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ABSTRACT 
 
There is a pressing need to identify markers of cognitive and neural decline in healthy late-midlife participants. 
We explored the relationship between cross-sectional structural brain-imaging derived phenotypes (IDPs) and 
cognitive ability, demographic, health and lifestyle factors (non-IDPs). Participants were recruited from the 
1953 Danish Male Birth Cohort (N=193). Applying an extreme group design, members were selected in 2 groups 
based on cognitive change between IQ at age ~20y (IQ-20) and age ~57y (IQ-57). Subjects showing the highest 
(n=95) and lowest (n=98) change were selected (at age ~57) for assessments on multiple IDPs and non-IDPs. We 
investigated the relationship between 453 IDPs and 70 non-IDPs through pairwise correlation and multivariate 
canonical correlation analysis (CCA) models. Significant pairwise associations included positive associations 
between IQ-20 and gray-matter volume of the temporal pole. CCA identified a richer pattern - a single 
“positive-negative” mode of population co-variation coupling individual cross-subject variations in IDPs to an 
extensive range of non-IDP measures (r = 0.75, Pcorrected < 0.01). Specifically, this mode linked higher cognitive 
performance, positive early-life social factors, and mental health to a larger brain volume of several brain 
structures, overall volume, and microstructural properties of some white matter tracts. Interestingly, both 
statistical models identified IQ-20 and gray-matter volume of the temporal pole as important contributors to 
the inter-individual variation observed. The converging patterns provide novel insight into the importance of 
early adulthood intelligence as a significant marker of late-midlife neural decline and motivates additional 
study.  
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INTRODUCTION 
 
In countries with advanced economies, changes in age 
distributions, largely due to lower birth rates and 
increased life expectancy, has meant that the world’s 
population is increasingly older, with the number of 
persons over 80 projected to triple by 2050 [1]. 
Paradoxically, the success and opportunities presented 
by this new longevity has often been over-shadowed by 
the many challenges that come with a “top heavy” 
society.  Specifically, the growing number of older 
adults have created an unprecedented demand on health 
care services, with increased vulnerability to cognitive 
decline, appreciable loss of autonomy, and need for 
institutional care threatening the economic security of 
families, communities and countries. With an estimated 
47 million people currently diagnosed with dementia 
worldwide [2, 3], the necessity of responding to these 
challenges are vital. In view of this, what was once 
referred to as ‘the elephant in the room’ [4] – i.e., the 
role of aging in cognitive decline – has now transpired 
into a scientifically challenging and compelling pursuit, 
the search to identify the constituents of a healthy brain 
and mind across the human lifespan [5-11].  
 
Given the complexity of the aging process, at present 
there is no gold standard selection of age-related 
markers for assessing cognitive decline and disease 
progression in older adults [6-9, 11-18]. Furthermore, 
with considerable individual variability observed in 
aging trajectories, identifying the various factors that 
may underlie this individualism has not been a trivial 
task [19]. Prior studies investigating lifespan influences 
on non-pathological aging have identified childhood IQ, 
socioeconomic position (SEP), and genetic markers as 
some of the most consistent predictors of later-life 
health outcome [6, 8, 12, 14, 20-31]. In particular, of 
these, childhood cognitive ability has been identified as 
the strongest determinant of later-life intelligence 
explaining ~50% of the variance in cognition even at 
age ~80 [9, 25-27]. Consequently, a series of other 
possible determinants (physical activity, tobacco 
smoking, hypertension, obesity, reduced cardiac output, 
nutrition), with smaller, but significant effects on 
cognitive function and brain aging have been identified 
that may explain the remaining variability [6-11, 17, 18, 
22, 32-35]. However, many of these measures have 
been branded as proxy markers of lower early-life 
intelligence.  
 
For both diagnostic and research purposes, multimodal 
magnetic resonance imaging (MRI) is a popular choice 
for exploring age-related brain correlates of cognitive 
change [36-48]. To date, the resulting body of evidence 
converges on age-related decreases cross-sectionally 
and longitudinally, in the density of dopaminergic 

receptors [49], cortical thickness [44], whole-brain and 
regional volumes [46, 50-52], and increases in 
ventricular volume [53], and the emergence of neural 
insults of cerebrovascular origin [33, 36, 54, 55]. 
Furthermore, much of the age-related variation in brain 
structure has shown regional and temporal specificity, 
with frontal, parietal, and temporal lobes appearing 
most vulnerable to age-effects and the occipital lobe the 
least [8, 10, 56-62]. These findings are consistent with 
the anterior-to-posterior gradient of age-related brain 
deterioration – first coined in 1881 by French 
Philosopher Theodule Ribot when he introduced the 
concept of “Loi de regression” (i.e., last in, first out) – 
to describe memory formation and destruction [63]. 
Specifically, “first out” brain regions are characterized 
by a more complex architecture, a protracted 
ontogenetic developmental course, and are more likely 
to provide support when faced with neural insults, 
maladaptive brain function, or higher-order cognitive 
tasks [64-66].  
 
Despite significant individual differences in aging 
trajectories, the overall consensus on age-related effects 
on brain health and cognition ability is clear: the brain 
shrinks with advancing age with alterations observed at 
both the molecular and morphological level, and these 
changes are linked to declines in specific cognitive 
domains [47, 67, 68]. Of these, processing speed, 
executive functioning, working memory, and inhibitory 
functions are the cognitive domains reported as most 
vulnerable to advancing age, whilst implicit procedural 
long-term memory, numerical processing, and the 
general knowledge accrued across the lifespan are those 
that appear relatively spared [6, 7, 9, 10, 37, 47, 68-70].   
 
Currently, much of our knowledge on brain and 
behavior changes are derived from cross-sectional 
studies that compare single observations from 
individuals of different ages – most commonly groups 
of young and extremely old adults. Although suitable 
for identifying population-level mean trends, and 
efficient in terms of time and cost, cross-sectional 
studies are vulnerable to cohort effects, selection bias, 
and by design, can only offer insight on age-related-
differences [37, 43, 50, 52, 62, 65, 71-73]. As aging 
research is essentially the study of change, a preferred 
approach of extracting individual differences in change 
– independently of individual differences in level – 
whilst simultaneously permitting the study of 
developmental and maturational trends is to use a 
longitudinal design with multiple follow-up assess-
ments. Thus, to expand on prior efforts, we use within-
subject (longitudinal) behavioral measurements that 
span across critical periods of the human lifespan using 
members of a prospective study; the 1953 Metropolitan 
Danish Male Birth Cohort (MDBC-1953) [14, 74]. 
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Specifically, following a major revitalization in 2009, 
research efforts based on MDBC-1953 data has focused 
on age-related cognitive decline. Here, the main aim is 
to elucidate why some older adult’s cognitive abilities 
are preserved well into late adulthood, while others 
demonstrate rapid decline.  
 
In order to optimize the possibility of cognitive ability 
in a late-midlife being found to be associated with 
biological (or other) correlates, we exploited the long-
term nature of this study to identify individuals with a 
relatively large decline in cognitive ability from early-
adulthood (“decliners”), and those who show 
improvement (“improvers”). This standard approach, 
formally known as the Extreme Groups Design (EGD) 
[75], also maximizes the subject variability in other 
relevant factors such as education attainment, occupa-
tional complexity and levels of motivation, increasing 
the generalizability of this study to the real population. 
That is, in what is otherwise a highly homogenous 
cohort, the EGD attenuates the commonly observed 
selection bias of self-selected healthy study samples 
towards high-functioning and educated individuals. 
Further benefits of using this cohort are manifold. First, 
there is a lack of evidence suggesting that pathological 
change abruptly begins at old age after a period of 
relative stability. Thus, inclusion of childhood, youth 
and late midlife cognitive scores in aging studies may 
be key to predicting later-life health outcomes [8, 13, 
67, 68]. Second, a homogenous, late-midlife cohort 
provides conditions that are optimal for assessing the 
influence of potential candidate determinants on late-
life morbidity without confounding cohort or other age 
factors. Third, findings from the extant literature 
exploring brain markers of develop-mental and aging 
processes have described age-associated changes as 
“early development in reverse” [42, 64, 66]. Thus, 
phenotyping across the human lifespan and not just the 
extremes of the age-range is optimal when exploring 
normative or pathological brain aging patterns [9, 15, 
37, 68, 69, 76]. Specifically, if the brain’s ‘blueprint for 
aging’ has already developed by preschool years, the 
conservative approach of selecting the oldest of old to 
expose biomarkers of normative aging is an outdated one 
[25-27]. Lastly, even when data are derived from a 
longitudinal study, many factors (demographic, lifestyle 
etc.) that may contribute to the observed heterogeneity in 
aging trajectories are ignored which ultimately 
undermines the reliability of the relationships discovered. 
 
