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Hypertrophic scar (HS) is a typical pathological response during skin injury,

which can lead to pain, itching, and contracture in patients and even affect their

physical and mental health. The complexity of the wound healing process leads

to the formation of HS affected by many factors. Several treatments are

available for HS, whereas some have more adverse reactions and can even

cause new injuries with exacerbated scarring. Traditional Chinese Medicine

(TCM) has a rich source, and most botanical drugs have few side effects,

providing new ideas and methods for treating HS. This paper reviews the

formation process of HS, the therapeutic strategy for HS, the research

progress of TCM with its relevant mechanisms in the treatment of HS, and

the related new drug delivery system of TCM, aiming to provide ideas for further

research of botanical compounds in the treatment of HS, to promote the

discovery ofmore efficient botanical candidates for the clinical treatment of HS,

to accelerate the development of the new drug delivery system and the final

clinical application, and at the same time, to promote the research on the anti-

HS mechanism of multiherbal preparations (Fufang), to continuously improve

the quality control and safety and effectiveness of anti-HS botanical drugs in

clinical application.
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1 Introduction

The scar is the abnormal product of wound healing. Its formation and development

are closely related to the tissue repair process and involve many regulatory pathways. The

formation of a hypertrophic scar (HS) affects the appearance and function of patients’

skin and brings severe physiological and psychological problems to patients (Li W. et al.,
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2021; Li et al., 2021c). More than 100 million new cases of

scarring occur every year in developing countries (Zhang et al.,

2018). The overall incidence of HS after skin trauma is 40%–70%.

The incidence of HS after burn is as high as 80% (Wei et al.,

2021), and the market for anti-scar drugs is more than $12 billion

annually (Sen et al., 2009). The treatment of HS is a challenging

topic in the field of burn, plastic surgery, and rehabilitation

(Mousavizadeh et al., 2021). Wound healing can be divided into

four stages: hemostasis, inflammation, proliferation, and

remodeling. The mechanisms involved in scar formation in

each stage are also different (Bowers and Franco, 2020). At

present, there are surgical treatment, physical therapy (Zhang

et al., 2019), laser therapy (Tan et al., 2021), cryotherapy (Tunca

et al., 2019), and drug therapy (Bi et al., 2019) for HS. Each

treatment has its advantages and disadvantages (Elsaie, 2021).

However, effective prevention and treatment measures were still

limited. As a kind of drug therapy, the botanical compounds

extracted from TCM, with a rich source, showed excellent

potential for scar treatment. So far, the TCM commercial

drugs for the treatment of HS, including the asiaticoside

tablets and asiaticoside cream ointment (Shanghai Shyndec

Pharmaceutical Co., Ltd., license No. Z31020564 and

Z20054146), external scar antipruritic softening ointment

(Chengdu Dongyang Baixin Pharmaceutical Co., Ltd., license

No. Z20050438 ), and moist burn ointment (Shantou Meibao

Pharmaceutical Co., Ltd., license No. Z20000004 ), are

commonly used in the clinic. The formation process of HS,

the therapeutic methods for HS, the effects of TCM on HS, the

HS inhibitory mechanism of TCM, and the new drug delivery

system of TCM for HS were reviewed in the paper, aiming to give

insight into the research on the anti-HS mechanism of botanical

drugs, to discover new anti-HS drug from TCM, to promote the

development of new drug delivery system of anti-HS botanical

drugs, to assist in developing effective experimental and clinical

strategies for the treatment of HS using TCM, and to eventually

optimize the clinical application of anti-HS botanical drugs based

on the safety, efficacy, and rationality. So far, there are few

comprehensive reviews on TCM for treating HS.

2 The formation process of HS

Each wound must pass through the wound-healing process to

heal appropriately. The wound-healing process comprises four

overlapping stages: hemostasis, inflammation, proliferation, and

remodeling (as shown in Figure 1) (Veith et al., 2019; Orlowski

FIGURE 1
The schematic diagram of the wound healing process. Wound healing includes four stages: hemostasis (A), inflammation (B), proliferation (C),
and remodeling (D). After the injury, platelets aggregate and release solublemedia to initiate hemostasis. Shortly thereafter, inflammation begins, and
macrophages accumulate and migrate to the wound, promoting phagocytosis of bacteria and injuring tissues. Angiogenesis occurs at the
proliferation stage. In the final remodeling stage, wound tensile strength increases.
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et al., 2020). ①. Immediately after injury, hemostasis begins, where

clotting pathways are triggered, a temporary fibrin matrix is formed,

and associated cells migrate to the injury site (Subramaniam et al.,

2021). ②. The healing process is initiated when platelets aggregate

and release plenty of soluble mediators. Inflammatory responses

begin shortly thereafter. When local penetration of neutrophils,

lymphocytes, and monocytes increases, blood vessels dilate,

capillary permeability increases, and macrophages accumulate and

migrate to the wound to promote phagocytosis of the bacteria and

damage tissues. The hemostatic and inflammatory phases usually

take 3 days to end (Zhang et al., 2020). If this phase is prolonged, too

many activated cells are recruited to the injury site, which can harm

the wound healing process.③. The proliferative stage begins within

a few days of injury. It is the primary wound healing process and is

coordinated by successive but overlapping events such as

angiogenesis, collagen deposition, granulation tissue formation,

and epithelialization (Pignet et al., 2021). During this stage,

fibroblasts synthesize collagen and matrix materials (proteoglycan

and fibronectin) to support the formation of new cells and fresh

granulation tissue and repair epidermal defects.When fibroblasts are

activated and differentiated into myofibroblasts, the excessive

myofibroblasts form scars with the occurrence of angiogenesis at

this time. Epidermal stem cells migrate linearly to the wound center

following epithelialization, and epithelial cells migrate into

granulation tissue to close the epidermal deficiency (Yang Z.

et al., 2021; Guillamat-Prats, 2021; Monika et al., 2021; Qiang

et al., 2021). ④. The remodeling is the last stage. During this

stage, collagen type III is replaced by collagen type I to maximize

strength in the wound. The increase in tensile strengthmay last up to

a year (Han et al., 2017;Wang P. H. et al., 2018; Lee and Jang, 2018).

