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1  | INTRODUC TION

The prevalence of mild traumatic brain injury (mTBI) in the active 
duty and veteran populations is significant (DVBIC, 2015; Terrio et al., 
2009; Warden, 2006). A survey from 2012 of returning veterans pre‐
viously stationed in Iraq or Afghanistan found 17% reported an mTBI 
during deployment, with 59% of those reporting multiple injuries 
(Wilk, Herrell, Wynn, Riviere, & Hoge, 2012). MTBI has been defined 
as physical trauma causing disruption to brain function, resulting in a 
brief change in mental status (disorientation, confusion, memory loss, 
or loss of consciousness for <30 min) and including observable signs 
of neurological dysfunction (ACRM, 1993). Service members who 
suffer at least one mTBI event often have persistent neurocognitive 

and neurological issues (Bryant & Harvey, 1999; Carroll et al., 2004; 
Schneiderman, Braver, & Kang, 2008), which are generally known as 
postconcussive symptoms (PCS). These include depression, anxiety, 
insomnia, headache, dizziness, and tinnitus (Bryant & Harvey, 1999). 
A recent study showed increased rates of dementia related to TBI, 
specifically a diagnosis occurring 1.5 years earlier on average in the 
mTBI population as compared to those without injury history (Barnes 
et al., 2018). Unlike with moderate or severe TBI, mTBI patients ap‐
pear radiologically normal clinically and, on average, suffer less severe 
cognitive deficits and less progressive atrophy over time (Affairs., 
2009; Mac Donald et al., 2011; Tate & Bigler, 2000). However, a mul‐
titude of recent high‐resolution imaging studies of mTBI report signif‐
icant and persistent neuroanatomical alterations, including atrophy, 
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Abstract
Introduction: Mild traumatic brain injury (mTBI) can result in many structural abnor‐
malities in the cerebral cortex. While thinning of the cortex has been shown in mTBI 
patients, there is high regional variability in reported findings. High‐resolution imag‐
ing can elucidate otherwise unnoticed changes in cortical measures following injury. 
This study examined age‐related patterns of cortical thickness in U.S. active duty 
service members and veterans with a history of mTBI (n = 66) as compared to a nor‐
mative population (n = 67).
Methods: Using a fully automated cortical parcellation methodology, cortical thick‐
ness measures were extracted from 31 bilateral cortical regions for all participants.
Results: The effect of diagnosis and age on cortical thickness (group × age interac‐
tion) was found to be significant (p < 0.05) for many regions, including bilateral pari‐
etal and left frontal and temporal cortices. Findings held for a male‐only subset, and 
there was no effect of time since injury in any regions.
Conclusions: The presence of mTBI appeared to accelerate age‐related cortical thin‐
ning across the cortex in our study population.
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diffuse axonal injury, and neuronal degeneration (Bigler & Maxwell, 
2012; Inglese et al., 2005; MacKenzie et al., 2002). In particular, the 
emergence of high‐field magnetic resonance imaging (MRI) has aided 
in a more complete picture of cortical and cytoarchitectural changes 
following injury (Arciniegas, Anderson, Topkoff, & McAllister, 2005; 
Bigler & Maxwell, 2012).

Brain volumetric changes are well‐characterized in those with a 
history of mTBI. Global and regional atrophy have been reported fol‐
lowing mTBI (Bigler, 2015; Bigler & Maxwell, 2012; Mayer, Hanlon, & 
Ling, 2015), even many years postinjury. While gray and white mat‐
ter volumetric changes are often reported with mTBI (Bigler, 2013; 
Tate, Khedraki, Neeley, Ryser, & Bigler, 2011), there have not been 
many studies examining changes specific to the cortical surface. 
Thickness of the cerebral cortex, a lesser utilized metric of neuro‐
anatomy, reflects underlying regional gray matter integrity and is hy‐
pothesized to be geometrically related to both cortical surface area 
and cortical volume (Van Essen, Drury, Joshi, & Miller, 1998; Winkler 
et al., 2010). Changes or abnormalities in cortical thickness have 
been reported in populations with drug abuse disorders, neurolog‐
ical disease, and brain injury (Hutton, Vita, Ashburner, Deichmann, 
& Turner, 2008). Some studies of TBI have reported abnormalities 
in cortical thickness after injury (Govindarajan et al., 2016; King, 
Lopez‐Larson, & Yurgelun‐Todd, 2016; Michael et al., 2015; Tate 
et al., 2014), but findings were regionally variable and inconsistent 
across acute and chronic mTBI populations.