Considering this, our primary focus was to explore the 
factors—general health, vascular, demographic and 
lifestyle—that contribute to normative brain and 
cognitive aging. Crucially, we are not interested in just 
the age-dependence in any individual physiological or 
behavioral component, but a holistic range of endo-

genous and exogenous influences accrued across the 
lifespan. To achieve this, we distinguish between life 
course influences that act to preserve health (“positive 
influences”) versus those that are implicated in its 
demise (“negative influences”). This approach has the 
potential to identify specific brain and cognitive 
patterns that may underlie differential aging trajectories, 
whilst simultaneously exposing the relation of these 
patterns to a broad range of modifiable risk and 
protective factors. By modelling multiple variables of 
multiple modalities simultaneously we provide a more 
precise estimate of their synergetic effects filling a gap 
in the existing aging literature. Furthermore, our 
inclusion of both bivariate and multi-level analyses 
allows for both specific and general relations to be 
explored, which are potentially more informative than 
either approach alone. Specifically, this study goes 
beyond just investigating the interrelations among a 
selection of variables; rather, we are seeking specific 
age-related patterns of brain structure that are associated 
to sets of correlated cognitive, demographic, health, and 
behavior variables, as brain-behavior modes of 
population covariation.  
 
RESULTS 
 
Participant characteristics are reported in Tables 1-4. 
 
Univariate analyses 
 
Whole-group univariate associations 
Higher general cognitive ability in early adulthood (age 
20) is significantly associated with greater grey matter 
(GM) volume in late midlife (age 57). Greater height is 
significantly associated with higher mode of anisotropy 
(MO) in the medial lemniscus. Higher general cognitive 
ability (assessed at ages 20 (IQ-20), 57 (IQ-57) and 63 
(IQ-63), and a higher score in the Addenbrooke 
Cognitive Examination (ACE) are significantly 
associated with number of years in education.  
 
We visualize results with Manhattan plots that show -
log10 p-values for IDP-by-non-IDP correlations, 
arranged by non-IDPs on the x-axis, multiple testing 
thresholds across all pairwise associations are marked 
with a horizontal line (here only familywise error rate 
(FWE) is indicated as False Discovery Rate (FDR) 
identified no additional significant result). We identified 
two significant univariate associations between specific 
imaging derived phenotypes (IDP) and non-imaging 
derived phenotypes (non-IDP) both non-adjusted and 
adjusted for the effects of cognitive change, Figure1 and 
Supplementary Figure 7A-7B. Specifically, we found 
that higher scores in early adulthood IQ (IQ-20) is 
associated with a greater GM volume in the right 
temporal pole. Additionally, we identified a positive 
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association between height and MO in the medial 
lemniscus (left). Table 5 lists all FWE-significant cor-  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

relations extracted from Figure 1, (FWE threshold: p-
uncorrected = 5.80 x 10-5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. List and study sample characteristics of individual cognitive measures.  
TOTAL COGNITIVE MEASURES (N=31)    
    
INTELLIGENCE  GROUP A GROUP B 
  M (SD) M (SD) 
  Härnquist (IQ-11) 78.0 (14.6) 70.4 (15.1) 
  BP (IQ-20) 46.3 (9.6) 45.7 (8.2) 
  IST2000-R (IQ-57) 42.7 (7.2) 21.3 (6.1) 
  IST2000-R (IQ-63) 38.5 (7.9) 23.4 (7.6) 
COGNITVE DOMAIN CANTAB GROUP A GROUP B 
  M (SD) M (SD) 
Visual paired associates learning and memory Paired Associates Learning (PAL)   
  First trial memory score 18.2 (3.4) 16.5 (3.1) 
  Total Errors Adjusted 17.8 (21.7) 23.3 (16.4) 
  Total Trials Adjusted 13.2 (4.1) 14.8 (3.6) 
Pattern recognition memory Pattern Recognition Memory (PRM)   
  Percent correct 92.3 (8.0) 88.0 (8.6) 
  Standard deviation correct latency 

(msec) 
783.3 (477.3) 

 
1036.1 (621.3) 

 
Spatial recognition memory Spatial Recognition Memory (SRM)   
  Percent correct 85.9 (8.4) 80.4 (8.9) 
  Standard deviation correct latency 

(msec) 
1357.0 (575.3) 1694.9 (977.9) 

Motor skills Motor Screening (MOT)   
  Mean Error 9.0 (2.1) 9.3 (2.2) 
  Mean Latency (msec) 1129.0 (399.3) 1104.6 (274.0) 
Reaction time Reaction Time (RTI)   
  Mean 5-choice movement time  388.2 (88.1) 388.9 (107.4) 
  Mean 5-choice reaction time 364.2 (47.1) 376.0 (53.3) 
Attention  Rapid Visual Processing (RVP)   

  A' Score 0.9 (0.1) 0.9 (0.1) 
  Mean latency block 1 (msec) 362.4 (88.6) 396.5 (140.6) 
  Mean latency block 2 (msec) 332.7 (107.9) 358.2 (121.4) 
  Mean latency block 3 (msec) 340.4 (68.6) 365.0 (124.7) 
  Mean latency block 4 (msec) 414.4 (89.0) 444.2 (143.9) 
Global cognitive functioning ACE   
  Total Score 95.96 (3.2) 92.0 (5.0) 
  MMSE   
  Total Score 29.5 (0.9) 29.2 (1.0) 
Executive function (planning) Stockings of Cambridge (SOC)   
  Problems solved in minimum moves 9.67 (1.5) 

 
9.5 (1.4) 

 
  Mean 5-moves 5.90 (1.0) 6.14 (1.0) 
 Mean initial thinking time 5-moves 

(sec) 
15.7 (10.2) 15.4 (16.1) 

 Mean subsequent thinking time 5-
moves (sec) 

1.3 (2.3) 1.9 (2.7) 

 PAPER AND PENCIL TESTS GROUP A GROUP B 
  M (SD) M (SD) 
Verbal paired associative learning and 
memory 

15 Word Pairs Recall and Retention   

  Learning 8.3 (7.7) 14.6 (8.2) 
  Retention 3.5 (3.2) 6.0 (3.6) 
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 Processing speed Digit symbol modalities test 51.0 (7.4) 44.0 (8.4) 
  Trail Making A (sec) 32.0 (10.7) 34.6 (9.6) 
  Trail Making B (sec) 68.1 (20.8) 92.9 (61.5) 
    
(Abbreviations: BP = Børge Priens Test; IST = Intelligenz-Struktur-Test 2000 R; CANTAB = Cambridge Neuropsychological Test 
Automated Battery; ACE = Addenbrooke’s Cognitive State Examination; MMSE = Mini Mental State Examination). Information on 
missing datasets include: Härnquist (IQ-11) = 39, BP (IQ-20) = 1, IST2000-R (IQ-57) = 1, IST2000-R (IQ-63) = 70, ACE = 1, Mean 5-
choice movement time = 1, Mean 5-choice reaction time = 1, A' Score = 1, Mean latency block 1 (msec) = 1, Mean latency block 2 
(msec) = 1, Mean latency block 3 (msec) = 1, Mean latency block 4 (msec) = 1. Total cognitive measures included n=31. 

 

Table 2. List and study sample characteristics of social and biological demographic measures. 
TOTAL DEMOGRAPHIC MEASURES (N=8)   

   

Social GROUP A GROUP B 

  N (%) N (%) 

Subject SEP    

Working 50 (29.9%) 24 (12.4%) 

Other 17 (8.8%) 17 (8.8%) 

Early retirement 1 (0.5%) 4 (2.1%) 

In education 1 (0.5%) - 

Unknown 26 (13.5%) 53 (27.5%) 

Paternal SEP   

Self-employed, employee, or civil servant 51 (26.4%) 44 (22.8) 

Skilled worker 14 (7.3%) 23 (11.9%) 

Unskilled worker 24 (12.4%) 22 (11.4%) 

Unknown 6 (3.1%) 9 (4.7%) 

Civil Status   

Single (no) 61 (31.6%) 41 (21.2%) 

Single (yes) 8 (4.1%) 4 (2.1%) 

Other/Unknown 26 (13.5%) 53 (27.5%) 

Offspring   

No 8 (4.1%) 4 (2.1) 

Yes 61 (31.6%) 41 (21.2%) 

Other/Unknown 26 (13.5%) 53 (27.5%) 

School Years/Education Attainment   

Mean (SD) 11.4 (2.6) 10.2 (1.5) 

Unknown (%) 8 (4.1%) 14 (7.3%) 

Biological  GROUP A GROUP B 

 M (SD) M (SD) 
Birth length (cm)  51.8 (3.4) 52.8 (1.9) 
Birth weight (g)  34.6 (5.2) 35.7 (3.9) 

Unknown 3 (1.6%) 5 (2.6%) 
   
(Abbreviations: SEP = social economic position; SD = standard deviation, g =grams). Total demographic measures included 
n=8. 
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Validation test: subgroup univariate associations 
Results exploring univariate associations for each sub-
group separately (i.e., subgroup group A improvers, and 
subgroup group B decliners) indicated that the 
significant associations observed at the level of the 
whole-group where largely driven by measures derived 
from subgroup A members. This suggests that, despite 
both groups being relatively homogenous, it is variation 
in the improvers that are most responsible for the 
observed effects. Crucially, we did not observe 
inconsistent effects in the sign of effects that would 
suggest Simpsons Paradox. Having evidence that the 
EGD is not inducing paradoxical effects, we can further 
explore IDP-by-non-IDP relations controlling for 
changes in IQ. 
 
