where 
the Hessian matrix is negative-definite (ie, a concave point   
of the SAR Equation 12).

Then, using the drive vector consisting of the known am-
plitudes and the determined phase set, s

j

Max
= |s| ei�

j

Max, the 
maximum achievable SAR for each voxel can be calculated. 
Thus, the actual worst-case pSAR (pSARWoC) for the given 
amplitude set can be determined as follows.

However, we do notsolve the previous system of equations 
analytically. The phase set that produces the maximum SAR 
can be obtained through a fixed-point iterations scheme for 
the solution of Equation (14) that will be elaborated in the 
methods section.

The proposed method, based on trigonometric properties 
of the SAR equation, does not overestimate (or underesti-
mate) the maximum achievable pSAR, but it always returns 
the actual worst-case pSAR with the required precision.

2.1  |  Further analysis: Peak local SAR 
approximations

In the following part of the theory, a further analysis is pre-
sented where an upper-bound and a lower-bound to the actual 
worst-case pSAR are introduced. These bounds can be calcu-
lated directly from the Q-matrix entries and therefore do not 
require a numerical optimization.28

For each voxel, the Q-matrix Q could have at most three 
non-zero eigenvalues because the electric field vector of each 
transmit element has three Cartesian components. When only 
one E-field component is present (or one E-field compo-
nent is dominant, eg, the z-component) Q will have only one 

non-zero or dominant eigenvalue. In this case, the phases of 
the components of the eigenvector corresponding to the non-
zero eigenvalue cancel the phase of each Q-matrix entry, that 
is, 

(
−�n + �n,m + �m

)
= 0, for each n, m in Equation (10). In 

this case, worst-case pSAR corresponds to perfect construc-
tive summing/interference of the E-fields of each transmit 
array element (see Supporting Information Appendix S1). 
The resulting maximum SAR is equal to the sum of the mag-
nitude of all entries of Q. Note that even when three Cartesian 
components are present, but the E-fields transmitted by all 
elements have the same direction (ie, E-fields transmitted by 
all elements are parallel), Q has only one non-zero eigenvalue 
and the same applies (indeed, a rotated frame of reference 
XYZ′ exists where all E-fields are in z′-direction; thus, the 
same argument as above applies).

Assuming negligibly small variations of the electric prop-
erties and the E-field distributions in the region that contains 
10g of tissue, these considerations could be applied also to 10g-  
averaged Q-matrices Q10g. Thus, when the Q10g matrices have 
only one eigenvalue, the maximum pSAR actually achievable is:

where �nj are the phases of the components of the eigenvector 
vj associate to the eigenvalue �j of the matrix Qj

10g
.

When the E-field presents more than one Cartesian com-
ponent, that is, Q

j

10g
 has more non-zero eigenvalues, the 

phases of the components of the eigenvector associated to the 
maximum eigenvalue produces a lower-bound for the worst-
case pSAR (pSARLB).

whereas, the sum of only magnitude terms produces an 
upper-bound for the worst-case pSAR (pSARUB).

It is worth noting that RF coil arrays for MRI are usually 
designed to produce an efficient circular polarization of the 
magnetic field on the x-y plane (B1x, B1y-components). This 
results in a dominant z-component of the transmitted E-field. 
For example, dipole antenna arrays have only one dominant 
Cartesian E-field component (the Ez-component).

Moreover, with many RF coil array configurations, the 
maximum achievable pSAR value is often located near 
the array where the E-field transmitted by one element is 
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dominant33 or in a region where the E-fields of all elements 
have a similar direction (where their constructive interference 
is more effective). Therefore, although it cannot be guaran-
teed, one dominant eigenvalue generally exists in those re-
gions where the maximum pSAR is located. Then, the actual 
worst-case pSAR could be approximated with one of the two 
proposed methods.

3  |   METHODS

3.1  |  Trigonometric maximization method 
for worst-case local SAR determination

The phase set that produces the worst-case pSAR can be ob-
tained through a fixed-point iterations scheme for the solu-
tion of the stationary Equation (14).

Since, the solutions of the stationary equations can pro-
duce a maximum or a minimum SAR, we define an ad-hoc 
iteration function � = G (�) which always converges to the 
phase set that produces the maximum SAR value.