Changes to the cerebral cortex can also occur in normal aging. 
Many regions experience cortical thinning as part of the normal aging 
process (Fjell et al., 2009; Salat et al., 2004). However, given the 
known effects of injury on cortical measures, it is possible for mTBI to 
exacerbate the normal cortical thinning that is present in older age. To 
this end, the present study examined the effects of age and mTBI on 
cortical thickness in regions comprising the entire cortex. We hypoth‐
esized that older individuals with a history of mTBI would have greater 
thinning of the cortex than older individuals with no mTBI history.

2  | METHODS

2.1 | Participants

Participants were active duty U.S. service members and veterans re‐
cruited as part of a prospective study of postconcussive symptoms 

following mTBI (Weaver et al., 2018; Weaver, Chhoeu, Lindblad, 
Churchill, & Wilson, 2016). Inclusion criteria for the mTBI group re‐
quired a history of at least one mild traumatic brain injury (mTBI) 
with persistent symptoms that met all the following criteria: brain 
injury that occurred more than 3 months prior to baseline screening 
at the local site, with the most recent injury occurring no more than 
5 years prior to randomization; most recent TBI occurred on active 
duty; TBI was caused by nonpenetrating trauma or blast exposure; 
TBI resulted in at least one of the following at the time of injury: a 
period of loss of or a decreased level of consciousness (up to 30 min), 
a loss of memory for events immediately before or after the injury 
(up to 24 hr), or alteration in mental state at the time of the injury 
(becoming dazed or confused); and has current complaints of symp‐
toms such as headache, dizziness, or cognitive or affective problems.

Head	 injury	 eligibility	 was	 determined	 by	 the	 Ohio	 State	
University TBI Identification Method (Bogner & Corrigan, 2009; 
Corrigan & Bogner, 2007), a structured interview administered by 
site coordinators used to obtain the number and nature of self‐re‐
ported lifetime TBIs as well as the frequency and severity of post‐
concussive symptoms. The study was conducted at three local 
study sites: Joint Base Lewis‐McChord, Washington; Fort Carson, 
Colorado; and Camp Lejeune, North Carolina. Participants were re‐
cruited from these sites and evaluated for TBI eligibility using the 
OSU;	 baseline	 neuroimaging	was	 conducted	 for	 all	 participants	 at	
a	common	Outcomes	Assessment	Center	at	Fort	Carson.	A	norma‐
tive control group without any history of mTBI was recruited at the 
Fort Carson, Colorado, site for comparison. A subset of the nor‐
mative group with ages similar to the mTBI population (maximum 
age = 53 years) was used for group comparison (n = 6 excluded to 
age match). Excluded from the final analysis were six normative par‐
ticipants in order to age match, as well as five mTBI and two norma‐
tive participants for poor image quality. Table 1 indicates the final 
participant group demographic (age and gender) and injury charac‐
teristics (time since injury and injury and blast count) for those with 
(n = 66) and without mTBI (n = 67). Also included in this table is the 
self‐reported duration of loss of consciousness for the mTBI group as 
related to the qualifying injury.

2.2 | Image acquisition and processing

T1‐weighted anatomical images were acquired on a 3T Philips 
Achieva MRI system using an ultrafast spoiled gradient echo 

TA B L E  1   Demographic characteristics for participants

Age (years) Gender
Time since 
injury (months) Injury count Blast count

Duration of loss of consciousness  
(percentage of total n)

None <5 min 5–30 min

mTBI 
(n = 66)

33.2 ± 7.3 (21–53) 65 M, 1 F 23.6 ± 16 (4–60) 3.36 ± 2.3 (1–12) 1.72 ± 1.6 (0–7) 34/66 (51.5%) 26/66 (39.4%) 6/66 (9.1%)

Normative 
(n = 67)

34.8 ± 10.3 (18–53) 47 M, 20 F

Note. Age, time since injury, injury count, and blast count are displayed as mean  standard deviation (range).
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sequence. The following acquisition parameters were used for the 
four echo train sequence: TR/TE1/delta TE = 9.3/1.65/1.8 ms along 
with a 1 × 1 × 1‐mm resolution. Preprocessing steps included the 
reconstruction	of	DICOM	images	(2D	images	to	3D	volumes),	mask‐
ing 3D volume data, resampling, and conversion to Freesurfer input 
format.