Univariate associations: adjusting for cognitive 
change (C∆) 
Univariate associations estimating the relation between 
each of the IDP and  non-IDP  measures  after  adjusting  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
for the effects of C∆1 (IQ-57-IQ-20) revealed negligible 
deviation from the whole-group results visualized in 
Figure 1. However, when adjusting all variables for the 
effects of C∆2 (IQ-63-IQ-57), we observed modest 
attenuation of the IQ-20 and GM volume of the 
temporal pole (right) association, Supplementary 
Figure 7A, but negligible change to the association 
between height and MO in the medial lemniscus. 
Conversely, we found that adjusting for C∆3 (IQ-20-
IQ-11) did not affect the significant link between IQ-
20 and GM volume of the temporal pole, but did 
remove the significant correlation between height and 
MO in the medial lemniscus. Similarly, when estimat-
ing the relationship between each cognitive variable 
and all (other) non-IDP measures after adjusting for 
the effects of C∆1 and C∆2 we found negligible 
changes to the associations visualized in Figure 2. 
However, adjusting for the effects of C∆3 resulted in 
the removal of all prior significant associations listed 
in Table 5. 

Table 3. List and study sample characteristics of health measures. 
TOTAL HEALTH MEASURES (N=22) 
 
Prevalence of NCDs (self-reported) GROUP A GROUP B 

Asthma  
Cancer  
Cardiovascular  
Cerebrovascular  
Depression  
Diabetes  
Hypercholesterolemia  
Hypertension  
Migraine  
Prolapsed Disc  

3 (1.6%) 2 (1.0%) 
1 (0.5%) 2 (1.0%) 
8 (4.1%) 9 (4.7%) 
4 (2.1%) 4 (2.1%) 
2 (1.0%) 4 (2.1%) 
2 (1.0%) 3 (1.6%) 
7 (3.6%) 7 (3.6%) 
22 (11.4%) 14 (7.3%) 
7 (3.6%) 2 (1.0%) 
4 (2.1%) 2 (1.0%) 

Prevalence of familial history of NCDs (self-reported)   
Cardiovascular  
Cerebrovascular  
Dementia  
Diabetes  
Depression  
Hypertension  
Myocardial Infarct  

14 (7.3%) 10 (5.2%) 
13 (7.3%) 10 (5.2%) 
17 (8.8%) 12 (6.2%) 
12 (6.2%) 8 (4.1%) 
18 (9.3%) 9 (4.7%) 
24 (12.4%) 10 (5.2%) 
14 (7.3%) 6 (3.1%) 

Common health biomarkers GROUP A  
M (SD) 

GROUP B 
M (SD) 

BMI (kg/m2) 
Height (cm) 
Weight (kg) 
Major Depression Inventory (MDI) score 
Cerebral Blood Flow (normalised to brain size) (mL/min) 
Total Cholesterol mmol/L 

26.1 (3.3) 26.8 (3.2) 
180.5 (6.1) 179.8 (6.7) 
85.1 (12.0) 86.4 (11.6) 
4.0 (3.6) 4.9 (4.7) 
55.7 (13.1) 53.4 (13.9) 
5.5 (0.9) 5.6 (1.0) 

    
(Abbreviations: NCDs = non-communicable diseases; BMI = body mass index; SD = standard deviation). Missing datasets: 
Prevalence of NCDs (self-reported) =12, Prevalence of familial history of NCDs (self-reported) = 12, BMI = 7, height = 7, 
weight = 7, MDI = 12, Cerebral blood flow = 12, Total Cholesterol = 8. Total health measures included n=22. 
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Multivariate associations 
 
Whole-group multivariate associations 
Results from CCA identified a single statistically 
significant mode of population co-variation coupling 
individual cross-subject variations in brain structure to 
an extensive range of non-imaging measures (Rc = 0.75, 
permuted p-corrected = 0.01). Post-hoc analyses 
revealed IQ variables, SEP, psychosocial factors and 
GM volume as most influential in driving the multi-
variate correspondence between IDPs and non-IDPs. 
 
For ease of interpretation, we invert the signs of all non-
IDP measures where lower outcome values are 
indicative of a positive quality or indicator (e.g., 
cognitive tests measuring reaction time or number of 
errors, number of smokes etc.). Thus, when interpreting 
post-hoc correlations between each non-IDP and the 
CCA-mode, Figure 3A,  all  positive correlations describe  
positive contributions  to  the  CCA-mode  (e.g.,  higher 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cognitive ability, higher paternal SEP, better health and 
lifestyle choices), whilst all negative correlations 
identify unfavorable contributions to the CCA-mode. In 
view of this, we report the strongest positively 
associated non-IDP variable to the CCA-mode as IQ-20 
(r2 = 18.8%, r=0.43) and the strongest negatively linked 
variable as the motor task (time taken) (r2 =6.9%, r =-
0.26). Other strong positive non-IDP contributions to 
the CCA-mode include cognitive variables assessing 
verbal paired associative learning and memory (15 word 
pairs learning and retention), attention with working 
memory load (RVP), measures of general IQ from 
childhood (IQ-11) and late midlife (IQ-57 and IQ-63), 
global cognitive functioning (ACE, MMSE), executive 
function and planning (SOC), motor and reaction time 
(RTI), and health and sociodemographic variables 
(major depression inventory (MDI) score, self-reported 
history of depression, and paternal SEP). Conversely, 
we identified an appreciably smaller number of strong 
negative non-IDP contributions influencing the 

Table 4. List and study sample characteristics of lifestyle variables. 
TOTAL LIFESTYLE MEASURES (N=9)   
 GROUP A GROUP B 
Alcohol N (%) N (%) 

Status   
Yes  61 (31.6%) 39 (20.2%) 
No  1 (0.5%) 2 (1.0%) 
Unknown 34 (17.4%) 56 (29.0%) 

  M (SD) M (SD) 
Start age 15.5 (1.7) 15.0 (1.9) 
Units per week 11.8 (14.0) 9.2 (9.7) 
Unknown N (%) 34 (17.4%) 56 (29.0%) 

Exercise (frequency) N (%) N (%) 
Daily 8 (4.1%) 17 (8.8%) 
2-3 per week 29 (15.0%) 11 (5.7%) 
1 per week 8 (4.1%) 4 (2.1%) 
2-3 per month 3 (1.6%) 2 (1.0%) 
Few per year 6 (3.1%) 1 (0.5%) 
Never 6 (3.1%) 6 (3.1%) 
Unknown 35 (18.0%) 57 (29.5%) 

Smoking N (%) N (%) 
Status (yes) 37 (19.2%) 28 (14.5%) 
Status (no) 23 (11.9%) 12 (6.2%) 
Unknown 35 (18.0%) 58 (30.1%) 

  M (SD) M (SD) 
Smokes (pack/year) 17.3 (12.5) 18.2 (11.9) 
Age start (years) 15.0 (2.4) 15.4 (4.4) 
Age stop (years) 41.3 (11.6) 41.3 (13.1) 

Sleep quality M (SD) M (SD) 
Pittsburgh Sleep Quality Index 4.0 (2.0) 4.7 (2.7) 
Unknown 32 55 

   
(Abbreviations: SD = standard deviation.) Total lifestyle measures included n=9.  
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underlying structure of the CCA-mode. Of these, civil 
status (where a ‘non-single’ status was coded as a 
positive variable) and smokes (packs per year), were 
found to be most influential.  
 
With regards to post-hoc correlations computed 
between IDPs and the CCA-mode, Figure 3B, we 
identified GM volume of the temporal pole (left and 
right) as the strongest positively linked brain-imaging 
marker (r2 = 29.3%; r =0.54), and axial diffusivity L1 of 
the posterior limb (right) of the internal capsule as the 
strongest negatively linked (r2 = 7.45%; r2 =-0.35). 
Further top positive IDP  contributions  were succeeded 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

by global brain volume measures of GM, white matter 
(WM) and peripheral cortical GM, a broad range of 
other GM region-of-interest (ROI) volume measures, 
and volume of the sub-cortical structure, the thalamus. 
Similar to non-IDPs, strong negatively contributing 
IDPs were fewer in number, such that the identified 
CCA-mode largely related positively contributing 
brain macrostructural markers (i.e., measuring larger 
whole-brain GM and WM volume, subcortical struc-
ture volumes, or GM volume of ROI) to each other 
and to range of diffusion MRI (dMRI) tract-based 
spatial statistics (TBSS) derived microstructural 
markers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. The significance of associations between IDP and non-IDP variables. The Manhattan plot shows all results for 453 IDPs 
against each of the 70 non-IDPs (31,710 values) adjusted for confounders: age, motion, and head size. Significance is plotted as -log 10 p-
values, arranged by non-IDPs on the x-axis, multiple testing thresholds across all pairwise associations are marked with a horizontal line 
(FWE: 5.8 x 10-5). IDPs are distinguished by plotting color to reflect the MRI modality and image processing tool used to estimate each 
measure. This created five IDP subdomains: 1) T1w global brain volume measures (normalized and unnormalized for head size) modelled 
by SIENAX (yellow), 2) T1w subcortical structures (shapes and volumes) modelled by FIRST (green), 3) T1w total grey matter volume 
within grey matter region-of-interests modelled by FAST (red), 4) T2w-FLAIR total volume of white matter hyperintensities modelled by 
BIANCA (pink), 5) dMRI estimates of diffusivity measures contained within 48 standard-space WM tract region-of-interests modelled by 
TBSS (blue). (Abbreviations: IQ-11, IQ-20, IQ-57, IQ-63  = general intelligence scores at ages 11, 20, 57, and 63; MOT = motor task; ME = 
mean error; ML = mean latency; PAL = paired associates learning; TE adjusted = total errors adjusted; TT Adjusted = total trials adjusted; 
PRM = pattern recognition memory; SD = standard deviation; CL = correct latency; RTI = reaction time task; MT = movement time; RT = 
reaction time; RVP = rapid visual processing task; MLB1-4 = mean latency block 1 to 4; SOC = Stockings of Cambridge task; Mean Initial TT 
5 Moves = mean initial total time 5 moves task; Mean Subse TT 5 Moves = mean subsequent thinking time 5 moves task; SRM = spatial 
recognition memory; TM = trail making task; SEP = social economic position; MDI = Major Depression Inventory; CBF = cerebral blood 
flow; PSQI = Pittsburgh Sleep Quality Index. 
 



