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ABSTRACT
Working memory (WM) is important for guiding behaviour, but not always for the next possible
action. Here we define a WM item that is currently relevant for guiding behaviour as the
functionally “active” item; whereas items maintained in WM, but not immediately relevant to
behaviour, are defined as functionally “latent”. Traditional neurophysiological theories of WM
proposed that content is maintained via persistent neural activity (e.g., stable attractors);
however, more recent theories have highlighted the potential role for “activity-silent”
mechanisms (e.g., short-term synaptic plasticity). Given these somewhat parallel dichotomies,
functionally active and latent cognitive states of WM have been associated with storage based
on persistent-activity and activity-silent neural mechanisms, respectively. However, in this article
we caution against a one-to-one correspondence between functional and activity states. We
argue that the principal theoretical requirement for active and latent WM is that the
corresponding neural states play qualitatively different functional roles. We consider a number of
candidate solutions, and conclude that the neurophysiological mechanisms for functionally
active and latent WM items are theoretically independent of the distinction between persistent
activity-based and activity-silent forms of WM storage.
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Introduction

Informationheld inworkingmemory (WM) is usually rel-
evant for guiding future behaviour, but not necessarily
the next upcoming action. Consider the following scen-
ario: After giving a talk, an audiencemember asks you a
two-part question. As you arepreparing toanswerques-
tion 1, you need to avoid distraction from question 2,
lest it interfere with your first answer. However, ques-
tion 2 still needs to be stored in memory so that you
can answer it eventually. Ultimately, both items are of
equal importance. Both need to be robustly encoded
and maintained, but only the relevant one should
directly influence your current behaviour. Here we
define the memory item that is currently relevant as
the “active” item, in the sense that it actively guides
ongoing behaviour. By contrast, we define items main-
tained but not acted upon as “latent” items, meaning
that they should not influence current processing.
Latent items have the potential to be brought into an
active state once the need arises, but until then are
stored in a robust yet dormant format.1

Until recently, dominant neural models of WM
required some neural activity to persist throughout
the retention interval to maintain mnemonic infor-
mation – with the possible exception of temporary
gaps in activity that could be bridged by very short-
lived phenomena, such as refractory periods (Amit &
Brunel, 1997; Camperi & Wang, 1998; Wang, 2001;
Wimmer et al., 2014). More recently, theorists have
proposed that WM could also be maintained via
“activity-silent” neural states, such as short-term
synaptic plasticity (Bouchacourt & Buschman, 2019;
Manohar et al., 2019; Zucker & Regehr, 2002).
Although these models are not necessarily mutually
exclusive, the apparent dichotomy between persistent
activity and activity-silent mechanisms clearly
resembles the functional distinction between active
and latent cognitive states of WM (see next section).
The purpose of this article is to caution against a
direct correspondence between these functional and
neural distinctions. We argue that the principal
requirement for distinguishing functionally active
from latent WM is that the neural state of active WM
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should engage with ongoing processing, whereas
latent WM should be functionally inert, i.e., not inter-
fere with ongoing processes. Here we consider poten-
tial neural solutions for this and outline how they
could be tested empirically.

Various neural mechanisms can support
functionally latent working memory

The distinction between persistently active and
activity-silent mechanisms of WM storage has gener-
ated vigorous debate (Constantinidis et al., 2018;
Lundqvist et al., 2018), leading some to propose
that the two neural mechanisms could serve distinct
functions in the service of WM (Masse et al., 2019;
Trübutschek et al., 2019). One popular proposal has
been that persistent activity could be associated
with attended items in WM, while other items are
maintained in a more passive, activity-silent state
(Kamiński & Rutishauser, 2019; LaRocque et al.,
2013; LaRocque et al., 2015; Lewis-Peacock et al.,
2012; Manohar et al., 2019; Olivers et al., 2011;
Stokes, 2015). Although this view has intuitive
appeal, the logic that functional WM states should
align with this particular dichotomy of activity
states has not been thoroughly evaluated in the
literature.

In order to fulfil our operational definition, an active
WM item should be readily available to interact with
ongoing processing, whereas the latent WM item
should have minimal influence. Critically, both active
and latent items need to be maintained robustly.
Further, latent items need to be available to be refor-
matted into an active state that allows them to affect
behaviour when needed.