Typically, the body is efficient in repairing the skin after

injury, yet wound healing is impaired when the normal repair

response is out of whack. When a wound fails to heal, tissue

recovery is out of kilter, leading to scarring. When the normal

repair response goes awry, there are two primary outcomes:

ulcerative skin defect (chronic wound) or hyperscarring (HS

or keloid) (Eming et al., 2014). Chronic wounds are defined as

wounds that cannot be repaired in an orderly and timely manner

to achieve anatomic and functional integrity (Atkin, 2019). HS

occurs after surgery, trauma, and especially burns. It is usually a

hard and red raised scar (Han et al., 2017; Le and Wu, 2021). HS

are fibrous scars caused by abnormal skin wound healing

processes and are characterized by abnormal proliferation of

fibroblasts and excessive deposition of collagen (Wang X. et al.,

2018). HS and keloid are the same fibrous hyperplasia skin

disease but differ in the intensity and duration of

inflammation (Ogawa et al., 2016).

3 Therapeutic methods for HS

Currently, the clinical treatment methods for HS include

physical therapy, laser therapy, blocking therapy, radiotherapy,

surgery, drug therapy, etc. However, physical therapy, laser

therapy, glucocorticoid injection, surgical resection, and other

treatments are treaty-dependent, with many adverse reactions and

even new injuries. Drug therapy has the effect of improving scars.

However, the side effects of skin atrophy, capillary dilatation, and

local necrosis cannot be ignored when common drugs such as 5-

fluorouracil and corticosteroids are used. The current treatment

methods for HS are summarized in Table 1.

3.1 Pressure therapy

Pressure therapy is a non-surgical method to prevent and

control HS after the burn (Li et al., 2018). Pressure therapy is a

method to suppress scar hyperplasia and promote scar maturation

TABLE 1 Current treatment methods for HS.

Therapies Method Advantages Disadvantages

Pressure
therapy

Continuous pressure on the
wound healing site

Non-surgical treatment Li et al. (2018) Dependence on empirical observation Van den
Kerckhove et al. (2005)

Improvement of scar flexibility Carney et al. (2017) No standardized applications Kim et al. (2015)

Laser therapy CO2 laser Minimal invasion and low risk Klifto et al. (2020) pigmentation, hypopigmentation, blister formation
and postoperative purpura Klifto et al. (2020)Pulsed dye laser Improvement of the function of scars, including viscoelastic

deformity, elastic deformity, and skin roughness Madni et al.
(2019)

Cryotherapy Freezer Alleviation of clinical scar symptoms Har-Shai et al. (2003) The high rate of hypopigmentation, skin atrophy, and
hyperpigmentation Meymandi et al. (2016)

Drug therapy Triamcinolone acetonide Improvement in the scar color, thickness, softness, and vascular
distribution Song et al. (2019)

Capillary dilatation and pigmentation Waibel et al.
(2019)

5-FU Mitigation of scar size, color, and texture. Elimination of the pain
and itching Goldan et al. (2008)

Pain, burning, ulcers, pigmentation, and skin atrophy
Tawfik et al. (2019)

tacrolimus Reduce of mucin and improvement of collagen fiber quality and
elastic fiber density Menezes et al. (2021)

N.A.
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by continuous compression of wound healing parts. Reasonable

pressure can reduce the thickness and increase the softness of the

scar (DeBruler et al., 2020). PI3K/Akt signaling pathway was found

to be an essential regulatory pathway during pressure treatment of

HS(Liu et al., 2018). In the study of pressure therapy on the porcine

HSmodel, it was observed that the percentage of elastin continuously

increased after pressure treatment during 126 days, while no similar

increase was observed in sham scars without pressure treatment. The

increased number of elastin is associated with the increased flexibility

of scars after stress therapy (Carney et al., 2017). However, the

pressure and time in stress therapy still depend on experience (Van

den Kerckhove et al., 2005). The lack of standardized applications

reduces the effectiveness of stress therapy (Kim et al., 2015). When

using a pressure suit for treatment, the design of the pressure suit will

affect the contact pressure on the scar (Engrav et al., 2010). The

pressure exerted by the pressure clothing on the HS directly affects

the therapeutic effect. Therefore, in the research of scar pressure

treatment, the precise manufacture of pressure available for specific

treatment pressure still deserves further investigation (Leung et al.,

2010).

3.2 Laser therapy

Laser therapy is a minimally invasive and low-risk treatment

that can reduce the neuropathic pain caused by scar and improve

the scar function (pigmentation, flexibility, texture, heat

sensitivity, and contracture) to improve the overall quality of

life of patients (Klifto et al., 2020). CO2 laser treatment is one of

the comprehensive treatment methods for HS. The

pigmentation, blood vessels, flexibility, and scar height were

relieved with the decrease of the pain and itching after CO2

laser treatment (Zhang et al., 2021). Clinical studies verified the

efficacy of the CO2 laser treatment. The elasticity and thickness of

hypertrophic burn scar were mitigated, and these improvements

were stable at least 6 months after the CO2 laser treatment

(Miletta et al., 2021). Another study of 102 patients with

keloid and HS found that 1064 nm Nd:YAG laser in treating

HS was significantly better than keloid (Koike et al., 2014). After

the treatment with 2940 nm Er:YAG laser, the scars were

improved considerably in viscoelastic deformity, elastic

deformity, and skin roughness. Such changes were not

observed in the untreated scars (Madni et al., 2019). However,

laser treatment could also bring side effects such as pigmentation,

hypopigmentation, blister formation, and postoperative purpura

(Alster, 2003; Chan et al., 2004).