Cortical reconstruction and volumetric segmentation was per‐
formed with the Freesurfer image analysis suite (version 5.3). The 
technical details of these procedures are described in prior publi‐
cations; briefly, this processing includes removal of nonbrain tissue, 
(Segonne et al., 2004), automated Talairach transformation, segmen‐
tation of the subcortical white matter and deep gray matter volumet‐
ric structures (Fischl et al., 2002; Fischl, Salat, et al., 2004) intensity 
normalization (Sled, Zijdenbos, & Evans, 1998), tessellation of the 
gray matter–white matter boundary, automated topology correction 
(Fischl, Liu, & Dale, 2001; Segonne, Pacheco, & Fischl, 2007), and 
surface deformation following intensity gradients along the gray/
white and gray/cerebrospinal fluid borders (Dale & Sereno, 1993; 
Dale,	Fischl,	&	Sereno,	1999;	Fischl	&	Dale,	2000).	Once	the	corti‐
cal models are complete, among other procedures performed was 
parcellation of the cerebral cortex into regional units (Desikan et al., 
2006; Fischl, Kouwe, et al., 2004). This method produces represen‐
tations of cortical thickness, calculated as the closest distance from 
the gray/white boundary to the gray/CSF boundary at each vertex 
on the tessellated surface (Fischl & Dale, 2000). For data analyzed 
in this study, all surfaces were visually checked thoroughly to ensure 
that the automated reconstruction was successful, and manual inter‐
ventions were used as needed to correct small defects. If image de‐
fects were considered too extensive, the dataset was deemed poor 
quality and excluded from the study analysis.

2.3 | Post hoc statistical analysis

Cortical thickness in millimeters was compared between mTBI and 
normative groups in 31 bilateral cortical regions. The effect of diag‐
nosis and age on cortical thickness was examined using a univariate 
linear model for each selected region of the left and right cerebral 
cortex with cortical thickness measurement as the dependent vari‐
able and age at study enrollment and study group (mTBI vs. norma‐
tive) as independent factors. Main effects of study group and age, 
as well as interaction of study group and age, were examined in the 
model. Separate models also examined the potential confounding 
effect of time since injury (in months) on the association of age and 

cortical thickness in the mTBI group. Post hoc statistical analyses 
were performed using SPSS (v.26). This exploratory analysis was 
intended to be hypothesis‐generating, and as such, no adjustments 
were made for multiple testing.

3  | RESULTS

Many regions on the left and right cerebral cortex had a greater 
cortical thinning for older adults with mTBI compared to normative 
controls (significant interaction of age and study group; Figure 1 and 
Table	2).	Of	these,	the	parietal	regions	appeared	to	show	the	pattern	
most bilaterally, while many other subregions had a greater effect of 
cortical thinning with age in those with mTBI compared to norma‐
tive controls specifically on the left hemisphere. A separate analy‐
sis including only males from each group produced mostly the same 
results (Table 3); the only differences were the right pars orbitalis, 
paracentral, and pericalcarine regions showed an interaction effect, 
while left pars opercularis no longer did. Using the left inferior pari‐
etal region as an example, we have included a plot of cortical thick‐
ness by age (Figure 2) clearly showing a greater decrease in cortical 
thickness across age for those with mTBI (as compared to the nor‐
mative population). The magnitude and direction of the differential 
age effects between the mTBI and normative groups were similar 
for other regions. Time since injury had no effect on the model of 
cortical thickness and age in the mTBI group (results not shown), and 
there were no regions with a significant increase in cortical thickness 
(i.e., cortical thickening) with age (results not shown).

4  | DISCUSSION

The presence of mTBI appeared to increase age‐related cortical 
thinning in several regions across the cortex in our study popu‐
lation. Generally, more posterior/rostral regions of the brain 
showed the accelerated thinning pattern, as compared to ante‐
rior/frontal regions. Effects were somewhat left hemisphere lat‐
eralized overall, with the parietal lobe having the most bilateral 
regions affected.