Functionally active and latent states differentially
engage with ongoing processing

Behavioural studies are the main source of evidence
that processing of subsequent stimuli is more reliably
influenced by active WM than by latent WM. Many of
these studies are based on the observation that WM
can maintain templates that guide attention to
memory-matching stimuli (Dowd et al., 2017;
Downing, 2000; Olivers et al., 2006; Soto et al., 2005;
Soto et al., 2008). This effect seems to require mainten-
ance of WM items in an active state (Olivers et al.,
2011; Van der Stigchel & Olivers, 2019), since the

attention-guiding effect rapidly subsides over multiple
trial repetitions or stimulus presentations (Gayet et al.,
2017; Kang & Spitzer, 2020; van Moorselaar, Theeuwes,
& Olivers, 2016), presumably as the active WM item is
reformatted into a non-interfering representation.

When multiple items are concurrently held in WM
at different priority levels, only the active WM item
appears to guide attention, while latent WM has only
temporary influence (Mallett & Lewis-Peacock, 2018)
or no influence at all (Greene et al., 2015; van Loon
et al., 2017; van Moorselaar et al., 2014). Nevertheless,
some studies have shown that multiple WM items can
simultaneously guide attention (Hollingworth & Beck,
2016; Carlisle & Woodman, 2019), leaving open the
possibility that, in some circumstances, latent WM
items may have an unintended effect on cognition
or behaviour (possibly as an effect of imperfect separ-
ation between active and latent WM via non-orthog-
onal coding schemes, see below).

A second line of convergent behavioural evidence
comes from studies showing that novel task sets
held in WM can automatically influence processing
of subsequent stimuli in a secondary task performed
in the maintenance delay (Liefooghe et al., 2012;
Meiran et al., 2012; Muhle-Karbe et al., 2016). This
effect seems to be specific to task sets held in active
WM after they have been cued as relevant, while
uncued task sets have no such effect (González-
García et al., 2020).

By contrast, less is known about the neural basis of
differential effects of active and latent WM on stimulus
processing. In general, stimuli matching the contents
of WM elicit larger neural responses (Awh et al.,
2000; Gayet et al., 2017), consistent with increased
deployment of attention. Similarly, maintaining a
task set leads to motor-preparatory responses (latera-
lized readiness potentials) when the instructed stimuli
are encountered in a secondary task, signalling that
they are being processed according to the maintained
stimulus-response mapping (Meiran et al., 2015), again
suggesting that WM maintenance influences proces-
sing of subsequent stimuli.

At present, it remains unclear how specific these
neural effects are to active WM because few studies
have compared active and latent WM. A study manip-
ulating the task-relevance of WM items found that
neural markers of attention were amplified towards
stimuli matching a WM item when it was task-rel-
evant (Carlisle & Woodman, 2013), possibly because
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the item was maintained in active WM. In a recent
EEG study, we aimed to measure more directly how
active and latent WMs influence WM-guided behav-
iour (Muhle-Karbe et al., 2020). Participants held two
items in WM and were cued on each trial which
item was active and should be compared to a
probe stimulus, while the other item was latent and
maintained merely for later use. Both active and
latent WM items could be decoded from patterns of
EEG activity, but only the quality of representation
of the active item directly affected behaviour. When
an item was in the active state, trial-to-trial variability
in decoding predicted the efficiency of WM-based
decision-making: stronger decoding of the active
item led to faster performance on that trial. This
was not the case for latent items, where variability
in decoding did not predict behaviour on the
current trial. Interestingly, however, decoding did
reflect how well the item would be remembered on
other trials when it was in an active state. This distinc-
tion is consistent with the idea that active and latent
forms of WM storage have distinct effects on behav-
iour, and that latent WM minimally interferes with
ongoing processing, in line with the behavioural
studies cited above.

Although this study was focused on WM-based
decision dynamics rather than on maintenance per
se, it does highlight the key functional distinction
between active and latent WM states. Below we
discuss a number of neural mechanisms that could
give rise to the maintenance of WM items for such
functionally distinct cognitive states. First, we
discuss mechanisms that segregate active and
latent items in discrete neural patterns, from separ-
ation at the large-scale anatomical level, to separation
of activity subspaces within the same neural popu-
lation, to the frequently invoked separation via neu-
rophysiological mechanism: persistent activity vs
activity-silent states. The key property of all three
mechanisms is that active and latent WM states are
statistically uncorrelated (i.e., orthogonal, see also
Figure 1), ensuring that active WM states can drive
behaviour independently of latent WM states. Next,
we discuss non-independent (i.e., non-orthogonal)
coding schemes that have been proposed recently,
where there is a statistical dependence between
active and latent WM states, and how these might
have implications for interference from latent WM
on behaviour. Finally, we briefly discuss how an

alternate framework, based on separating WM rep-
resentations in different phases of neural oscillations,
might address the issue.