To define this G (�) function we transform the system of 
stationary equations ∇SAR (�) = 0. Starting from the system 
of Equation (14), we apply the addition formulas for sine

for l = 1, 2,…, Nc.

Defining Axn,l, Ayn,l, Axl,m and Ayl,m

and using again the addition and subtraction formulas for sine and 
cosine, a closed expression can be found for �l, which would then 
be our iteration function G (�) (detailed derivation in Appendix 1):

Equation (21) represents the l-th function of the new sys-
tem of equations defined to iteratively solve the equivalent 
system of Equation (14). The arctangent function is defined 
as the inverse function of the tangent within the range −π/2 
to π/2. However, the period of SAR Equation (12) is 2π. To 
allow convergence starting from any point, we use the “two-
argument arctangent” function instead of the arctangent func-
tion. The resulting expression is the iteration function G (�):

The implemented iterative algorithm to determine the 
phase set �TM that maximized the SAR for each voxel is 
briefly described below (ε is the required accuracy on the 
maximum local SAR and can be so small such that it pro-
duces no significant underestimation, eg, ε = 10−6).

The iterative optimization algorithm described above is 
implemented in Matlab (MATLAB, The MathWorks, Inc., 
Natick, MA) and included in the Supporting Information.

Then, using the drive vector consisting of the known 
amplitudes and the obtained phase set for each voxel 
(sj
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= |s| ei�

j

TM), the maximum achievable pSAR can be cal-
culated with the required precision (pSARTM).

3.2  |  Worst-case peak local SAR determi
nation with three transmit array configurations

The proposed method is applied to determine the worst-case 
pSAR for three different transmit arrays at 7T. A body trans-
mit array for prostate imaging composed of eight fractionated 
dipoles,29,30 and two head transmit arrays, one composed of 
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eight fractionated dipoles31 and the other composed of eight 
rectangular loops32 (Figure 2).

For each transmit array, finite-difference time-domain 
(FDTD) simulations are performed (Sim4Life, ZMT, Zürich, 
Switzerland) with the commonly used patient model “Duke” 
of the Virtual Family with 77 tissues.14,15 The results are pro-
cessed to obtain Q-matrices18 and 10g-averaged Q-matrices.19 
Subsequently, the VOPs20 are determined with an allowed 
maximum overestimation of 5% of the maximum eigenvalues 
over all Q10g matrices.

Using the obtained VOP set, for each MRI examination 
scenario, the worst-case pSAR value is determined by the 
proposed trigonometric maximization (TM) method with 
1,000,000 random drive vectors normalized to 1W total input 
power. The determined worst-case pSAR value is compared 
to the approximated maximum achievable pSAR value ob-
tained with the recently published method based on reference 
phases27 and to the maximum achievable pSAR value con-
sidering the total power transmitted by all channels together 
(without exploiting the knowledge of the power distribution 

among the channels, a less efficient but more common 
method).

The VOP set of each considered scenario is also used to 
estimate the actual pSAR value for each drive vector in order 
to assess the mean overestimation and the reliability of the 
method (it should never show underestimation).

4  |   RESULTS

The VOP set was calculated for each transmit array setup 
(maximum overestimation of 5%), resulting in: 777 VOPs for 
the body transmit array with eight fractionated dipoles (A), 
4418 VOPs for the head transmit array with eight fraction-
ated dipoles (B), and 2578 VOPs for the head transmit arrays 
with eight rectangular loops (C).

For each transmit array setup and for each random drive 
vector normalized to 1W total input power, the VOP set 
was used to estimate: the worst-case pSAR value with the 
proposed TM method (pSARTM); the approximation of the 

F I G U R E  2   The investigated transmit array setups: body transmit array for prostate imaging composed of eight fractionated dipoles (A), head 
transmit array composed of eight fractionated dipoles (B), head transmit array composed of eight rectangular loops (C)
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maximum achievable pSAR with the RP method27 (pSARRP);   
the highest physically possible pSAR for 1W total input 
power with the TP method (pSARTP). Furthermore, each 
VOP set was also used to estimate the actual pSAR for each 
drive vector (pSAR).