www.aging-us.com 5951 AGING 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 4A and 4B visualize the importance of each 
subdomain in influencing the multivariate associations 
underpinning the significant CCA-mode. In brief, for 
each subdomain (x-axis), we compute the mean 
observed-variable-to-CCA-mode correlation across all 
variables in that subdomain. This value is plotted on the 
y-axis using units of correlation (r2). Specifically, the 
length of each bar represents that subdomain’s average 
importance – both positive (grey) and negative (black) – 
to the identified CCA-mode. Similar to the 
interpretation of post-hoc correlations in Figure 3A, in 
Figures 4A and 4B we invert the signs of both non-IDP 
and IDP measures where a lower value is indicative of a 
“positive” trait/marker and a higher value is 
representative of a “negative” trait/marker, such as in 
the case of DTI-derived indices MD, L1, L2, and L3, or 
cognitive tasks measuring reaction time or number of 
errors.  Thus, positive correlations between a given sub- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
domain and the CCA-mode represents categorially-
driven contributions from “positive” IDP and non-IDP 
markers, whilst negative correlations represent 
categorically-driven contributions pertaining to 
“negative” traits. With this in mind, the subdomains 
dominating the underlying CCA-based associations 
were identified as positive contributions from total brain 
tissue volume (r2=4.41%), GM volume of non-
cerebellum ROIs (r2=3.16%), subcortical structure 
volumes (r2=2.56%), and cognition (r2=3.24%). With 
regards to meaningful links between subdomains, our 
results identified a mode of population covariation that 
resembles the general intelligence g-factor (i.e., the 
observed commonality among observed mental abilities 
[77]) but which also includes a broad range of other 
non-cognitive variables describing traits related to 
biophysical, sociodemographic, lifestyle and health 
factors. In addition, the identified CCA mode largely 

Figure 2. The significance of associations between each cognitive measure and all (other) non-IDP variables. The 
Manhattan plot shows all results for 31 cognitive variables against each of the 39 (other) non-IDPs (1209 values) adjusted for 
confounders: age, motion, and head size. Significance is plotted as -log 10 p-values, arranged by cognitive variables on the x-axis, multiple 
testing thresholds across all pairwise associations are marked with a horizontal line, FWE top line and FDR bottom line (FWE threshold: 
4.38 x 10-4; FDR threshold: 3.82 x 10-3). All other non-IDPs are distinguished by plotting color (demographic = yellow, health = red, lifestyle 
= blue). (Abbreviations: IQ-11, IQ-20, IQ-57, IQ-63  = general intelligence scores at ages 11, 20, 57, and 63; MOT = motor task; ME = mean 
error; ML = mean latency; PAL = paired associates learning; TE adjusted = total errors adjusted; TT Adjusted = total trials adjusted; PRM = 
pattern recognition memory; SD = standard deviation; CL = correct latency; RTI = reaction time task; MT = movement time; RT = reaction 
time; RVP = rapid visual processing task; MLB1-4 = mean latency block 1 to 4; SOC = Stockings of Cambridge task; Mean Initial TT 5 Moves 
= mean initial total time 5 moves task; Mean Subse TT 5 Moves = mean subsequent thinking time 5 moves task; SRM = spatial recognition 
memory; TM = trail making task). 
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distinguishes between subject performance in the 
various measures included, allowing their relative 
contribution to the CCA-mode to be described as either 
positive or negative. In this regard, the identified mode 
can be represented by a “positive-negative” axis that 
links positive measures of cognitive performance to 
each other and to a meaningful pattern of other (non-
imaging) measures (e.g., better performance in cog-
nitive tests, higher educational attainment, regular 
physical activity, higher SEP vs measures of lower 
cognitive performance, lower education attainment, 
physical inactivity and poorer health status etc.).  
 
We explored the multivariate results in a number of 
ways to establish that the estimated CCA-mode was not 
unduly influenced by the EGD.  First, a scatterplot of 
the IDP and non-IDP canonical variates, with group 
membership indicated by plotting symbol, showed no   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

evidence of clustering (Supplementary Figure 9). Next, 
we computed post-hoc correlations for each subgroup 
separately. Here the subgroup analysis identified 
similarities in the top contributing IDP and non-IDP 
measures to the significant CCA-mode, Supplementary 
Table 2. Supplementary Figure 10 also presents a 
stratified version of the variance explained plots shown 
in Figure 4, again showing a generally similar pattern of 
contribution of each subdomain in the total, and two 
subgroups. Lastly, in order to further assess the CCA 
similarity in the subgroup analysis, we also provide a 
coefficient of factor congruence between groups for 
IDPs and non-IDPs. Here we identified a congruence 
value of 0.71 for non-IDPs and 0.75 for IDPs between 
groups. 
 
Table 6 presents the overlap between bivariate and 
multi-levels findings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3A. Top contributing non-IDP variables to CCA-mode. Individual non-IDP measures most strongly associated with the 
identified CCA-mode of population covariation. The CCA-derived weights visualized indicate how much each measured variable 
contributes to the significant CCA-mode i.e., the measure of the strength of involvement of an observed variable to the CCA-mode. Non-
IDPs are colored according to their assigned subdomains (cognition = green, demographic = yellow, health = red, lifestyle = blue).  The 
vertical position of each variable is related to the scale of the association of that specific measure with the identified CCA-mode. Font size 
is indicative of variance explained by the CCA-mode. Here we do not report variables that attain a correlation value between 0.2 to -0.2.  
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Figure 3B. Top contributing IDP variables to CCA-mode. Individual IDP measures most strongly associated with 
the CCA-mode of population covariation. The CCA-derived weights visualized indicate how much each measured 
variable contributes to the significant CCA-mode i.e., the measure of the strength of involvement of an observed 
variable to the CCA-mode. IDPs are colored according to their assigned subdomains: dMRI-TBSS = blue, T1w-FAST 
total grey matter volume within grey matter region-of-interests = red, T1w-FIRST subcortical structure volumes = 
green, T1w-SIENAX total brain tissue volume = yellow, T2w-FLAIR-BIANCA total volume of white matter 
hyperintensities = pink.  The vertical position of each variable is related to the scale of the association of that specific 
measure with the identified CCA-mode. Font size is indicative of variance explained by the CCA-mode. Here we do not 
report variables that attain a correlation value between 0.2 to -0.2. (Abbreviations: L = left, R = right, FA = fractional 
anisotropy, L1 = 1st eigenvalue, L2 = 2nd eigenvalue, L3, = 3rd eigenvalue, MD = mean diffusivity, MO = tensor mode).  
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Figure 4A. Importance of non-IDP subdomains to CCA-mode. Figure 4A visualizes the overall significance of non-IDP 
subdomains in influencing multivariate associations between each variable included in the measurement battery. For each 
subdomain (x-axis), the length of each bar represents the average subdomain importance (r2) to the CCA-mode. Categorically-
driven contributions from positive qualities or indicators are represented in grey, whilst contributions from negative traits are 
depicted in black. In this study, individual non-IDP measures derived from the subdomain cognition (3.24%) were the most important 
contributors to the CCA-mode of population covariation identified. (Abbreviations: Non-IDP = non-imaging derived phenotypes). 
 

Figure 4B. Importance of IDP subdomains to CCA-mode. Figure 4B visualizes the overall significance of IDP subdomains in 
influencing multivariate associations between each variable included in the measurement battery. For each subdomain (x-axis), the 
length of each bar represents the average subdomain importance (r2) to the CCA-mode. Categorically-driven contributions from 
positive qualities or indicators are represented in grey, whilst contributions from negative traits are depicted in black. In this study, 
individual measures derived from IDP subdomains total whole brain tissue volume (4.41%), GM volume of non-cerebellum ROIs 
(3.61%) and subcortical structure volumes (2.56%) were the most important contributors to the CCA-mode of population 
covariation identified. (Abbreviations: IDP = imaging derived phenotypes, GM = grey matter, WMH = white matter hyperintensity, 
FA = fractional anisotropy, L1 = 1st eigenvalue, L2 = 2nd eigenvalue, L3, = 3rd eigenvalue, MD = mean diffusivity, MO = tensor mode). 
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DISCUSSION 
 
This study identified significant associations that linked 
multiple measures of brain neurostructure to an 
extensive battery of behavioral measures derived from 
the MDBC-1953 dataset. Specifically, this battery 
includes measures from several cognition domains, 
demographic, health and lifestyle factors. The results 
indicate that variance is shared across many aspects of 
behavior, and that this covariation may be of 
importance to the variability observed in brain structure. 
Fundamentally, this finding offers a better under-
standing of the types of variability that may exist across 
healthy aging individuals, as well as the factors that 
may underlie the observed differences. Specifically, 
using post-hoc correlations, we mapped the original 
behavioral and brain-imaging measures onto the 
significant CCA-mode of population covariation. Here, 
we provide a measure of importance of each observed 
variable in maximizing the relation between multiple 
brain structural and behavioral variables. The results 
indicated that the CCA-based associations were driven 
largely by cognitive ability, early-life SEP, psychosocial 
factors, and whole brain (GM and WM)  tissue  volume.  
The ability to identify individual indicators that  may be 

of significance to the variability observed in healthy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

aging trajectories is extremely valuable to age-related 
biomarker research and warrants further invest-
tigation.  
 