Orthogonal coding schemes for active and
latent WM

If active and latent WM have different functional prop-
erties, then by definition there must be a difference in
the respective neural representation. More specifically,
if an item is active in one context, but latent in another
context, there must be a distinct coding scheme for
the same information in each context (active vs
latent; see Figure 1). If they were represented in
exactly the same neural state, they would have
exactly the same functional properties. Further, we
suggest that the difference between active and
latent WM states should be qualitative, not just quan-
titative. Both active and latent memories need to be
maintained robustly: the key difference in not the
strength of the coding, but its functional properties.
Finally, if active and latent neural states are main-
tained by independent, or orthogonal, coding
schemes, interference should be minimized.

Anatomical separation

Perhaps the simplest means by which the brain could
maintain active and latent WM items independently is
via storage in distinct brain areas (Figure 1A, left). Con-
sistent with this idea, a recent fMRI study found that
active items could be decoded from BOLD activity pat-
terns in a distributed network comprising early visual,
parietal, and prefrontal areas. By contrast, latent items
could be decoded from activity patterns in the intra-
parietal sulcus and the frontal eye fields (Christophel
et al., 2018), suggestive of a division of labour
between brain areas in coding for active and latent
WM items. In principle, these findings meet our cri-
terion for qualitatively different coding schemes
(Figure 1A, middle and right), since behaviour could
be selectively driven by those brain areas representing
only the active item. Testing how decoding strength in
different brain areas relates to the quality of WM-
based decisions will be central to evaluating the ana-
tomical separation hypothesis. Ultimately, causal inter-
ventions (e.g., Daie et al., 2019) may help determine
whether only regions exclusively coding for active
WM drive behaviour.
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It is also important to note that fMRI findings of
decodable delay signals do not strictly imply that
WM items are encoded in persistent activity, rather

than in “activity silent” states. Both could in principle
result in decodable patterns in the BOLD response:
Persistent activity should drive statistically separable

Figure 1. Summary of possible coding schemes for active vs. latent WM. Rows show different putative coding mechanisms for active
versus latent WM. Left-hand column: Circuit-level depiction of various coding schemes in an example neural population. Each grey
square represents a WM-coding neural population. Within the population, circles represent coding units (neurons), and arrows rep-
resent directed connections. Activated units are shown in colour (active: red, latent: grey or blue). Middle column: Correlation
between activation patterns for items in an active (x-axis) or a latent (y-axis) state. Individual points indicate units. Correlations are
exaggerated for illustration. Right-hand column: Neural state-space representation. When reduced to their most informative dimen-
sions, neural patterns for active or latent items may occupy different subspaces. The extent of their overlap is a reflection of how corre-
lated patterns are for active and latent WM. (A-C). Various coding schemes leading to orthogonal representations (no correlation
between active and latent patterns). (A). Separate brain areas or separable neural populations. (B). Separate patterns in the same
neural population. (C). Connectivity-based (i.e., activity-silent storage) can also separate active from latent WM by changing the
weights of different connections in the population. (D-E). Non-orthogonal coding schemes. (D). Attention Gain coding separates
active from latent WM through differences in amplitude, rather than different patterns. (E) Similarly, suppressive coding stores
latent WM in the same neural pattern, but through a reversal of activity, leading to anti-correlated activity patterns that nevertheless
occupy the same neural subspace.
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patterns across voxels, but it is also possible that
activity-silent states can be detected in separable pat-
terns of spontaneous activity (Sugase-Miyamoto et al.,
2008). Given the indirect coupling of spiking activity
and BOLD (e.g., Logothetis et al., 2001), there are prob-
ably even more indirect possibilities that complicate
the correspondence between decodable BOLD
signals and the underlying neurophysiological mech-
anism. Nevertheless, whatever the underlying activity
state, maintenance in anatomically segregated brain
areas fulfils our basic orthogonality requirement.