Figure 3 shows the scatter plots of estimated pSAR versus 
actual worst-case pSAR for one million points each. The green 
dots are the estimated worst-case pSARTM values with the pro-
posed TM method. Because we assume pSARTM = pSARWoC, 
they follow the diagonal. The red dots are the estimated high-
est pSARTP values for the given total input power. Therefore, 
they follow a horizontal line because each drive vector has the 
same total power (1W). The blue dots scattered between the 
green and red “dot lines” are the estimated worst-case pSAR 
values with the RP method (pSARRP). Some of these solutions 
are “touching” the pSARTM as expected but most are above.

In Figure 3 are also reported the actual pSAR values. The 
black dots are the actual pSAR values for every drive vec-
tor (considering amplitudes and phases). As expected, the 
green dot line presents an almost perfect delineation of the 
maximum-possible pSAR value. None of the black points 
are above the green points, which confirms that the proposed 
method never produces underestimation errors. These results 
validate our proposition that pSARWoC and pSARTM are in fact 
identical. In addition, none of the blue (and red) points are 
below green points showing that the trigonometric method al-
ways produces the lowest overestimation of the actual pSAR. 

This overestimation reduction is also quantitatively described 
in Figure 4. This figure shows, for each investigated transmit 
array setup, the histogram of the overestimation of the actual 
pSAR values of each considered estimation method. The his-
tograms clearly show the benefits of the proposed method 
(green blocks) compared to existing methods, with a mean 
overestimation reduction of 52% for the body transmit array, 
35% for the head transmit array with fractionated dipoles, and 
37% for the head transmit array with rectangular loops.

These results show that the presented TM method is not 
only better than previously published methods. It is also opti-
mal because it always finds the exact value of the worst-case 
pSAR for that combination of amplitudes with the required 
precision in a few milliseconds (Table 1).

Figure 5 highlights the exponential convergence of the 
implemented TM method. It achieves a residual error lower 
than 10−16 in around 10 iterations and provides the maximum 
SAR with an accuracy of 10−3 after just one iteration.

The accuracy of the two proposed approximation meth-
ods is shown in Figure 6. For each investigated array setup, 
it shows the scatter plot of the ratio pSARUB∕pSARWoC ver-
sus pSARWoC, and the scatter plot of ratio pSARLB∕pSARWoC 
versus pSARWoC. Compared to the actual worst-case pSAR, 
both approximation methods show a small mean estimation 
error (the upper-bound pSARUB shows a mean overestimation 
error from 0.1% to 0.4%, the lower-bound pSARLB shows a 
mean underestimation error from 0.01% to 0.02%) and a very 

F I G U R E  3   Scatter plots of estimated worst-case pSAR versus actual worst-case pSAR for a collection of 1,000,000 random phase-amplitude 
settings. Results are plotted for body transmit array composed of eight fractionated dipoles (A), head transmit array composed of eight fractionated 
dipoles (B), head transmit array composed of eight rectangular loops (C). The green dots are the estimated worst-case pSAR values with the 
proposed TM method (pSARTM). The blue dots are the approximated maximum achievable pSAR values obtained with RP method (pSARRP). The 
red dots are the maximum achievable pSAR values considering the total power transmitted (1W) with the commonly used TP method (pSARTP). 
The black dots are the actual pSAR values considering amplitudes and phases settings
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short calculation time, Table 1 (between 0.3 ms and 3 ms for 
the whole VOP sets, almost two orders of magnitude faster). 
However, overestimation errors up to 8% (pSARUB) and un-
derestimation errors up to 2% (pSARLB) can rarely occur.

5  |   DISCUSSION

MRI systems are typically able to sample the amplitude and 
phase of the transmitted RF waveforms. However, although 

the amplitude and phase at the coil can be accurately deter-
mined, without extensive calibration, phase monitoring er-
rors can lead to a hazardous pSAR underestimation error. 
The existing methods for online assessment of potential 
pSAR value without phase monitoring produce considerable 
overestimation of the actual worst-case pSAR. In this work a 
TM method for worst-case pSAR determination is presented. 
This maximization method takes advantage of the sinusoi-
dal relation between the pSAR in each voxel and the phases 
of input signals, to return the maximum achievable SAR for 
each voxel in less than 0.1 ms.