Many aging studies apply statistical models that are 
unable to consider the cumulative effect of various 
lifespan experiences on an outcome variable of interest. 
As age-related change is a continuous process, studies 
focusing on specific candidate determinants (e.g. GM 
volume, BMI, smoking status, amyloid load) limit the 
possibility of discovering new and unforeseen relations. 
To avoid such partial interpretations and expand on 
what is currently known about differential aging 
trajectories, we employed CCA, a multivariate tech-
nique to seek patterns of covariation between two sets 
of measures – i.e. IDPs and non-IDPs - simultaneously. 
A strength of this approach is that it boosts power by 
implicating the full dataset to investigate our main aim - 
the relation of brain structural markers with a set of 
behavioral measures and to further evaluate these 
relations with respect to a broad range of modifiable 
risk and protective factors. Analogous to the positive-
negative mode previously identified in the HCP data 
[78, 79], we identified a single significant mode of 
population covariation largely linking multiple brain 

Table 5. List of significant univariate associations. 
A 
IDP NON-IDP  r p-uncorrected 
    

T1 GM ROI Early Adulthood IQ (BP Test)   
Volume of GM in Temporal 

Pole (R) 
IQ-20 0.38 6.73E-08 

dMRI Health 0.49 1.03E-06 
MO in Medial Lemniscus (L) Height (cm)   

    
B 
COGNITIVE MEASURE ALL (other) NON-IDPs r p-uncorrected 
    

Early Adulthood IQ (BP 
Test) 

Education    

IQ-20 No of years 0.53 1.98E-08 
Late Midlife IQ (IST) Education    

IQ-57 No of years 0.49 3.57E-07 
IQ-63 No of years 0.44 4.18E-06 

Global Cognitive Functioning Education    
ACE No of years 0.43 1.69E-05 

List of IDP-by-non-IDP (A) and cognition-by-all (other)-non-IDP (B) associations passing Bonferroni correction 
threshold extracted from Figure 1 (5% FWE: p-uncorrected < 5.80 x 10-5) and Figure 2 (5% FWE: p-uncorrected 
< 4.38 x 10-4) respectively. (Abbreviations: Non-IDP = non-image derived phenotype, IDP = image derived 
phenotype, BP Test = Børge Priens Test, IST = Intelligenz-Struktur Test 2000 R, GM = grey matter, ROI = 
region-of-interest, dMRI = diffusion Magnetic Resonance Imaging, R = right, L = left). 
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imaging markers to (other) behavioral measures (r= 
0.75, p-corrected = 0.01). Specifically, CCA coupled 
higher scores in general intelligence (IQ-20 and IQ-11), 
attention with working memory load (RVP), explicit 
verbal memory (15-Word Pairs Retention), global 
cognitive functioning (MMSE, ACE), executive 
functioning (SOC), reaction time (RTI), psychosocial 
well-being (MDI), self-reported prevalence of 
depression, and paternal SEP with larger total brain 
volume (GM and WM), larger volume of subcortical 
brain structures, and a range of WM microstructural 
brain indices.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To our knowledge, this work is the first to underscore 
psychosocial well-being and early-life conditions as 
significant contributors to the strength of brain and 
behavior associations observed in late-midlife. 
However, the discovery that individual variations in 
early-life SEP and psychosocial health may be most 
predictive of brain health and cognitive ability in later-
life is consistent with the concept of a socioeconomic 
gradient in health which reflects how the most 
disadvantaged groups are also those at increased risk of 
disease [80, 81]. Previous studies also highlighting the 
significance of social inequality in disease progression  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Subject selection process for current study from the 1953 Metropolit Danish Male Birth Cohort based 
on the “Extreme Group Design”. To avoid effects of extreme test scores, subjects with standardized residuals ±3 were 
omitted, defined as here as †. The final sample size for the current study includes n=193 subjects consisting of n=95 improvers 
and n=98 decliners in cognitive function from youth to late midlife. 
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and premature mortality have attributed their 
observations to unknown influences termed “psycho-
social factors” (i.e. hostility, depression, hopelessness), 
that act as mediators of SEP effects on later-life heath  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

outcome [12, 23, 82-86]. Furthermore, it has been 
suggested that many of these overlooked measures may 
act independently of common vascular risk factors 
(VRFs) and non-communicable diseases but are still   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. A revised conceptual model of the Scaffolding Theory of Aging and Cognition (STAC-r).  The original STAC model 
offered a theory that only accounted for individual variations in cognitive performance observed at one time point – later adulthood, with 
“aging” as the primary input to the model. In view of the latest developments within the field of aging research, the contribution of 
lifespan experiences (positive and negative) on later-life brain and cognitive health has led to a variant of the model that incorporates the 
cumulative effects of lifespan environmental and biological experiences on neurocognitive aging. In this adapted figure, we only present 
biomarkers and traits investigated in this study. Specifically, Figure 6 offers a pathway of how the additive bidirectional lifespan 
experiences may contribute to the differential age-related trajectories of health. We distinguish between influences that act to preserve 
neural integrity (“positive influences”) versus those that are implicated in its demise (“negative influences”). 
 
 

Table 6. Overlapping significant univariate and multivariate associations. 
 UNIVARIATE ANALYSIS (r) MULTIVARIATE ANALYSIS (r) 

NON-IDPs IDP CCA-Mode 
   
Intelligence Test (BP Test) Volume of GM in Temporal Pole CCA subject weights 

IQ-20 0.380 0.434 
   
List of corresponding significant associations identified by univariate methods (column 2), and post-hoc associations 
between the significant CCA-mode of population covariation and individual (observed) variables (column 3). 
(Abbreviations: BP Test= Børge Priens Test, GM = grey matter). 
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somehow ‘entangled’ within one’s SEP [82]. Finally, 
although smoking is a well-established risk factor for 
brain and cognitive decline [17, 23, 33, 87], this was not 
observed in our study sample. The lack of significant 
effects may be explained by our moderately sized 
sample, errors of measurement, or the cerebral and/or 
cognitive benefits of giving up smoking during 
adulthood [6]. Notably, as we do not quantify the 
number of previous smokers in this study, we remain 
cautious about inferring on the health benefits of 
smoking cessation on later-life health outcome. 
 
This study also identified top contributions from brain 
structural measures (i.e. brain biomarkers specifically 
important in maximizing the CCA-based associations) 
to cognitive performance that are in agreement with 
previous reports [8, 10, 37, 38, 56, 60, 64, 67, 76]. 
Specifically, we identified spatially diverse brain 
influences pertaining to temporal, frontal, occipital, 
forebrain volumes to variations in specific cognitive 
domains, verbal learning and memory, attention, 
reaction time, executive function, and global cognitive 
performance. Specifically, the strong contributions 
observed from the fronto-temporal cortices are in line 
with the idea of compensatory neural mechanisms that 
are recruited to provide additional support in response 
to age-related WM deterioration [10, 13, 15, 60, 67, 88]. 
As many cognitive abilities evidence of age-effects by 
early to late midlife [68], it is   plausible that the 
positive total brain volume contributions reflect 
neurostructural strategies that seek to maintain homeo-
static cognitive function in the face of age-related 
cognitive decline. This finding is also consistent with 
several other conceptual models of cognitive aging [69, 
88, 89]. However, although, these models pre-
dominantly describe functional recruitment in response 
to age-related neural insults, continuous task demands 
and functional deterioration, it has also been expanded 
to include structural changes and neurogenesis (e.g. in 
the study of structural changes in the hippocampi of 
London taxicab drivers [90]). Specifically, in this 
present study we identified a pattern of WM 
microstructure that was characterized by decreased 
directional coherence (i.e., decreased FA and MO), and 
increased mean diffusivity (increased MD, 𝜆𝜆ax, and 𝜆𝜆rad) 
in WM tracts that typically demonstrate increased 
vulnerability to age-effects (e.g. superior fronto-
occipital fasciculus (SFOF), the superior corona radiata, 
superior longitudinal fasciculus, body of the corpus 
callosum, crus fornicis and stria terminalis (FC/ST), and 
sagittal stratum [40, 91, 92].  Guided by prior research 
reporting histological-DTI relations, the WM diffusivity 
patterns observed are consistent with the “last in, first 
out” hypothesis and may reflect age-related neuro-
biological processes such as chronic WM degeneration, 

demyelination, secondary Wallerian degeneration, or 
gliosis [25]. 
 