3.3 Cryotherapy

Cryotherapy is to destroy scar tissue cells and blood

microcirculation at extremely low temperatures to make them

necrotic and fall off. Meanwhile, it can lead to scar tissue edema,

increased cell space, and decreased scar density (van Leeuwen

et al., 2014; Salem et al., 2021). The liquid nitrogen was imported

into the freezing probe, and the freezing needle was inserted into

the long axis of the HS to freeze the HS. After the HS was

completely frozen, the thawed freezing probe was taken out, and

the scar volume was reduced by an average of 51.4% after

cryosurgery. Cryotherapy could significantly relieve scar

symptoms (Har-Shai et al., 2003). However, the incidence of

complications during cryotherapy could not be ignored

(Meymandi et al., 2016).

3.4 Drug therapy

The efficacy of corticosteroid injection in treating HS has

been well recognized, yet triamcinolone acetonide has side effects

such as capillary dilatation and pigmentation (Waibel et al.,

2019). Most HS’s color, thickness, softness, and vascular

distribution were mitigated after intralesional injection of

triamcinolone acetonide (Song et al., 2019). 5-Fluorouracil (5-

FU), a nucleotide analog and a chemotherapeutic drug, can

replace uracil with DNA and inhibit DNA synthesis, especially

in rapidly proliferating cells. A study reported a patient with

obvious HS and keloids in the nasolabial fold, the chin’s front

edge, and the mandible’s lateral lower edge. After 2.5 months of

treatment with local silica gel tablets and methylprednisolone

acetate (40 mg/ml) in acne, the color and size of the lesions were

slightly improved without an improvement in the scar fiber

structure, the pain, and itching symptoms. After 7 months of

5-FU injection, the scar size, color, and texture were significantly

attenuated with complete elimination of the pain and itching

(Goldan et al., 2008). However, injection of 5-FU has adverse

effects on normal cells with a high proliferative rate, such as

digestive epithelial cells, and may also cause leukopenia and

thrombocytopenia (Haurani et al., 2009; Yang B. et al., 2021).

Other side effects such as pain, burning sensation, ulcer,

pigmentation, and skin atrophy frequently occur (Tawfik

et al., 2019). Researchers applied tacrolimus to HS to explore

whether tacrolimus could promote cell apoptosis and inhibit

fibroblast activity. Tacrolimus (0.1%) had a potent inhibitory

effect on smooth muscle actin and can reduce the density of

collagen fibers scars with the alleviation of scar inflammation

even at the concertation of 0.03% tacrolimus. Tacrolimus could

effectively inhibit TGF-β Smooth muscle actin, reduce mucin,

and enhance collagen fiber quality and elastic fiber density

(Menezes et al., 2021).

Many studies have proved that combination therapies have

better efficacy than monotherapy. Compared with

corticosteroids alone, corticosteroids combined with

botulinum toxin A were more effective in treating keloids and

HS(Tawfik et al., 2019). Among YAG laser alone, YAG laser

combined with intralesional botulinum toxin type A, and YAG

laser combined with intralesional steroid injection in the
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treatment of HS, YAG laser combined with intralesional steroid

injection had the highest efficacy and safety in HS patients

(Rahman et al., 2021). The HS intense pulsed light combined

with lattice CO2 laser was also a successful therapeutic

combination for HS with significant improvements in the

color and texture of scars (Daoud et al., 2019). In summary,

compared with monotherapy, the combination therapy makes

the treatment more effective with less trauma, fewer side effects, a

low recurrence rate, and a short course of treatment.

4 Effects of TCM on HS

In recent years, more and more botanical compounds exacted

from TCM are discovered and verified as drug candidates for treating

HS. The botanical sources of TCM included Alpinia officinarum

Hance, Centella asiatica (L.) Urb., Rheum palmatum L., Panax

ginseng C.A.Mey., Scutellaria baicalensis Georgi, Ginkgo biloba L.,

Conioselinum anthriscoides ‘Chuanxiong’, Salvia miltiorrhiza Bunge,

Taxus wallichiana Zucc., Stephania tetrandra S. Moore, and

Kaempferia galanga L.

Galangin (3,5,7-trihydroxyflavone) is a botanical compound

extracted from the root of Alpinia officinarum Hance. In-vivo

studies have shown that it had a potent anti-inflammatory effect

using rabbit ear HSmodel. Galangin inhibited HS formation through

the TGF-β/Smad signaling pathway (Ru et al., 2021) and ALK5/

Smad2/3 signaling pathway (Zhang Y. et al., 2016). These results

suggest that galangal is a potential drug candidate for treating HS.

Asiaticoside is extracted from Centella asiatica (L.) Urban. It has

been used to treat skin, venous, and microvascular diseases for many

years. Asiaticoside increased the mobility of skin cells and enhanced

the adhesion of initial skin cells in the wound suture seeding model.