For a given amplitude set, the implemented algorithm de-
termines for each voxel (ie, for each Q10g matrix), the phase 
set which produces the maximum achievable SAR in very 
few interactions (exponential convergence, Figure 5). This 
allows determining the actual worst-case pSAR for a typical 
VOP set in a few milliseconds (Table 1).

Since the proposed method is inherently parallel, in the 
case of 3D geometries with millions of voxels, the overall 
computation time required can also be significantly reduced 
using graphics processing units.

Compared to the RP method presented by Orzada et al,27 
the proposed method reduces the mean overestimation of the 
actual pSAR by 35% to 52%. A large overestimation can still 
occur (eg, 174%, Figure 4B). However, this overestimation 
cannot be reduced because it is not the result of a conservative 
estimation but it only is due to phase uncertainties. In particu-
lar, for the head transmit array with fractionated dipoles, with 
the same amplitude set, the range of possible pSAR values 
is very large. Therefore, the actual worst-case pSAR values 
(Figure 3B, green dots) are often much higher than the actual 
pSAR values (black dots). Indeed, the observed pSAR val-
ues range from 0.3 W\kg to 2.3 W\kg, with a mean value of 
about 0.8 W/kg. This also explains why the commonly used 
TP method (pSARTP = 2.8W∕kg) produces a mean overesti-
mation of about 272% for this array setup. This great pSAR 
variability also produces large correction factors (Supporting 
Information Table S1) and the large overestimation with the 
latest published RP method (269%), which, probably due to 
unsuitable reference phases for this array setup, rarely de-
termines pSAR values lower than the commonly used TP 
method, and fails to reduce overestimation.

For this transmit array setup, the large pSAR variability 
is probably due to a reduced distance between the dipoles of 
the array, which results in pSAR values produced by the in-
terference of E fields of similar amplitude leading to a higher 
potential modulation depth, that is, relatively large worst-case 
pSAR compared to the mean pSAR.

Whereas for array setups where the pSAR values are 
mainly due to just one transmit element33 (eg, body array 
with fractionated dipoles, where they are typically located in 
the region immediately under the array element), this pSAR 
variability is much smaller (Figure 3A).

F I G U R E  4   Histogram of the actual pSAR overestimation for 
each investigated transmit array setup: body transmit array composed 
of eight fractionated dipoles (A), head transmit array composed of 
eight fractionated dipoles (B), head transmit array composed of eight 
rectangular loops (C). The green blocks show the overestimation 
distribution with the proposed TM method (pSARTM). The blue blocks 
show the overestimation distribution with RP method (pSARRP). The 
red blocks show the overestimation distribution with the commonly 
used TP method (pSARTP)
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It is worth noting that, since the investigated body array 
for prostate imaging is composed of parallel fractionated di-
poles, it shows a very dominant z-component of the trans-
mitted E-field (Supporting Information Figure S2). Whereas, 
in many head regions (eg, neck, cheeks, forehead, etc.), no 
strongly dominant components are observed with the head 
array with oblique fractionated dipoles and rectangular loops 
(Supporting Information Figures S3 and S4).

Since the fixed point in (−π, π) is not unique (fixed 
points for maximum and minimum SAR exist), we are not 
able to prove by theory the convergence to the maximum of 
the proposed algorithm (eg, using the Banach fixed-point 
theorem). However, even if strictly speaking this is not true 
(because this is not a gradient ascent method), it can be 
observed that, at each iteration, the defined G (�) function 
updates the solution “following” the direction of the gradi-
ent ∇SAR (�). Thus, the minimum SAR corresponds to an 
unstable fixed point.

The numerical results also experimentally demonstrate 
that it always converges towards the fixed point corresponding 

Transmit array Number of VOPs

Required calculation time [ms]

pSARTP pSARRP pSARTM pSARLB pSARUB

Body array (8 Fractionated dipoles) 777 0.02 2.3 18 0.3 0.5

Head array (8 Fractionated dipoles) 4418 0.02 18 107 2.2 3.5

Head array (8 Rectangular loops) 2578 0.02 11 61 1.4 2.2

T A B L E  1   Required calculation time for each investigated transmit array setup and each method to estimate the potential pSAR value without 
phase monitoring (Workstation: Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz – RAM 16.0 GB)

F I G U R E  5   Example of the exponential convergence of the 
implemented TM method. A, Logarithm of the SAR estimation 
error for each iteration. B, Estimated SAR for each iteration