Separation by different subpopulations (or
subspaces) within brain areas

A second possibility is that active and latent WM items
are stored within the same brain area(s), or even in an
overlapping neural population, without causing inter-
ference (Figure 1B). The main prerequisite for this
coding scheme is that item-specific activity patterns
for the active item are uncorrelated with item-
specific patterns when the same item is latent (i.e.,
active and latent states are statistically separable).
This may correspond to latent item patterns occupy-
ing the null space of the optimal readout weights for
the active item. While the theoretical appeal of such
a coding scheme has been noted (Druckmann &
Chklovskii, 2012; Spaak et al., 2017), supporting evi-
dence is still relatively scarce, and human evidence is
still lacking. It is worth noting that such a scheme
would imply that some cells in the population
exhibit nonlinear mixed selectivity (Fusi et al., 2016)
since their response to a particular WM item would
depend on its functional state. The involvement of
mixed selectivity in WM maintenance has been
demonstrated in other contexts (Parthasarathy et al.,
2017; Rigotti et al., 2013), where mixed selectivity
neurons have been shown to be of particular rel-
evance to behaviour, highlighting the potential
utility of context-dependent codes.

A recent WM study recording neurons in prefrontal,
parietal, and visual cortex (Panichello & Buschman,
2020) found that cueing a WM item as relevant led
to a transformation of activity into a new subspace
that was orthogonal to the subspace coding for the
same item prior to the cue. This result can be inter-
preted as evidence that orthogonalisation plays a
role in distinguishing active from latent WM. In a
related study (Yoo & Hayden, 2020) recording from

neurons in the orbitofrontal and ventromedial pre-
frontal cortex, two stimuli that were both needed for
a reward-guided decision were maintained across a
delay period in orthogonal subspaces. This separation
within the same neural populations could allow down-
stream brain areas to be driven entirely by one stimu-
lus without interference from the other. A similar
mechanism has been demonstrated in movement
planning, where premotor cortex maintains a
planned movement in a latent state that is “invisible”
to the motor cortex until it needs to be executed
(Elsayed et al., 2016; Kaufman et al., 2014). Notably,
as for the anatomical coding scheme outlined above,
such orthogonal patterns could be maintained both
via persistent activity, or through activity-independent
means (e.g., Hopfield, 1982).

Separation by neurophysiological mechanism

Finally, we consider the proposal that functionally
active states are supported by elevated neural activity,
whereas functionally latent states correspond to
activity-silent mnemonic mechanisms. This distinction
has been suggested by a number of authors (e.g.,
Kamiński & Rutishauser, 2019; LaRocque et al., 2013,
2015; Lewis-Peacock et al., 2012; Manohar et al.,
2019; Olivers et al., 2011; Stokes, 2015). In the frame-
work developed here, this division of labour is only
helpful if it confers differential functional properties
on active and latent WMs. As highlighted above, it
does not bear on the basic maintenance demands:
both active and latent memories need to be main-
tained robustly. Nevertheless, a division of labour
between different candidate neurophysiological
mechanisms (a stable attractor state based on persist-
ent activity, or short-term synaptic plasticity) could
satisfy our key requirement for orthogonal represen-
tation (Figure 1C). However, it is also often further
assumed that the neurophysiological dichotomy
between persistent activity and activity-silent main-
tenance naturally aligns with the functional dichot-
omy between active and latent WM. The intuition
seems to be that elevated neural activity uniquely
influences WM-guided behaviour (e.g., via changes
in state-dependent processing), and therefore is
better suited to active WM, whereas activity-silent
mechanisms are effectively functionally dormant
(see, e.g., Lewis-Peacock et al., 2012). However, it is
important to point out that activity-silent mechanisms
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are not inherently functionally dormant. On the con-
trary, temporary changes in synaptic connectivity
can have a direct functional impact on subsequent
processing. For instance, encoding an active item via
altered responsivity in the relevant network could
allow subsequent input (i.e., a memory probe) to
evoke activity that will generate an appropriate
response (Stokes et al., 2013), without requiring sus-
tained activity (Manohar et al., 2019; Mongillo et al.,
2008). Therefore, both forms of maintenance (persist-
ent activity, e.g., Mante et al., 2013; Remington et al.,
2018, and activity-silent connectivity patterns, e.g.,
Bouchacourt & Buschman, 2019; Manohar et al.,
2019) can guide decision-making and support active
WM states. Similarly, as we have described above,
functionally latent representations could also be main-
tained via persistent activity as long as they are quali-
tatively distinct from the corresponding active
representation.