The diffusion andmigration of skin cells were themain determinants

of wound healing, suggesting that asiaticoside could be used as a

potential promoter of wound healing (Lee et al., 2012). Oral

administration of asiaticoside at 24 mg/kg/d to rabbits remarkably

attenuated wound healing, and reduced scar thickness, thereby

inhibiting HS(Huang et al., 2021). Asiaticoside inhibited the

increase of Smad7 expression by interrupting TGF-β signal

transmission through negative feedback and significantly

alleviated HS in rabbit ears (Ju-Lin et al., 2009).

As one of themain components of RheumpalmatumL., emodin

is widely used in treating inflammatory and non-inflammatory

diseases (such as cancer). The potential therapeutic effects of

emodin in HS have been elucidated (Li W. et al., 2021; Jiang

et al., 2021). The researchers used the mouse HS model induced

bymechanical stress to study the effect of emodin onHS. The results

indicated that emodin (40 mg/ml) had a therapeutic effect on the

formation of HS, which was potentially related to the inhibition of

the PI3K/Akt signal pathway (Liu, 2015). Further in vitro

experiments verified that emodin modulated the polarization of

macrophagesM1 andM2 to reduce the formation and fibrosis of HS

through the Notch and TGF-β pathways (Xia et al., 2021).

Ginsenoside Rb1 is extracted from the Panax ginseng

C.A.Mey. It promoted angiogenesis to improve burn wound

healing in the process of skin wound repair in mice (Kimura

et al., 2006). Ginsenoside Rb1 also inhibited MMP2, TIMP1, α-
SMA, and TGF-β1 to alleviate HS in rabbits (Tark et al., 2015).

Besides, ginsenoside Rg3, with two optical isomers of 20 (R)—

Rg3 and 20 (S)-Rg3, showed the highest HS inhibitory efficacy

among ginsenosides. Studies revealed that 20 (R)-Rg3 could

inhibit HS in in vitro model (HS specimens from patients)

through the TGF-β/Smad and ERK1/2 signal pathways (Tang

et al., 2018), inferring that 20 (S)-Rg3 could be potentially used as

an early intervention to reduce the formation of HS.

Baicalin is a flavonoid compound extracted from the roots of

Scutellaria baicalensis Georgi (Li et al., 2019). After treatment

with baicalin, the formation of HS in mice model induced by

mechanical load was remarkably reduced. The mechanism of the

inhibitory effect of baicalin on HS was related to the TGF-β/
Smad2/3 signaling pathways (Zhang Y. F. et al., 2016). Also,

baicalin regulates the miR-9/IGF-1 axis to inhibit cell

proliferation and collagen production through NF-κB and

Wnt/β-catenin signaling pathways (Yang L. et al., 2019).

Flavonoid quercetin is a heterocyclic polyphenol. Quercetin

exists in Ginkgo biloba L. and various fruits and vegetables. It

has antiviral, anti-inflammatory, and antibacterial activities (Song

J. Y. et al., 2018). In-vitro studies testified that quercetin suppressed

scar formation by inhibiting proliferation and contraction of

excessive scar-derived fibroblasts (Phan et al., 2003).

Moreover, the essential oil from Conioselinum anthriscoides

‘Chuanxiong’ (Wu et al., 2011), cryptotanshinone from Salvia

miltiorrhiza Bunge (Li Y. et al., 2016), paclitaxel from Taxus

wallichiana Zucc.(Huang L. P. et al., 2015), tetrandrine from

Stephania tetrandra S. Moore (Ning et al., 2016), and kaempferol

from Kaempferia galanga L.(Li H. et al., 2016) could mitigate the

formation of HS (Table 2).

5 The HS inhibitory mechanism
of TCM

In recent years, in vivo and in vitro studies have found that

the mechanism of TCM inhibiting HS can be divided into

reducing the inflammatory response, inhibiting fibroblast

proliferation, inducing fibroblast apoptosis and autophagy,

promoting the degradation of extracellular matrix, reducing

angiogenesis, and inhibiting cutaneous nerve system.

5.1 Reduction of inflammation

The potential mechanism of wound healing is complex. So

far, inflammation is one of the admitted decisive factors.

Inflammation occurs after skin injury due to tissue damage

and microbial invasion. HS is a pathological scar caused by
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TABLE 2 A summary of the commonly used TCM in the treatment of HS.

Sources Component/
Extracts

In vivo model In vitro
model

Dose Duration Minimal active
concentration

Controls Signaling
pathways

Effects References

Alpinia
officinarum
Hance

Galangin Rabbit ear HS model N.A. 2, 1 or 0.5 mg/ml/
3days

12 days 0.5 mg/ml Negative (Saline) TGF-β/Smad
signaling pathway

Inhibition of HS
formation

Ru et al. (2021)

BALB/c mice HS model HS fibroblasts
from patients

In vivo
(10 μM/day)

In vivo
(17 days)

In vivo (10 μM) Negative (DMSO) ALK5/Smad2/3
signaling pathway

Attenuation of HS
formation

Zhang et al.
(2016a)

In vitro
(0.1–25 μM)

In vitro
(5 days)

In vitro (N.A.)