In age- or disease-related neurodegeneration, increases 
in MD (a sensitive but unspecific marker of cellular 
degeneration) are commonly linked to reduced FA and 
MO (reflecting an overall decrease in WM tract 
organization). However, we note that our results did not 
always identify such patterns of relations. In fact, 
previous studies have suggested that the relationship 
between DTI-derived summary measures may be 
region-dependent, and may not, especially in the case of 
older adults or patient groups, uniformly link decreases 
in anisotropic diffusion to increases in mean diffusion 
[92]. Furthermore, we found that the component 
measures, 𝜆𝜆rad and 𝜆𝜆ax, demonstrated more extensive 
relations to non-IDP measures than their derivatives 
(FA, MO and MD). This finding has also been 
highlighted in previous studies where MD and other 
directional diffusivities, but not FA, presented strong 
relations to cognitive function [91]. In general, we 
found that the inclusion of component diffusivity 
measures serve as useful additional sources of 
information regarding WM integrity. However, we note 
that in regions of crossing fibers the interpretation of 
diffusion MRI measures should be made with respect to 
the underlying WM anatomy and the differential 
neuropathology of WM tracts [93]. The importance of 
this was demonstrated in an earlier imaging-study 
comparing changes in DTI-derived summary measures 
in areas of crossing fibres pertaining to data from 
Alzheimer disease (AD), MCI, and healthy aging 
subjects [93]. Specifically, this group discovered 
atypical increases in FA and MO in the MCI group 
compared to the healthy aging controls. Upon further 
examination using probabilistic tractography, they 
attributed the unusual rise in mode and fractional 
anisotropy to a region of crossing fibres in the centrum 
semiovale. Here, they found that the relative sparing of 
motor-related projection fibres that traverse the age-
sensitive cognitive-related association fibres of the 
superior longitudinal fasciculus (SLF) artificially 
inflated FA and MO in the direction of the newly 
assigned primary eigenvector. Specifically, this finding 
provides a plausible explanation for the unexpected 
increases in FA and MO in conditions where the 
opposite is expected (i.e. decreases in anisotropic 
diffusion in disease conditions), underscoring the 
importance of interpreting DTI measures with respect to 
the underling WM microstructure. Consistent with the 
findings of Douaud et al., we also discovered linked 
increases in FA and MO in brain regions where mean 
diffusivity measures were also increased. Considering 
the late-midlife age-range of participants – one where 
negative age-related effects on cognitive ability and 
brain structure are commonly observed [68] – it is most 
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likely that our findings also evidence very early 
pathogenic alterations of WM in complex brain regions 
such as crossing fibres. Similarly, we note that findings 
of increased FA and MO did not always extend to 
coupled increases in axial (𝜆𝜆ax = 𝜆𝜆1) and radial (𝜆𝜆rad = 
𝜆𝜆2,𝜆𝜆3) diffusivity as would be expected in a healthy 
study samples. However, as the interpretation of 
diffusion anisotropic indices – FA and MO – in regions 
of crossing fibres are extremely complicated, it is likely 
that the interpretation of eigenvalues is equally 
convoluted and warrants further investigation.  
 
Other factors that may explain the relations between 
variables that were in the opposite direction to what one 
would expect includes an insufficient lag time between 
changes in a brain biomarker, and their presumed effect 
on another variable(s). That is, the rate of effect of WM 
changes on a hypothesized effect variable (e.g., 
cognitive function) may not be instantaneous. In this 
case, future investigations that employ lead-lag analyses 
- using more than two assessments - are necessary to 
ensure that the observation interval harmonizes with the 
timing of the critical events. Alternatively, similar to 
findings from animal aging models [2], we also 
consider the possibility that the observed increases in 
regional brain volume may instead reflect pathological 
processes such as gliosis or defective elimination of by-
products [76], and not compensatory neural mecha-
nisms. In this regard, the link between positively 
contributing total brain volume measures and 
predominately negatively contributing dMRI indices 
would be largely explained. Lastly, previous studies 
have shown that the GM and WM contrast immediately 
below and above the WM surface is markedly reduced 
in healthy aging participants [94]. It is thus a possibility 
that methodological procedures concerning segmenta-
tion of brain tissue could have led to an overestimation 
of GM content and underestimation of WM content 
further accounting for the anti-correlation observed 
between the two tissues.  
 
Univariate IDP-by-non-IDP associations that survived 
correction for multiple testing were few; however, those 
identified were in agreement with previous studies that 
also linked better cognitive ability to dispersed brain 
patterns of regional influence [6, 9, 10, 17, 57, 62, 76, 
95-98]. Specifically, we found a positive association 
between GM volume of the temporal pole and 
performance in a test of intelligence measured at age 
~20 years (IQ-20). We also report a significant positive 
association between MO in the medial lemniscus and 
height. However, although previous studies have 
similarly identified a positive link between height and 
intact WM integrity [99], we also consider alternative 
interpretations that may have produced similar findings. 
Namely, as described in the case of [93], the observed 

co-localized increases in MO and FA in the medial 
lemniscus may indicate evidence of selective 
degeneration of secondary WM tracts which result in 
the “spared” fibers of this sub-region establishing a 
newly acclaimed primary eigenvector, and with it a 
misleading increase in both FA and MO  [40].  
 
We also identified few pairwise cognition-vs-all-
(other)-non-IDPs associations that survived thresholds 
for multiple testing. Of these, the results confirm the 
well-acknowledged positive relations between cognitive 
ability (measured by IQ tests at ages 20, 57 and 63 and 
Addenbrookes Cognitive Examination at age 57) and 
educational achievement [100]. Interestingly, the results 
also revealed a strong positive link between IQ and 
height. Previous studies that have similarly identified 
links between intelligence and height have indicated 
that height may be a useful proxy marker for adverse 
early-life conditions and increased later-life dementia 
risk [101, 102]. Although notably, the effect of genetic 
factors on height, IQ, and early life environmental 
conditions should also be considered. Finally, the 
results of validation tests regarding the effect of EGD 
on univariate associations showed the significant 
relations observed at the whole-group level were not 
driven by group average differences (and hence not by 
the extreme-group-design either). However, we found 
the whole-group associations were mainly represen-
tative of group A members – the “improvers” and not 
group B members – the “decliners”. Although a similar 
trend of relations does exist for group B members we 
speculate that at present the effect sizes do not meet the 
threshold for ‘discovery’.  
 
Next, we explored univariate IDP-by-non-IDP 
associations after adjusting for change in IQ pertaining 
to both early-life and late-midlife. We found that IDP-
non-IDP associations were largely unchanged when 
adjusting for the effect of C∆1 (IQ-57-IQ-20). 
However, adjusting for the effects of C∆2 (IQ-63-IQ-
57) and C∆3 (IQ-20-IQ-11) revealed modest changes, 
Supplementary Figure 7A-7B. As early life intelligence 
is reputed to – in part – drive many of the observed 
relations between a “variable X versus cognitive 
performance” – an example of reverse causation [9, 
103, 104] – we anticipated that adjusting for the effects 
of C∆3 may have attenuated or removed the significant 
relationship between IQ-20 and GM volume of the 
temporal pole. However, this was not observed, and the 
IQ-20-temporal-pole association remained significant. 
Conversely, we found that adjusting for the effects of 
C∆3 removed the association between height and MO in 
the medial lemniscus suggesting collinearity between 
C∆3 and one or more of the other measures in the 
model. As the association between height, brain and 
intelligence is largely attributed to shared genetic 



www.aging-us.com 5960 AGING 

influences [105], the present findings should not be 
directly interpreted as evidence for change in early-life 
intelligence or early-life conditions affecting the height-
brain relationship, but perhaps the effect of genetic 
factors that are interacting with change in cognitive 
function and/or environmental influences. Similarly, 
adjusting cognition-by-all-non-IDP correlations, Figure 
2, for the effects of C∆1 and C∆2 resulted in negligible 
changes. However, accounting for the effects of C∆3 
removed all prior significant correlations, Sup-
plementary Figure 7C. Here, our results indicate that 
early-life cognitive change may play a role in the 
positive association identified between general 
cognitive ability and education. However, similar to the 
significant IDP-non-IDP associations, there are 
numerous likely causes of the IQ and education 
achievement association which principally concern 
variation in genetic profiles, and shared and non-shared 
environmental factors - with the former influential in 
the link between IQ and education attainment, and the 
latter important in the differences between them [106].  
 