It is also important to note that other factors likely
determine the extent to which a WM item is associ-
ated with persistent activity or activity-silent states.
For example, it has recently been proposed that elev-
ated activity could be a signature of current proces-
sing or transformation of WM items, rather than
storage per se (Masse et al., 2020). If such transform-
ations are more likely to occur on active WM items
(as has been proposed previously, see Lewis-Peacock
et al., 2012), this could explain common findings
such as active WM being decoded from BOLD activity,
while latent items are not.

Non-orthogonal coding schemes

A number of alternative proposals for neural differ-
ences between active and latent items fall into the
general category of non-orthogonal coding (Figure
1D-E). For example, Schneegans and Bays (2017)
argued that active and latent items are encoded in
the same neural patterns and differ only quantitatively
in their level of activation (see also Chun, 2011; Kiyo-
naga & Egner, 2013). They describe an attractor
model with an attention parameter that modulates
the gain of activity coding for items cued as relevant,
compared to latent items (Figure 1D, left). Importantly,
persistent activity of items prior to cue presentation is
just attenuated, not abolished. If the latent item
becomes relevant, activity is increased to the acti-
vation level of an active item, allowing more accurate

readout. It is worth noting that this model implies that
basic maintenance only requires a relatively low
energy persistent activity state, whereas the additional
activity for attended/active items serves a distinct
purpose (e.g., to allow for more reliable readout of
the attended item).

In contrast to the orthogonal coding schemes listed
above, a difference in activity level between active and
latent items means that the underlying patterns are
positively correlated (Figure 1D, middle), which pre-
sumably could lead to greater cross-talk between
active and latent states (Figure 1D, right). For
example, the latent item could distort the readout
population’s estimate of the active item, or create con-
fusion between active and latent items. The severity of
this confusion should depend on the relative acti-
vation strength of the latent item. One consequence
of this should be a trade-off between confusability
with the latent item, and more general durability of
the memory. While this trade-off could help explain
classic WM capacity limits (Ma et al., 2014), there is
some behavioural evidence that formerly latent
items can be restored to an active status with little
information loss (Hollingworth & Maxcey-Richard,
2013; Rerko & Oberauer, 2013; also Oberauer, 2002;
and Nee & Jonides, 2014; but see, e.g., Rerko et al.,
2014, for costs to latent WM).

Another non-orthogonal coding scheme for active
and latent items is suppressive coding. Suppressive
coding has been recognized as a general feature of
WM delay activity. This manifests as a reversal of selec-
tivity of a proportion of neurons (or of activation pat-
terns measured with BOLD) during a memory delay,
relative to encoding. Reversed selectivity is consistent
with the idea that somememory-selective cells reduce
their firing rate below baseline during WM mainten-
ance. This effect has been demonstrated in sensory
areas (Linke et al., 2011; Lorenc et al., 2020; Zaksas &
Pasternak, 2006), prefrontal cortex (Fuster, 1973;
Hussar & Pasternak, 2012; Lara & Wallis, 2014; Zhou
et al., 2012), and parietal cortex (Zhou et al., 2012).
Building on activity reversals relative to stimulus
encoding, two recent fMRI studies have suggested
that a WM item can also reverse its activity profile
between active and latent states (van Loon et al.,
2018; Yu et al., 2020). The studies measured BOLD
signals in visual and parietal cortex to decode active
and latent WM items, and found that when a classifier
was trained to discriminate the active WM and was
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then applied to identify the latent item, its perform-
ance dropped below chance level. In other words,
item-specific patterns are anti-correlated between
the active and latent state. One mechanism to
achieve this could be suppression of item-selective
neurons when that item enters a latent state (Figure
1E, left and middle).