Some previous studies of mTBI have demonstrated time‐de‐
pendent differences in cortical recovery (Cole, Leech, Sharp, & 
Neuroimaging, 2015; Ewing‐Cobbs et al., 2016; Rowe et al., 2016), 
including both structural and functional reorganization. However, 

F I G U R E  1   Cortical surface rendering 
highlighting regions with significantly 
increased age‐related cortical thinning 
with mTBI
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TA B L E  2   Effects of age and study group (interaction) on cortical thickness by cortical region

Cortical region

Left Right

F p F p

Frontal

Caudal middle 
frontal

8.355 0.005 3.45 0.066

Lateral 
orbitofrontal

2.946 0.088 0.203 0.653

Medial 
orbitofrontal

0.991 0.321 0.027 0.871

Paracentral 1.394 0.24 4.384 0.038

Pars opercularis 4.413 0.038 0.09 0.765

Pars orbitalis 13.272 0.0004 3.88 0.051

Pars triangularis 3.347 0.07 2.336 0.129

Precentral 2.9 0.091 3.154 0.078

Rostral middle 
frontal

1.487 0.225 0.483 0.488

Superior frontal 7.065 0.009 3.85 0.052

Frontal pole 0.542 0.463 0.001 0.978

Caudal anterior 
cingulate

0.235 0.629 0.885 0.349

Rostral anterior 
cingulate

0.316 0.575 0.421 0.517

Parietal

Inferior parietal 4.788 0.03 10.325 0.002

Postcentral 1.15 0.286 0.653 0.421

Precuneus 5.151 0.025 6.18 0.014

Superior parietal 3.69 0.057 5.816 0.017

Supramarginal 5.212 0.024 7.612 0.007

Isthmus cingulate 0.647 0.423 1.929 0.167

Posterior cingulate 3.077 0.082 4.529 0.035

Temporal

Banks of superior 
temporal sulcus

6.929 0.01 12.124 0.001

Entorhinal 0.014 0.906 0.606 0.438

Fusiform 5.192 0.024 2.803 0.097

Inferior temporal 5.63 0.019 2.279 0.134

Middle temporal 6.129 0.015 7.148 0.008

Parahippocampal 2.707 0.102 0.755 0.387

Superior temporal 13.118 0.0004 15.048 0.0002

Temporal pole 0.601 0.44 0.13 0.719

Transverse 
temporal

0.821 0.367 0.86 0.355

Occipital

Cuneus 4.603 0.034 10.706 0.001

Lateral occipital 6.755 0.01 6.874 0.01

Lingual 2.469 0.119 0.36 0.549

Pericalcarine 2.351 0.128 4.64 0.033

Note. Significant interaction of age and study group is shown in bold.
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TA B L E  3   Effects of age and study group (interaction) on cortical thickness in male‐only subset population

Cortical region

Left Right

F p F p

Frontal

Caudal middle 
frontal

7.192 0.008 2.871 0.093

Lateral 
orbitofrontal

2.688 0.104 0.129 0.720

Medial 
orbitofrontal

0.414 0.521 0.21 0.648

Paracentral 1.767 0.187 4.624 0.034

Pars opercularis 3.035 0.084 0.008 0.930

Pars orbitalis 11.67 0.001 4.707 0.032

Pars triangularis 1.944 0.166 2.248 0.137

Precentral 3.198 0.076 2.972 0.088

Rostral middle 
frontal

0.932 0.336 1.062 0.305

Superior frontal 7.718 0.006 4.705 0.032

Frontal pole 0.311 0.578 0.249 0.619

Caudal anterior 
cingulate

0.001 0.973 0.308 0.580

Rostral anterior 
cingulate

0.368 0.545 0.236 0.628

Parietal

Inferior parietal 5.427 0.022 9.794 0.002

Postcentral 1.302 0.256 1.043 0.309

Precuneus 5.457 0.021 5.672 0.019

Superior parietal 4.082 0.046 5.614 0.020

Supramarginal 5.602 0.020 7.628 0.007

Isthmus cingulate 1.501 0.223 3.362 0.069

Posterior cingulate 2.894 0.092 4.539 0.035

Temporal

Banks of superior 
temporal sulcus

5.851 0.017 10.34 0.002

Entorhinal 0.054 0.817 0.594 0.443

Fusiform 6.581 0.012 3.308 0.072

Inferior temporal 4.865 0.029 1.856 0.176

Middle temporal 6.911 0.010 8.397 0.005

Parahippocampal 3.218 0.076 1.857 0.176

Superior temporal 10.84 0.001 13.93 0.0003

Temporal pole 0.770 0.382 0.535 0.466

Transverse 
temporal

1.333 0.251 0.781 0.379

Occipital

Cuneus 4.167 0.044 9.383 0.003

Lateral occipital 4.867 0.029 7.472 0.007

Lingual 3.258 0.074 0.689 0.408

Pericalcarine 0.99 0.322 3.764 0.055

Note. Significant interaction of age and study group is shown in bold.
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in our study population, time since injury was not a significant fac‐
tor in the effect of age and mTBI on cortical thickness in any of the 
cortical regions. Furthermore, given evidence of a gender differ‐
ence in brain anatomy patterns with aging (Coffey et al., 1998), we 
examined the age by group interaction in a subset of males only. 
The majority of findings were consistent in these subgroups, with 
only a few regional differences mostly in the right hemisphere. 
Taken together, the findings in the full study population and subset 
of males support a consistent and robust effect of mTBI on cortical 
thickness with age.