Notably, in this study we implemented two distinct 
methods for calculating cognitive change: 1. “raw 
difference scores” (RDS) formed by subtracting post-
test scores from pre-test scores and 2. “residualized 
change approach” (RCA) which differences the 
observed score at follow-up (i.e., IQ-57) from the 
predicted score X2 (e.g., X2 is predicted with a linear 
regression analysis of the follow-up score on the 
observed score at baseline (i.e., IQ-20)) to produce a X2 
residualized with respect to baseline. Specifically, the 
RDS approach was used to assess the effect of age-
related changes in IQ across distinct time periods on 
brain-behavior relations, whilst the latter, RCA, was 
used to determine the subjects selected for this present 
study. Despite the initial warnings against the use of 
change scores [107], it has since been demonstrated that 
in some cases, analysis of change scores may provide an 
equal or even superior approach to exploring change 
over time. Namely, in investigations that utilize a 
randomized multivariate pretest-posttest design, or in 
studies that are vulnerable to confounding by response-
shift effects (e.g. response contamination in self-report 
measures) [108, 109]. Nonetheless, we briefly list the 
main objections against the use of difference scores in 
exploring change over time: 1. Difference scores are 
based on “imperfectly” measured pre- and posttest 
scores [109]. This imperfect reliability is commonly 
attributed to varying learning, personal or environ-
mental influences that may affect the outcome measure 
at each sitting differentially. Thus, if difference scores 
are a combination of true change and change in any 
random error of measurement, the analysis of change 
scores may also be contaminated by these errors. 2. 
Raw differences tend to be (by construction) negatively 

correlated with baseline measures, potentially 
confounding the true relationship between the two 
measures of interest. 3. Raw difference scores are 
vulnerable to the well-known but poorly understood 
statistical artefact: regression toward the mean [110]. 
This phenomenon proposes that due to errors of 
measurement, an extreme score at baseline will be 
succeeded by a less extreme score at follow-up (i.e. one 
that is moving toward to the overall mean). Thus, 
difference scores originating from imperfectly observed 
measures will inherently provide an erroneous 
representation of “real” change, and 4. The discovery of 
spurious correlations that are due to active pre-existing 
differences at baseline [111]. 
 
Lastly, as the MDBC-1953 is a narrow-aged birth 
cohort, we are unable to compute moderation analyses 
to explore whether the significant relations identified in 
this study vary as a function of age, or if they 
demonstrate stability throughout the lifespan. However, 
a strength of the present study resides in its use of the 
EGD. That is, compared to traditional aging studies that 
are typically biased towards higher educated and better 
cognitively performing participants, the EGD increases 
the diversity in participant characteristics and with it the 
likelihood of discovering relations between variables 
that are more representative of the true population. 
Historically, the EGD – a common sampling procedure 
– has been used to accentuate statistical power of linear 
associations, facilitate the task of fitting a trend line to 
data, and reduce the costs associated with examining 
data from the full range of a variable [75]. In this 
specific study, the EGD was applied for two main 
reasons: First, to ensure that change in cognitive ability 
from early-adulthood to late midlife was sufficient to 
detect biological correlations. In this regard, the EGD is 
particularly useful in enhancing the variability in a 
measure of interest when only modest changes are 
expected – which is often the case in moderately sized, 
homogenous, healthy samples like the MDBC-1953. 
And second, by sampling subjects from the extremes of 
the change-in-IQ distribution we increased the cross-
subject variability in cognitive change and other related 
variables (e.g. education level, occupation complexity, 
levels of motivation) ensuring that our sample was not 
biased towards higher educated, better cognitively 
performing, and motivated participants. Crucially 
however, the EGD does not undermine the validity of 
statistical significance: if the selection variable or 
related variables truly explain no variance, nominal 
false positive rates will be obtained. The approach can, 
however, bias parameter estimates of the selection 
variable or linked variables. In view of this, we ran 
several validation tests to explore the extent to which 
using this approach may have biased our findings. 
However, the result of the validation tests indicated that 
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the significant relations observed at the whole-group 
level were not driven by group average differences (and 
hence not by the extreme-group-design either). 
Nevertheless, like all methods, the EGD is not without its 
own limitations, namely: artificial inflation of 
standardized effect sizes, power-enhancement for 
analyses of linear associations, increased vulnerability of 
extreme scores to the regression toward the mean 
phenomenon, low test-retest reliability, and un-suitability 
for testing nonlinear associations [75]. However, as the 
primary goal of this study was to detect brain-behavior 
relations and the extent to which they may be 
influenced by multiple, diverse aging-related covariates, 
we do not overstate the resultant effect-sizes, nor do we 
infer on how these relations may fluctuate over time. 
Rather, findings from this study can be used as a 
foundation for subsequent analyses exploring correlates 
of differential healthy aging trajectories. Furthermore, as 
the extant literature on healthy aging converge on 
findings that describe near linear declines in brain 
volume and cognitive ability we believe the limitation of 
the EGD to explore non-linear trends and associations 
therein is not a major shortcoming in this study.  
 
CONCLUSION  
 
With the pressing personal and economic challenges 
presented by “top heavy” societies, this study offers a 
valuable approach for discovering potential age-related 
markers of early brain and behavior changes. 
Specifically, using data from a homogenous lon-
gitudinal prospective study, we report significant 
associations that link broad-brush and specific brain and 
cognitive measures to each other and to a range of 
heterogeneous age-related covariates. Specifically, CCA 
identified individual variations in brain structural 
patterns that were not only significantly associated to 
each other but also related to individual differences in 
behavior. Future longitudinal studies using a larger 
sample size, > 2 measurement occasions, and a broader 
selection of potentially relevant age-related covariates 
(e.g. fMRI data [112], markers of oxidative stress [23], 
inflammatory processes [113], immuno-senescence 
[114], telomere attrition [115], hormonal dysregulation 
[10], and brain metabolites [10]) are likely to explain 
larger portions of the unexplained variance in healthy 
aging trajectories, ultimately improving early 
intervention targets and with it, the quality of life for 
older adults.  
 
MATERIALS AND METHODS 
 
Participants: extreme group design (n=1,985) 
 
Details regarding the subject selection criteria used for 
the imaging sub-study have been previously reported 

[112]. This study has also been registered at 
clinicaltrials.gov (NCT03290040). In summary, using 
youth and late midlife intelligence quotient (IQ) scores, 
subjects were selected based on their estimated change 
in mental ability as part of an “extreme group design” 
(EGD) [116]. Specifically, the two well-validated tests, 
the Børge Priens Test (BP) [117] and Intelligenz-
Struktur-Test 2000 R (IST) [118] were taken at ages 
~20 (IQ-20) and ~57 (IQ-57) respectively. The BP test 
was used as part of a military draft board assessment on 
a total of n=11,532 MDBC-1953 subjects, whilst the 
latter reassessment test, IST, was administered in 2009-
2011 by the Copenhagen Ageing and late midlife 
Biobank Project (CAMB) and included n=1,985 
members [14]. Both examinations comprise subtests 
that assess aspects of verbal and arithmetic intelligence 
(e.g. numerical series and verbal analogies), and thus 
are similarly structured and comparable. Since the 
cognitive change between these time-points was based 
on two different instruments, a change score was 
derived with a linear regression analysis of IQ-57 (IST-
2000 R) on IQ-20 (BP) using the whole population of 
1,985 CAMB subjects. IQ-20 explained R2=50.4% of 
variance in IQ-57 (beta=0.71, p<0.0001), and we used 
each subject’s standardized residual about the 
regression line as a measure of their change in IQ across 
time, Supplementary Figure 1. To avoid the effects of 
extreme test scores, subjects with absolute standardized 
residuals ±3 were omitted.  Finally, the remaining 
members were classified into two subgroups pertaining 
to the degree of cognitive change observed from early-
adulthood: subgroup A = improvers and subgroup B = 
decliners.  
 
Participants: present study (n=193) 
 
Acquisition of imaging and non-imaging data for this 
study was carried out in 2010-2013 (subject age 57±0.8 
years). During this period, a total number of n=552 
subjects were invited to participate, and of these, n=243 
accepted their invitation and proceeded to the data 
acquisition stage. Here, subjects suffering from alcohol 
or drug abuse comorbid with cognitive impairment, 
psychiatric or neurological disease, and contra-
indications to MRI were identified and eliminated from 
further investigation (n=36). Out of the remaining 
eligible respondents, a further 14 subjects were removed 
due to imaging-related contraindications or having T1-
weighted (T1w) structural brain images that were 
unusable, leaving a total of n=193 subjects data that 
were used in this present study (subgroup A: n=95; 
subgroup B: n=98), Figure 5. Although there was a 
small range of ages during data acquisition, in general 
we refer to the ages of participants as 11 (W-11), 20 
(W-20), 57 (W-57), and 63 (W-63) years. Data 
pertaining to W-63 (i.e. the second late-midlife data 
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sweep) includes both brain imaging and behavioral 
data and is subject to a subsequent report. This study 
was approved by the local ethical committee (De 
Videnskabsetiske Komiteer for Region Hovedstaden) 
and registered by the Danish Data Protection Agency. 
All participants provided written informed consent.  
 
Data 
 
Neuropsychological assessment 
An in-depth series of neuropsychological tests were 
administered on the same day as the brain-MRI acquis-
ition. Global cognitive function was assessed with the 
mini-mental state examination (MMSE) and 
Addenbrooke’s cognitive examination (ACE). The 
Cambridge Neuropsychological Test Automated Battery 
(CANTAB) was administered to evaluate cognitive 
ability across the following cognitive domains: learning 
and memory (spatial and pattern recognition, paired 
associates learning), executive function (planning), and 
attention and reaction time [119]. Furthermore, we 
include measures of intelligence acquired at W-11 (IQ-
11) and W-63 (IQ-63). IQ-11 was assessed using the 
Härnquist test battery and consists of three subtests 
evaluating spatial, numerical and verbal intelligence 
[120]. Similar, to IQ-57, IQ-63 was also assessed using 
the IST 2000R test at the latest 5-year late-midlife 
follow up. Although we are unaware of any studies that 
evaluate the validity of the Härnquist test, previous 
studies using subjects from the MDBC-1953 have 
reported strong correlations between measures of IQ-11, 
IQ-20 and IQ-57 [14]. Furthermore, the BP test has 
previously shown strong correlations with the Wechsler 
Adult Intelligence Scale [121]. In total, we include 31 
measures of cognitive performance. See Table 1 for a 
list of these variables and the study sample 
characteristics. 
 