A suppression or reversal of coding for latent items
might seem like a means of reducing their influence
on behaviour. However, even a negative relationship
means that a meaningful portion of the activity
related to the latent item falls into the subspace
coding for the active item (Figure 1E, right). This
negative correlation potentially suffers from the
same problem as any mechanism relying on posi-
tively correlated patterns between active and latent
states: readout trained to discriminate the active
item might be influenced by the identity of the
latent item. In particular, suppressive coding of the
latent item should drive readout of the active item
to be less similar to the latent one than it actually
was, possibly leading to mnemonic repulsion
between active and latent items. Interestingly, such
repulsion has been reported in certain cases at the
behavioural level (e.g., Myers et al., 2018; see also
Almeida et al., 2015; Nassar et al., 2018). This points
to the possibility that suppressive coding could be
adaptive in some task environments when similar
items need to be disambiguated (e.g., Geng et al.,
2017). More generally, non-orthogonal coding mech-
anisms could explain why behaviour can be tempor-
arily guided by latent WM (Mallett & Lewis-Peacock,
2018).

Temporal separation via oscillations

An alternate form of separating active and latent WM
contents is via temporal coding, for instance through
periodic reactivation of individual WM items at
different phases of an ongoing slow oscillation (Axma-
cher et al., 2010; Bahramisharif et al., 2018; Jensen &
Lisman, 1996; Lisman & Idiart, 1995). To our knowl-
edge, phase separation of active and latent WM
items has not yet been demonstrated, but this
appears to be a plausible mechanism. For instance,
inter-areal phase synchronization (Johnson et al.,
2018; Spellman et al., 2015) could ensure that a down-
stream population is driven only by item reactivations
at the optimal phase (reserved for the active item),

while latent items reactivate at suboptimal phases,
ensuring minimal interference with subsequent pro-
cessing. This would achieve a similar aim as segregat-
ing activity into distinct subspaces.

Transforming latent into active WM

Our aim is not to advocate for any specific means of
distinguishing active from latent WM. However, it is
worth considering how plausibly the possibilities out-
lined above could fulfil one key demand: transferring
WM items from a latent to an active state (or vice
versa). The separation by neurophysiological mechan-
ism (activity vs activity-silent storage) seems to
provide the most straightforward solution: a latent
WM item can be moved to an active state simply by
activating the population storing the latent item in
its synaptic weights. Several computational models
have shown that pattern completion can lead a popu-
lation into an attractor state coding for the now active
item (Manohar et al., 2019; Oberauer & Lin, 2017).
Attentional gain coding and suppressive coding
could also allow for relatively straightforward trans-
formations, by either amplifying existing activity
(attentional gain) or rebounding from a suppression
of activity. By contrast, anatomical separation requires
an apparently more complex transfer of information
from one brain area (coding for latent WM) to
another (coding for active WM). While this has not
been demonstrated for WM, it has been shown in
other contexts (e.g., Crowe et al., 2013). The study by
Christophel et al. (2018) also strongly suggests this
possibility, since their paradigm required maintaining
two items until a retrospective cue indicated which
to prioritize, presumably triggering its reactivation in
visual cortex. Similarly, separation by activity subspace
within a brain area faces the challenge of shifting
neural activity from one subspace to another. While
this has not been demonstrated specifically for tran-
sitions of latent to active WM, it has been observed
in a number of other contexts (e.g., Tang et al.,
2019), and particular in transitioning representations
from a neutral to a prioritized state after a retrospec-
tive cue (Panichello & Buschman, 2020). Since the
mechanism for moving information across brain
areas or subspaces is unknown, it cannot be ruled
out that such a transformation could reintroduce inter-
ference between active and latent WM that had been
avoided by orthogonalising them in the first place.
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Future directions

We have laid out a variety of theoretical mechanisms
for the storage of functionally active or latent items
in WM. Since the key constraint for latent items is
that they should not interfere with current behaviour
or storage of the active item, the main constraint on
possible storage mechanisms is not whether it is per-
sistently active or activity-silent, but rather the ortho-
gonality of the respective coding schemes. Although
separation by neurophysiological mechanisms (per-
sistent activity vs activity-silent maintenance) could
fulfil this key constraint, it is only one of a larger set
of possible solutions. Importantly, it is possible that
active and latent items could both be maintained
using the same kind of activity state (persistent activity
or activity silent maintenance), so long as the mnemo-
nic states are orthogonal: e.g., separate brain areas,
overlapping but distinct neural populations, or non-
overlapping activity subspaces of the same
population.