F I G U R E  6   Scatter plot of the ratio pSARUB/pSARWoC versus actual worst-case pSARWoC (red dots), and the scatter plot of ratio pSARLB/
pSARWoC versus actual worst-case pSARWoC (blue dots), for each investigated transmit array setup: body transmit array composed of eight 
fractionated dipoles (A), head transmit array composed of eight fractionated dipoles (B), head transmit array composed of eight rectangular loops (C)
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to the maximum. Indeed, starting from any initial phase set 
�0, the phase set �TM that maximized the SAR for each voxel 
is obtained in a few iterative steps.

Furthermore, it is also worth mentioning that the time-  
dependent drive vector of sophisticated RF pulses design strate-
gies (eg, SPINS5 or kT-points6) produces a time-dependent SAR 
distribution with the peak value in a different location for each 
time-step. Considering the amplitude setting at each time-step, 
the proposed method can be used to determine the worst-case 
SAR for every Q10g matrices (or VOPs). Subsequently, the 
worst-case SAR values of each Q10g matrix can be integrated 
over time and the overall worst-case pSAR value can be as-
sessed (Supporting Information Figure S5).

Finally, the small set of additional results confirm the va-
lidity of the assumption made for the two worst-case pSAR 
approximations. One dominant eigenvalue generally ex-
ists in those regions where the maximum pSAR is located 
(Supporting Information Figures S6-S8).

Indeed, the proposed bounds are very tight making them 
effectively quite accurate approximations of worst-case 
pSAR. However, these approximations are not equally accu-
rate. For a given amplitude set, the worst-case pSAR approx-
imation based on the eigenvector phase (lower-bound) is one 
order of magnitude more accurate than the worst-case pSAR 
approximation based on the sum of the magnitude terms only 
(upper-bound).

6  |   CONCLUSIONS

In this work, a TM method for actual worst-case pSAR deter-
mination without phase monitoring is presented. This maxi-
mization method takes advantage of the sinusoidal relation 
between the SAR in each voxel and the phases of input sig-
nals, to return the maximum achievable SAR for each voxel 
in less than 0.1 ms.

In addition to the TM method, in this work are also pre-
sented two approximations of the actual worst-case pSAR 
which can be calculated almost two orders of magnitude 
faster than the actual worst-case pSAR. The results show 
that both approximation methods are highly accurate with 
a mean estimation error ranging from 0.01% to 0.4%, al-
though a considerable estimation error can rarely occur (up 
to 8%).
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FIGURE S1 Sinusoidal relation between SAR in a voxel and 
drive vector phases in case of: 2 (first row), 3 (second row), 
and 4 (third row) transmit channels. The local maximum val-
ues are periodic repetitions of the global maximum and are 
found on parallel “straight” multidimensional lines
FIGURE S2 Body transmit array with 8 fractionated di-
poles. Transverse and coronal sections of the ratio between 
each E-field component and maximum achievable E-field 
for each voxel (eg, 

∑Nc

i=1

||Ex,i
|| ∕

∑Nc

i=1

||Ei
||, where Nc is the num-

ber of channels)
FIGURE S3 Head transmit array with 8 oblique fractionated 
dipoles. Transverse and sagittal sections of the ratio between 
each E-field component and maximum achievable E-field for 
each voxel (eg, 

∑Nc

i=1

||Ex,i
|| ∕

∑Nc

i=1

||Ei
||, where Nc is the number 

of channels)
FIGURE S4 Head transmit array with 8 rectangular loops. 
Transverse and sagittal sections of the ratio between each 
E-field component and maximum achievable E-field for 
each voxel (eg, 