Centella asiatica
(L.) Urb

Asiaticoside N.A. A wound
closure
seeding model

N.A. 5 days 62.5 μM Negative (DMSO) N.A. Increase of skin cell
mobility and initial
skin cell adhesion

Lee et al.
(2012)

Rabbit ear HS model N.A. 12 or 24 mg/
kg/day

60 days N.A. Negative (water) N.A. Inhibition of HS
formation

Huang et al.
(2021)

Rabbit ear HS model N.A. 0.5% or 1% 60 days N.A. Negative (Saline) TGF-β/Smad7
signaling pathway

Alleviation of HS Ju-Lin et al.
(2009)

Rheum
palmatum L

Emodin C57BL/6 mice HSmodel 20, 40, 80 or
120 mg/ml

24 days 40 mg/ml Negative
(Dulbecco’s
modified Eagle
medium)

PI3K/Akt
signaling pathway

Alleviation of HS
formation

Liu, (2015)

A rat tail HS model and
dorsal subcutaneous
polyvinyl alcohol
sponge-induced wounds

N.A. 10 mg/kg/day 42 days N.A. Negative
(Dulbecco’s
modified Eagle
medium)

Notch and TGF-β
signaling pathway

Alleviation of HS
formation

Xia et al.
(2021)

Panax ginseng
C.A.Mey

Ginsenoside Rb1 A burn wound of mice HaCaT cells In vivo (100, 1,
10 pg/g)

In vivo
(19 days)

In vivo (100 pg/g) In vivo (Negative:
Vaseline)

N.A. Promotion of
wound healing

Kimura et al.
(2006)

In vitro (100 fg/
ml to 1 ng/ml)

In
vitro (N.A.)

In vitro (N.A.) In vitro (Negative:
Dulbecco’s
modified Eagle
medium)

Rabbit ear HS model N.A. 0.01, 0.04,
0.08 mg/day

7 days 0.1 mg/ml Negative (Saline) N.A. Inhibition of HS Tark et al.
(2015)

Ginsenoside 20
(R)-Rg3

N.A. HS specimens
from patients

50 or 100 μg/ml 5 days 50 μg/ml Negative
(Dulbecco’s
modified Eagle
medium)

TGF-β/SMAD
and ERK1/2
signaling pathway

Inhibition of HS Tang et al.
(2018)

Scutellaria
baicalensis Georgi

Baicalin BALB/c mice Human HS-
derived
fibroblasts

In vivo
(0.001 μM)

In vivo (24
days)

In vivo (10 μmol/L ) Negative (DMSO) TGF-β/Smad2/3
signaling pathway

Alleviation of HS
formation

Zhang et al.
(2016b)

In vitro (1, 5, or
10 μM)

In
vitro (N.A.)

In vitro (N.A.)

N.A. NIH/3T3 cells 150 μM N.A. 150 μM Negative
(Dulbecco’s

NF-κB and Wnt/
β-catenin

Alleviation of HS
formation

Yang et al.
(2019a)
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TABLE 2 (Continued) A summary of the commonly used TCM in the treatment of HS.

Sources Component/
Extracts

In vivo model In vitro
model

Dose Duration Minimal active
concentration

Controls Signaling
pathways

Effects References

modified Eagle
medium)

Signaling
pathway

Ginkgo biloba L Quercetin N.A. Fibroblasts
from patients

5–20 μg/ml N.A. 5 μg/ml Negative
(Dulbecco’s
modified Eagle
medium)

TGF-β/Smad
signaling pathway

Inhibition of HS
formation

Phan et al.
(2003)

Conioselinum
anthriscoides
‘Chuanxiong’

Ligusticum
chuanxiong

Rabbit ear HS model N.A. 5%, 10%, and 20% 22 days 5% Negative (vaseline
and liquid paraffin)
positive
(contracture)

N.A. Inhibition of HS
formation

Wu et al.
(2011)

Salvia miltiorrhiza
Bunge

Cryptotanshinone Wound of Balb/c mice HS tissues
from patients

In vivo (25 ng/g) In vivo
(14 days)

In vivo (25 ng/g) In vivo (Negative:
Saline)

N.A. Promotion of
wound healing

Li et al.
(2016b)

In vitro (12.5 or
25 μM)

In vitro (24
or 48 h)

In vitro (12.5μM) In vitro (Negative:
DMSO)

Taxus wallichiana
Zucc

Paclitaxel Rabbit ear HS model N.A. 0.096mg–30 mg 10 days 48 mg/L Negative (Saline) N.A. Inhibition of HS
formation

Huang et al.
(2015a)

Stephania
tetrandra S. Moore

Tetrandrine N.A. Human HS
fibroblasts

5 mg/ml 48 h 5 mg/ml Negative
(Dulbecco’s
modified Eagle
medium)

Hsa-miR-125 b
and Hsa-
miR-27 b

Inhibition of HS
formation

Ning et al.
(2016)

Kaempferol
galanga L

Kaempferol A mouse HS model Fibroblasts
from patients

In vivo (10 μM) In vivo
(17 days)

In vivo (10 μM) Negative (DMSO) TGF-β1/Smads
Signaling
pathway

Inhibition of HS
formation

Li et al. (2016a)

In vitro (1, 5, 10 or
25 μM)

In
vitro (N.A.)

In vitro (1 μM)

Fro
n
tie

rs
in

P
h
arm

ac
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
7

C
h
e
n
e
t
al.

10
.3
3
8
9
/fp

h
ar.2

0
2
2
.10

2
5
6
0
2

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1025602


abnormal wound healing and is characterized by persistent local

inflammation and excessive collagen deposition.

Quercetin could reduce the number of macrophages and

myofibroblasts during wound healing in rabbits, thereby

reducing HS formation (Song J. Y. et al., 2018). Arctigenin

was used in a bleomycin-induced mouse model of skin

fibrosis. The results showed that the expression levels of IL-

1β, IL-4, IL-6, TNF-α, and monocyte chemoattractant protein

decreased significantly after arctigenin treatment, inferring that

arctigenin attenuated HS potentially by reducing inflammatory

response (Jiang et al., 2020). In the mouse model of HS induced

by mechanical stretching (Shan et al., 2017), naringenin

effectively suppressed the infiltration of inflammatory cells

and the production of inflammatory cytokines (TNF-α, IL-1β,
and IL-6), thereby exerting its anti-inflammatory effect to

alleviate HS (Figure 2).