The distinction between active and latent items
echoes the distinction between attentional templates
and accessory memory items made by Olivers et al.
(2011). The authors distinguished between different
neural mechanisms that could underlie the storage
of accessory memory items so that it does not drive
attentional capture. Our framework can be thought
of as an extension of this idea. Attentional capture
by stimuli matching the active item (but not the
latent item) is one means by which the active item
may influence cognition or behaviour. In this instance,
the maintenance of the active item would be
expected to exert top-down influence on sensory
areas so that they preferentially process matching
input. In a more general framework, this can be inter-
preted as one of several possible downstream conse-
quences of the active item that needs to be avoided
by the latent item. As we showed recently (Muhle-
Karbe et al., 2020), the same principle should also
extend to WM-based decision-making (see also
Myers et al., 2015).

Identifying which of the outlined mechanisms
support the distinction between active and latent
WM requires robust methods for the identification of
neural coding mechanisms. However, significant chal-
lenges remain for testing candidate neurophysiologi-
cal coding schemes such as persistent activity and
activity-silent coding. In particular, activity-silent

states are fundamentally challenging to infer, given
that most methods in neuroscience measure some
form (or correlate) of neural activity. Recently, we
developed an impulse-response approach to “ping”
activity-silent neural states by measuring the brain’s
response to task-irrelevant driving input, providing a
theoretical potential to track the behaviour of a
greater variety of mnemonic states (Wolff et al.,
2015; Wolff et al., 2017; see also Rose et al., 2016).
While this approach will be useful for enhancing our
sensitivity for detecting memory signals that are
otherwise undetectable (for whatever reason), on its
own it does not strictly adjudicate between the
alternative neurophysiological mechanisms. For
instance, Schneegans and Bays (2017) have illustrated
how low levels of persistent activity could underlie an
apparently activity-silent code. Nevertheless, this
approach can provide a useful complement to more
standard measures of delay-period activity because
it more sensitively detects activity related to latent
WM items (Wolff et al., 2017). This, in turn, could be
used to test more in-depth questions, such as
whether active and latent items share the same code.

Definitive evidence for activity-silent mechanisms
will ultimately require specific evidence of the sup-
posed underlying processes, such as temporary con-
nectivity changes (e.g., periodic refreshing or
reactivation of a memory representation, Mongillo
et al., 2008), or intrinsic gain modulation (e.g., Stroud
et al., 2018). Moreover, the ability to identify how the
brain separates WM representations will always be
limited by what current methods can detect. Similarly,
even when items appear to share the same coding
mechanism, we cannot rule out undiscovered differ-
ences in coding that are invisible to current
methods. At the same time, inferring persistent, unin-
terrupted activity is not trivial either. Elevated firing
during delay periods could reflect transient non-main-
tenance processes, which can appear to be persistent
firing when averaged over many trials (Miller et al.,
2018).

More generally, it may be insufficient to rely on
decodability alone to infer a putative mnemonic
state. Decodability has become a ubiquitous marker
of WM maintenance (for an overview on WM and
decoding, see Christophel et al., 2017), but we
propose that future work will need to focus less on
the mere presence or absence of decodable neural
patterns, and more on the functional properties of
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candidate neural states. This is important because a
decodable neural state could be epiphenomenal to
WM (e.g., reflect mental imagery or probe expectation,
rather than maintenance per se, see Stokes, 2011).
Moreover, even if the neural state is necessary for
WM, it is still critical to understand how it influences
neural response dynamics to gain a mechanistic
understanding of the underlying process (rather
than simply identifying the brain area maintaining
the WM engram).

Conclusions

In conclusion, we caution against a direct equivalence
between functional states in working memory and
their corresponding neural states. The key theoretical
constraint is that active and latent WMs should be
maintained via qualitatively distinct neural states.
Within these theoretical constraints, the precise mech-
anisms of maintenance for either type of WM remains
an empirical question. There remain major challenges
associated with establishing the neurophysiological
mechanisms of maintenance. We argue that focusing
on the functional behaviour of putative mnemonic
states will be an important future direction.

Note

1. Note that related distinctions between priority states in
WM have previously been made. Classic WM models dis-
tinguish between attended and unattended items
(Cowan, 2001; Oberauer, 2002), between items that
guide attention and those that do not (Olivers et al.,
2011), or between prioritized and (temporarily) unpriori-
tized items (Lewis-Peacock et al., 2012). In the present
article, we focus on the functional differences between
representational states, i.e., how they differentially affect
subsequent processing (see also Myers et al., 2017). There-
fore, here we prefer to use the terms “active” and “latent”
to emphasize functional consequences and to avoid con-
noting a particular role for attention in the process.
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