∑Nc

i=1

||Ex,i
|| ∕

∑Nc

i=1

||Ei
||, where Nc is the number 

of channels)
FIGURE S5 Worst-case SAR distribution for sophisti-
cated RF pulses design strategies (eg, SPINS RF pulses 
for body transmission array with 8 fractionated dipoles). 
(A) Instantaneous power of SPINS RF pulses (1 W average 
power limit per channel). (B) Transverse maximum intensity 
projection of the worst-case SAR distributions with SPINS 
RF pulses
FIGURE S6 Body transmission array with 8 fractionated 
dipoles. Transverse and coronal sections of the distribution 
of the largest eigenvalue of 10g averaged Q-Matrices (�max)   
and the ratio of second and third eigenvalues with it. The 
hot spots in the first column (high eigenvalues) show the 
regions where peak local SAR values are usually located. 
The second and third columns show as the second (�2) and 
third (�3) eigenvalues are usually very much lower in those 
regions
FIGURE S7 Head transmit array with 8 oblique fraction-
ated dipoles. Transverse and sagittal sections of the distri-
bution of the largest eigenvalue of 10g averaged Q-Matrices 
(�max) and the ratio of second and third eigenvalues with it. 
The hot spots in the first column (high eigenvalues) show 
the regions where peak local SAR values are usually lo-
cated. The second and third columns show as the second 
(�2) and third (�3) eigenvalues usually are very much lower 
in those regions
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FIGURE S8 Head transmit array with 8 rectangular loops. 
Transverse and sagittal sections of the distribution of the 
largest eigenvalue of 10g averaged Q-Matrices (�max) and the 
ratio of second and third eigenvalues with it. The hot spots in 
the first column (high eigenvalues) show the regions where 
peak local SAR values are usually located. The second and 
third columns show as the second (�2) and third (�3) eigenval-
ues are usually very much lower in those regions
TABLE S1 Correction factors for the latest published ref-
erence-phases-based method to approximate the maximum 
achievable pSAR for each array setup
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APPENDIX 1
To define this G (�) function, we transform the system of stationary equations ∇SAR (�) = 0. Continuing from Equations 
(16) and (17), using again the addition and subtraction formulas for sine and cosine, the Equation (16) becomes:

Then, bringing out sin
(
�l

)
 and cos

(
�l

)
 and bringing the term with cos

(
�l

)
 on the other side of the equation results in:

From this, the expression of the tangent of �l can be obtained

Hence, the �l can be determined by knowing the other phases

(A1.1)

Nc∑
m= l+ 1

Ayl,mcos
(
�l

)
cos

(
�m

)
+Ayl,msin

(
�l

)
sin

(
�m

)
−Axl,msin

(
�l

)
cos

(
�m

)
+Axl,mcos

(
�l

)
sin

(
�m

)

−

l− 1∑
n= 1

Ayn,lcos
(
�n

)
cos

(
�l

)
+Ayn,lsin

(
�n

)
sin

(
�l

)
−Axn,lsin

(
�n

)
cos

(
�l

)
+Axn,lcos

(
�n

)
sin

(
�l

)
=0.

(A1.2)
−sin

(
�l

)( Nc∑
m= l+ 1

Ayl,msin
(
�m

)
−Axl,mcos

(
�m

)
−

l− 1∑
n= 1

Ayn,lsin
(
�n

)
+Axn,lcos

(
�n

))

= cos
(
�l

)( Nc∑
m= l+ 1

Ayl,mcos
(
�m

)
+Axl,msin

(
�m

)
−

l− 1∑
n= 1

Ayn,lcos
(
�n

)
−Axn,lsin

(
�n

))
.

(A1.3)tan
�
�l

�
=

sin
�
�l

�

cos
�
�l

� =

�∑ Nc

m= l+1
Ayl,mcos

�
�m

�
+ Axl,msin

�
�m

�
−
∑

l−1
n=1

Ayn,lcos
�
�n

�
− Axn,lsin

�
�n

��

−
�∑ Nc

m= l+1
Ayl,msin

�
�m

�
− Axl,mcos

�
�m

�
−
∑

l−1
n=1

Ayn,lsin
�
�n

�
+ Axn,lcos

�
�n

�� .

(A1.4)�l = arctan

⎛⎜⎜⎜⎝

�∑ Nc

m= l+1
Ayl,mcos

�
�m

�
+ Axl,msin

�
�m

�
−
∑

l−1
n=1

Ayn,lcos
�
�n

�
− Axn,lsin

�
�n

��

−
�∑ Nc

m= l+1
Ayl,msin

�
�m

�
− Axl,mcos

�
�m

�
−
∑

l−1
n=1

Ayn,lsin
�
�n

�
+ Axn,lcos

�
�n

��
⎞⎟⎟⎟⎠

.