5.2 Inhibition of fibroblast proliferation
and induction of fibroblast apoptosis and
autophagy

In-vitro studies primarily focus on fibroblasts in the scar due

to they have more active proliferation and invasion ability than

fibroblasts in the steady-state environment. The activity of

myofibroblasts in the scar is much higher than that in the

normal state.

In-vitro studies have found that oxymatrine reduced the

activity and collagen metabolism of human scar fibroblasts,

increased cell apoptosis, and reduced the scar area and

thickness (Deng et al., 2021). Tetramethylpyrazine, the

primary chemical component of Conioselinum anthriscoides

“Chuanxiong” down-regulated fibrosis-related molecules (type

I collagen, type III collagen, and α-SMA) to inhibit the

proliferation of scar fibroblasts and activated the expression of

Bax and Cleaved Caspase-3, which finally promoted the repair of

HS(Wu et al., 2020). Besides, resveratrol inhibited HS formation

by activating autophagy in HS fibroblasts via the miR-4654/Rheb

axis (Pang et al., 2020). As shown in Figure 3, some botanical

drugs can inhibit fibroblast proliferation and induce fibroblasts’

apoptosis and autophagy to treat HS.

5.3 Degradation of extracellular matrix

In the remodeling stage of wound healing, the imbalance of

matrix-degradation enzymes will cause excessive collagen synthesis

and abnormal collagen conversion, resulting in exceeding wound

healing, that is, scar formation. Therefore, promoting the

extracellular matrix’s degradation can reduce the scar’s occurrence.

FIGURE 2
The HS inhibitory mechanism of TCM (quercetin, arctigenin, and naringenin) by reducing inflammation. Quercetin (Que), arctigenin (Arc), and
naringenin (Nar) could inhibit the infiltration of inflammatory cells and the production of inflammatory cytokines to alleviate HS. Quercetin reduced
the number of macrophages in the skin wound healing process, relieved inflammation, and reduced HS formation. Arctigenin alleviated HS by
reducing inflammatory factors IL-1β, IL-4, IL-6, and TNF-α. Naringin down-regulated inflammatory cytokines to exert its anti-inflammatory
effect to alleviate HS.
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Panax notoginseng saponins (PNS) inhibited the

extracellular matrix synthesis, stimulated cell apoptosis, and

regulated the PI3K/AKT signaling pathway by changing the

expression of TRPM7, thus hindering scar formation (Zhi

et al., 2021). Corilagin (Cor) is a kind of ellagic tannin that

exists in Phyllanthus Emblica L. and Geranium robertianum L. It

has been found that in the rabbit ear scar model, corilagin could

affect the protein levels of MMPs (matrix metalloproteinases)

and TIMP1 (tissue inhibitor of metalloproteinases), inhibit the

protein expression of TGF-β1, and reduce the level of p-Smad2/3,

thereby inhibiting the deposition of extracellular matrix and

various functions of fibroblasts. It is a potential drug for the

treatment of HS(Li et al., 2021b). Baicalein (BAI) also effectively

inhibited cell proliferation by inhibiting TGF-β1-induced
accumulation of total soluble collagen, collagen I, and α-SMA

through up-regulating miR29 (Yang X. et al., 2019) (As shown in

Figure 4).

5.4 Inhibition of angiogenesis

Angiogenesis plays a vital role in wound healing, which

involves the proliferation, migration, and formation of

endothelial cells. Studies have shown that the number of

microvessels in HS increases (Zheng et al., 2014; Molina et al.,

2022).

Usnic acid has a variety of biological activities, such as

antiviral, anti-microbial, anti-inflammatory, and anti-

proliferation. Usnic acid could significantly inhibit the

formation of HS and considerably reduce the thickness and

color of the scar in the rabbit ear model. It has been proved

that usnic acid remarkably inhibited scar angiogenesis using

immunohistochemical analysis of CD31 expression. It also

inhibited the proliferation of human umbilical vein

endothelial cells and scar fibroblasts. These results proved that

the therapeutic effect of usnic acid on HS formation in rabbit ears

was due to its inhibition of scar angiogenesis (Song Y. et al.,

2018). Another study revealed that a biflavonoid compound

amentoflavone extracted from Selaginella tamariscina

(P.Beauv.) spring also significantly inhibited the viability,

migration, and angiogenesis of endothelial cells related to

angiogenesis to treat HS(Zhang et al., 2014).

5.5 Inhibition of cutaneous nerve system

Inflammation and the cutaneous nerve system play essential

roles in wound healing and HS formation (Yang et al., 2014; Li

FIGURE 3
The HS inhibitory mechanism of TCM (oxymatrine, tetramethylpyrazine, and resveratrol) by inhibiting fibroblast proliferation and inducing
fibroblasts’ apoptosis and autophagy. Autophagy is a conserved catabolic pathway that maintains cell metabolism and homeostasis. However,
excessively activated autophagy can lead to cell death. Oxymatrine (A) could reduce scar area and epidermal-dermal thickness potentially by
inhibiting autophagy and inducing apoptosis. Tetramethylpyrazine (B) could attenuate HS by inhibiting the proliferation of scar fibroblasts,
activating the expression of proapoptotic proteins Bax and Cleaved Caspase-3, and reducing Caspase-3 and Bcl-2. Resveratrol (C) could potentially
treat HS by activating autophagy. The yellow lines are the cellular processes modulated by oxymatrine, the green lines are the cellular processes
modulated by tetramethylpyrazine, and the blue lines are the cellular processes modulated by resveratrol.
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et al., 2015; Zhang et al., 2022). The evidence that cutaneous

neurogenic inflammation could stimulate fibroblasts during scar

formation has been confirmed (Zhang et al., 2022). Neurogenic

inflammation is an inflammatory process due to acute injury

with the release of neuropeptides, especially neuropeptide

substance p (SP), from sensory nerves (Black, 2002). It has

been proved that the concentration of SP was significantly

increased in HS(Scott et al., 2007). Thus, the SP with its

related signaling pathways may be a novel therapeutic target

for HS.