Previous studies of mTBI have shown variable cortical thin‐
ning patterns following injury. A small study of blast‐related mTBI 
showed thinning of the left superior temporal and frontal gyri (Tate 
et al., 2014), while another study that included mild and moderate 
TBI patients showed thinning in primarily the right insula and infe‐
rior temporal and frontal regions (Michael et al., 2015). In a longi‐
tudinal study of mTBI, Govindarajan et al (2016) reported a cortical 
thinning in the left middle temporal and right superior parietal re‐
gions acutely, with left middle temporal thinning persisting at three 
months postinjury; these regions are included in our findings as well. 
As this study reports many more significant regions affected by age 
and mTBI than previous studies of only mTBI, it is possible the effect 
of aging and injury together accelerates the cortical thinning pro‐
cess. Furthermore, lateralization of cortical thinning has not been 
widely reported following injury, but in our study population could 
also be related to the accelerated process or alternatively to localiza‐
tion and extent of injury.

In this study, accelerated cortical thinning was primarily found 
in temporal and occipital regions bilaterally. Consistent age‐depen‐
dent cortical thinning has been reported in prefrontal, frontal, and 
primary motor regions with relative sparing in the parahippocam‐
pal and medial orbitofrontal regions (Fjell et al., 2009; Salat et al., 
2004). In contrast, temporal lobe thinning has been inconsistently 

linked to aging (Fjell et al., 2009; Salat et al., 2004). With the ex‐
ception of temporal regions, our findings do not generally overlap 
with normal age‐related patterns of cortical thinning, supporting a 
combined influence of age and mTBI on the cortical changes seen in 
our population.

Accelerated age‐related changes in cortical measures have been 
reported in a number of study populations (Ewing‐Cobbs et al., 2016; 
Rowe et al., 2016). Two studies of apolipoprotein E epsilon 4 car‐
riers (Espeseth et al., 2008) and individuals with attention‐deficit/
hyperactivity disorder (Shaw et al., 2006), respectively, both showed 
accelerated cortical thinning with age. Additionally, Cole et al (2015) 
reported accelerated atrophy in patients with mild‐to‐severe TBI, 
with more effects in those farther from injury date. In contrast, our 
study did not show an effect of time since injury, but included only 
mTBI patients, which may show a different non time‐dependent pat‐
tern of accelerated injury.

Areas with the most apparent cortical thinning in this study, left 
temporal and right parietal lobes, are responsible for a number of 
high‐level cognitive processes. Though it is possible the patients 
with more cortical thinning would have more cognitive deficits, 
such a relationship was outside of the scope of this study. Another 
limitation was the lack of an elderly population to examine the ef‐
fects of accelerated age‐related cortical thinning in an older popu‐
lation. Heterogeneity of injury in the mTBI population also limited 
the linking of localized injury to regional cortical thinning patterns. 
Furthermore, the cross‐sectional nature of the study did not allow 
for following changes in cortical thickness at the participant level 
over time. Finally, statistical analyses were performed across many 
cortical regions but were not adjusted for multiple testing, so the 
possibility of Type I error cannot be ruled out. However, that the 
magnitude and direction of the effect of age and study group on 
cortical thickness were consistent across outcomes strengthens the 
evidence of our findings.

F I G U R E  2   Plot of left hemisphere 
inferior parietal cortex thickness by age. 
The steeper slope of the mTBI group 
indicates a greater thinning with age in 
this group
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To our knowledge, this study was the first of its kind to exam‐
ine age‐related patterns of cortical thickness in U.S. active duty 
service members and veterans with a known history of mTBI. 
Robust and widespread findings across some regions of the cor‐
tex, even when controlling for gender and time since injury, sug‐
gest the possibility of an increased age‐related cortical thinning 
process which may be characteristic of mTBI. In conclusion, cor‐
tical thickness has the potential to serve as a biomarker for ac‐
celerated aging effects in patients contending with the long‐term 
outcomes of mTBI.
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