SP and IL-33 released by nerves could significantly increase

the secretion and gene expression of pro-inflammatory cytokine

IL-1β by activating their corresponding receptors NK-1 and

ST2 on human mast cells. Natural flavonoid methoxy luteolin

could effectively reverse this trend and attenuate the

inflammatory response, providing new therapeutic targets for

treating inflammatory diseases (Taracanova et al., 2018).

Puerarin, a single flavonoid glycoside, prevented paclitaxel-

induced peripheral neuropathic pain in rats by inhibiting the

upregulation of SP, TRPV1, and calcitonin gene-related peptide

(Kong et al., 2015; Wu et al., 2019), indicating the inhibitory

effects and potential of flavonoids on SP. Besides, many

researches have proven the potential of flavonoids in the

treatment of HS, including kaempferol (Li H. et al., 2016),

quercetin (Song J. Y. et al., 2018), and dihydromyricetin (Ye

et al., 2019). Can flavonoids alleviate HS by inhibiting cutaneous

neurogenic inflammation via SP as the therapeutic target?

Experimental evidence is needed. However, this provides a

new idea for the mechanism study of flavonoids in treating HS.

6 New drug delivery system of TCM
for HS

Many botanical drugs extracted from TCM have an anti-HS

effect. However, the poor solubility and absorption of botanical

drugs and the skin’s natural barrier hindered the penetration of

chemical components and reduced their therapeutic effect (Ning

et al., 2021). Long-term sustained-release and targeted

preparations of TCM with appropriate carriers provide a new

idea for the application of TCM in scar treatment. More and

more new TCM delivery systems are developed, including

hydrogel, microneedle, nano, liposome, etc.

6.1 Hydrogel

Hydrogels with different gelation mechanisms and

compositions are one of the most widely used biomaterials

(Sultan et al., 2019). Their advantages include good

FIGURE 4
The HS inhibitory mechanism of TCM (Panax notoginseng saponins, corilagin, and baicalein) by promoting extracellular matrix degradation.
Panax notoginseng saponins (PNS), corilagin (Cor), and baicalein (BAI) could promote the degradation of the extracellular matrix to reduce HS. PNS
inhibited HS formation potentially by inhibiting TRPM7 and regulating PI3K/AKT signaling pathway to inhibit extracellular matrix deposition. Cor
inhibited TGF-β1, reduced the expression of p-Smad2/3, affected the levels of MMPs and TIMP1 proteins, inhibited the deposition of
extracellular matrix, and thus attenuated HS. Up-regulation of miR-29 by BAI could inhibit TGFβ1-induced accumulation of total soluble collagen,
collagen I, and α-SMA to alleviate HS.
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biocompatibility, ease to use, low toxicity, and excellent stability

(Matiasek et al., 2018).

Researchers have prepared a new hydrogel composed of

poly-γ-PGA, chit oligosaccharide, and papain. This hydrogel

had a predominant porous three-dimensional network

structure, good water absorption performance, and mechanical

properties. This hydrogel promoted cell adhesion and inhibited

the excessive proliferation of fibroblasts, which had the potential

for in vivo application. It has been testified that this hydrogel

could effectively inhibit excessive collagen deposition and HS

formation during wound healing (Xue et al., 2021). The drug-

loaded hydrogel using anti-HS botanical drugs may be a feasible

preparation to increase the efficacy of the treatment of HS.

6.2 Microneedle

Microneedles can penetrate the cuticle barrier of the skin and

quickly establish a large number of micro-dermal channels to

make the drug penetrate and absorb accurately, which not only

avoids the first pass effect of the liver but also has the advantages

of no damage and no pain (McCrudden et al., 2015).

The schematic diagram of the microneedle is shown in

Figure 5. The researchers mixed shikonin with hyaluronic acid

to produce microneedles with enough mechanical strength to

penetrate the skin and controllable dosage during preparation.

The shikonin-soluble hyaluronic acid microneedle remarkably

attenuated the viability and proliferation of fibroblasts and down-

regulated fibrosis-related genes (TGF-β1, FAP-α, and COL1A1)

to enhance the local therapeutic effect, which was conducive to

the treatment of HS(Ning et al., 2021). In addition, other

researchers have developed an active targeting drug delivery

system for the local treatment of HS. The metal-organic

framework of diphenyl carbide crosslinked cyclodextrin

containing 26% quercetin was coated on the fibroblast

membrane of HS. Then, the Bletilla striata polysaccharide was

dispersed to prepare soluble microneedles. This microneedle

showed remarkable anti-HS efficacy in rabbits (Wu et al., 2021).

6.3 Nano

Nano TCM delivery system can effectively improve the

solubility and stability of effective components of TCM,

FIGURE 5
The schematic diagram of drug-loaded microneedles for the treatment of HS. Microneedles were prepared using biological materials and
botanical drugs, which could establish many micro-dermal channels to accurately promote the penetration of drugs into the dermis and
hypodermis. The Wnt ligand is a secreted glycoprotein that binds to Frizzled receptors, leading to the formation of a cell surface complex (Wnt-
bound Frizzled combined with coreceptor LRP5/6), and β-catenin is subsequently activated and stabilized. The activated β-catenin can
stimulate the transcription of Wnt target genes and the expression of fibrosis-related genes and promote the formation of collagen Ⅰ and Ⅲ to
increase the HS formation. JAK2/STAT3 signaling pathway is essential in inhibiting apoptosis and tissue fibrosis. STAT3 is highly expressed in HS
tissues. The application of Shikonin soluble hyaluronic acid microneedle could enhance the therapeutic effect of HS by down-regulating fibrosis-
related genes to reduce the viability and proliferation of fibroblasts. The quercetin-loaded microneedle complex could improve the therapeutic
effect on HS potentially by inhibiting the Wnt/β-catenin signaling pathway, reducing STAT3 expression, and inhibiting the JAK2/STAT3 signaling
pathway. The above microneedles could improve the anti-HS efficacy of the botanical drugs.
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improve bioavailability, and reduce the adverse reactions

caused by drugs entering the systemic circulation (Huang

Y. et al., 2015) (Figure 6).

Preparation of paeonol nanogel by spiral spray had good

transdermal performance and dermal retention without

stimulating the skin, providing a potential treatment strategy

for HS(Guo et al., 2019). Asiaticoside is a triterpenoid pentacyclic

saponin that has a pronounced therapeutic effect on human HS.

However, its high molecular weight, low water solubility, and

poor lipophilicity are not conducive to diffusion through the

stratum corneum. The researchers designed asiaticoside

nanoemulsion and nanoemulsion gel and found that these

nano delivery systems showed high drug permeability through

the transdermal pathway without toxicity (Li et al., 2020).

6.4 Other TCM delivery systems

It has been reported that TCM-loaded liposomes could

promote drug permeability into heterogeneous scar epidermis

and enhance dermal drug retention. Cell-penetrating peptide-

modified salvianolic acid B liposomes successfully inhibited the

proliferation, migration, and invasion of fibroblasts in a

concentration- and time-dependent manner, providing a

promising therapeutic strategy for transdermal drug delivery

(Shi et al., 2020). Besides, microemulsion, a thermodynamic

and kinetic stable system, improved the solubility of drugs

and had strong transdermal permeable properties.

Furthermore, it was proved that microemulsion and

oxymatrine-phospholipid complex could enormously enhance

the inhibitory effect of oxymatrine on scar fibroblasts (Cao et al.,

2011). So far, there are more and more new TCM delivery

systems are developed on the way.

7 Conclusion

HS is a fibrous tissue proliferative skin disease caused by

abnormal proliferation of fibroblasts and excessive collagen

deposition. The mechanisms of botanical compounds/extracts

from TCM in the treatment of HS, including reducing

inflammation, inhibiting fibroblast proliferation, regulating

fibroblast activation and migration, inducing fibroblast apoptosis

and autophagy, promoting extracellular matrix (ECM)

degradation, reducing angiogenesis, and inhibiting cutaneous nerve

system, are reviewed in the paper, and the new drug delivery systems

of anti-HS botanical compounds are also reviewed, aiming to provide

ideas for further research of TCM in the treatment ofHS andfinally to

promote more efficient anti-HS botanical candidates for clinical

application. With the updated knowledge on the mechanism of

HS and the fast progress of TCM research, the botanical drugs

extracted from TCM have made outstanding achievements in

preventing and treating HS. However, the limitations should not

be ignored. The phytopharmacology research ofHS primarily focused

on limited pathways without deep mechanism elucidation and new

signaling pathways and targets. Interdisciplinary and larger datasets-

driven research has been frequently used in pharmacology research,

and more and more state-of-the-art sophisticated techniques are

arising. The phytopharmacology research level is still far from

pharmacology research level. Moreover, the metabolism and

FIGURE 6
Schematic representation of Nano TCM delivery system to treat HS. Botanical drug-loaded nanoparticles were prepared by the self-assembling
approach. The nanoparticles were absorbed into dermal cells by phagocytosis or receptor-mediated uptake. Subsequently, the free drug was
released into the cell after the process of endosome and lysosome. Nano TCM delivery system could effectively improve the solubility and
permeability of active ingredients in TCM. Spiral spray paeonol nanogel showed good transdermal performance and dermal retention.
Asiaticoside nanoparticles, nanoemulsion, and nanoemulsion gel effectively overcame the skin barrier and had high drug permeability to enhance
the therapeutic effect of HS.
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stability study and the transdermal kinetic study of botanical

compounds in the treatment of HS are rare. Still, many

multiherbal preparations (Fufang) in the treatment of HS have

been clinically used in China, yet the related studies are limited.

Most phytopharmacology studies of HS used a single botanical

compound in animal models or cell models, which could not

stand for TCM and was hard to extrapolate and lacked clinical

relevance. Also, due to the complexity of the effective components in

TCM, it still lacks a sufficient theoretical basis to design a reasonable

dosage with TCM in clinical application. Thus, the updated analysis

technology (such as High-resolution Mass Spectrometry and Ion

Mobility Mass Spectrometry) combined with the bioinformatics

method, as a priority, should be used to reveal the chemical

components in botanical extracts, which will facilitate the

pharmacology study and discovery of new candidates from TCM

in the treatment of HS. The deep and exact phytopharmacological

mechanism study and the new drug delivery system study of the

botanical drugs in the treatment of HS based on interdisciplinary

techniques should be focused on in the future. The combination of

pharmacokinetics and pharmacodynamics, even the deep learning

(such as BP/ElmanNeural Network), should be also necessary for the

phytopharmacology research of HS.
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