Demographic, health and lifestyle assessment 
We evaluate the effect of environmental, lifestyle 
behaviors and biological factors, both positive and 
negative, on individual differences observed in brain 
structure and cognitive performance. These include: 
Major Depression Inventory (MDI) [122], Pittsburgh 
Sleep Quality Index (PSQI) [123], Multidimensional 
Fatigue Inventory (MFI-20) [124], and a range of 
demographic (social and biological), vascular risk 
factors (VRFs), general health and biological samples 
for biomarker analyses. In total, we report 39 measures 
of other (non-imaging) variables, which together with 
the neuropsychological data described above are 
referred to as non-imaging derived phenotypes (non-
IDPs) or behavioral data. Finally, to assist the 
interpretation of results, non-IDPs were divided into 
four subdomains: cognitive, demographic (social and 

biological), health and lifestyle. Tables 1-4 provide a 
list of these variables, how they were assessed and study 
sample characteristics. 
 
MRI data acquisition 
 
All subjects underwent whole-brain MRI scanning 
using a 3.0 T Philips Intera Achieva (Philips Medical 
Systems, Best, the Netherlands), with a 32-channel 
phased-array head coil. During resting conditions the 
following sequences were acquired in all participants: 1. 
anatomical high-resolution 3D T1-weighted (T1w) 
images using a gradient echo sequence (TR/TE = 
6.9/700 ms; flip angle = 9˚; voxel size = 1.1 x 1.1 x 1.1 
mm3), 2. T2-weighted (T2w) (TR/TE = 1300/12 ms; flip 
angle = 90˚, 32 slices, voxel size 1.8 x 1.8 x 9.5 mm), 3. 
T2w FLAIR (T2w-FLAIR) images (Fluid Attenuated 
Inversion Recovery) using turbo spin echo sequence 
(TR/TE = 11000/125 ms; flip angle = 90˚, 6 slices, 
voxel size = 0.45 x 0.45 x 4.5 mm), and 4. diffusion 
weighted images (dMRI) (TR/TE = 9729/55; matrix 
=112 x 110 x 60; voxel size = 2 x 2.04 x 2 mm3) 
utilizing a single spin-echo echo-planar imaging 
sequence. For each dMRI scan, 33 images were 
acquired: 1 image with no diffusion sensitization (b=0 
image), and 32 diffusion-weighted images (b = 
1000s/mm2). Using varying orthogonal views, all T1w, 
T2w, T2w-FLAIR and dMRI images were visually 
inspected in their raw state for bias field corruption, 
excessive motion, and other potential artifacts. Lastly, 
although not used in this study, the MRI protocol also 
includes task and resting functional MRI (fMRI) 
imaging. 
 
Image analysis pipeline  
 
In order to facilitate future meta-analyses and 
replication studies, we used the UKB image processing 
pipeline on our raw (non-processed) imaging data [125]. 
A strength of this pipeline is that it ameliorates the loss 
of statistical power by reducing the number of multiple 
comparisons made (compared with voxel-wise testing) 
and increasing signal-to-noise ratio (SNR) by replacing 
voxel-wise measures with ROI (region of interest) 
averages obtained through alignment to a standard 
coordinate system. For a detailed overview of the 
imaging pipeline see [126].  
 
In brief, we extracted 453 brain-imaging biomarkers 
(i.e., a parsimonious set of biologically meaningful 
measures derived from multiple imaging modalities) 
that best capture the differential aging processes and 
neuropathology observed in a healthy aging population. 
Subsequently, we categorized the extracted summary 
measures into 5 groups (T1w-SIENAX, T1w-FIRST, 
T1w-FAST, T2w-FLAIR-BIANCA, and dMRI-TBSS) 
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to reflect the MRI modality and image processing tool 
applied to estimate each measure, Table 7. Specifically, 
we used T1w structural data as the reference image to 
calculate cross-subject and cross-modality alignments 
required to process all other brain modalities. 
Additionally, T1w data is used to obtain estimates of 
both specific brain structures (primarily sub-cortically), 
and volumes of major tissue types of the whole brain 
(i.e., grey matter (GM), white matter (WM) and ventri-
cular cerebrospinal fluid (CSF)), which is subsequently 
used to provide robust biomarkers of global and local 
brain atrophy [95]. See Supplementary Material (“T1w 
Pipeline”) and Supplementary Figure 2 for further 
details.  Next, we use T2w-FLAIR imaging to derive 
estimates of focal hyperintensities in WM which are 
typically indicative of inflammatory disease, cerebro-
vascular pathology, demyelination, trauma, or other 
neural insults [36, 127]. We also use dMRI to provide 
an index of the density and structural integrity of WM  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

microstructure in vivo (e.g., neurites and axonal 
structures) based on the principle of random diffusion of 
water molecules within cellular compartments [40, 
128]. Specifically, it has been shown that dMRI may be 
able to measure changes in normal appearing WM 
(NAWM) before these can be identified using more 
traditional MRI techniques e.g. T1w or T2w [39, 76, 93, 
129]. Lastly, in a previous sub-study, phase contrast 
mapping (PCM) was utilized to measure volume flow in 
basilar and the internal carotid arteries. Here, total blood 
flow to brain size was normalized and used to derive 
mean global cerebral blood flow [112, 130]. For a 
detailed overview of the image processing pipeline refer 
to Supplementary Material and Figures 2-4.  
 
Statistical analysis  
 
To investigate whether brain IDPs contain relevant 
between-subject information pertaining to sets of other   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7. List of imaging-derived phenotypes (IDPs). 

MRI 
MODALITY 

PROCESSING TOOL FUNCTION DESCRIPTION N 

     
T1-w  
  
  
  
  

FAST (FRMIB’s Automated 
Segmentation Tool) 

Discrete and probabilistic 
segmentation of CSF, GM, & 
WM 

Total volume of GM of 
cerebellum and non-cerebellum 
ROIs using GM partial volume 
estimates from FAST* 

139 

       
FIRST (FRMIB’s Integrated 
Registration and Segmentation 
Tool) 

Subcortical GM structure 
segmentation 

Lateralised brain structures + 
brain stem  

15 

       
SIENAX Estimation of brain tissue volume 

(cross-sectional) 
Global brain tissue volume 
(unnormalized and normalized 
for head size) 

10 

     
T2-w 
(FLAIR)  

BIANCA (Brain Intensity 
Abnormality Classification 
Algorithm)  

Quantification of total WMH load  WMH load 1 

         
Diffusion  TBSS (Tract Based Spatial 

Statistics) 
Diffusivity estimates within 48 
major WM tracts 

Local diffusion properties 
reflecting integrity of 
microstructural WM tissue  

288 

TOTAL IDPS = 453 
     

List of imaging modalities and processing tools employed (column 1 and 2), followed by the corresponding function of each processing 
tool (column 3), description of the brain measure(s) extracted (column 4), and total number of IDPs estimated (column 5) using the UK 
Biobank (UKB) image-processing pipeline. (Abbreviations: FLAIR = fluid attenuated inversion recovery, CSF = cerebrospinal fluid, GM = 
grey matter, WM = white matter, WMH = white matter hyperintensity load, ROIs = regions-of-interest).  Total number of IDP measures 
included, n=453. *The 139 ROIs are defined by a combination of parcellations from the following atlases: Harvard Oxford cortical and 
subcortical atlases, and Diedrichsen cerebellar atlas, for further details see Supplementary Material “T1w Pipeline” and 
Supplementary Figure 2.  
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(non-imaging) MDBC-1953 variables, we used both 
univariate (Pearson correlations) and multivariate 
statistics (canonical correlation analysis (CCA) [131], 
both analyses adjusted for a number of confound 
variables. Figure 6 visualizes the selection of candidate 
determinants included in this study and a hypothesized 
pathway of how their additive bidirectional effects may 
lead to an alteration in brain and behavior. In this study, 
we distinguish between influences that may act to 
preserve neural integrity (positive influences) versus 
those that are implicated in its demise (negative 
influences).  
 
Whole-group adjusted univariate associations 
We applied Pearson’s correlations to study the relation 
between each of the 453 brain IDPs to each of the 70 
non-IDP variables and each of the 31 cognitive 
measures to each of the (other) 39 non-IDP variables 
extracted from the MDBC database (full set of IDP x 
non-IDP estimates: 453 x 70; full set of cognitive x all 
(other) non-IDP estimates: 31 x 39). The motivation 
behind this approach was to first identify significant 
simple pairwise associations between each brain and 
non-brain measure and each cognitive and other non-
IDP measure, before comparing these results to those 
from more complicated multivariate techniques account-
table for the synergistic effect of multiple variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In total, two variants of Manhattan plots are used to 
display the significance (-log10 P-values) of Pearson’s 
correlations for IDPs x non-IDPs (31,710 values) and 
cognition x all (other) non-IDPs (1209 values). 
 
To reduce the influence of potential outliers and 
increase the reliability of associations made, we applied 
rank-based inverse Gaussian transformation (quantile 
normalization) to enforce Gassianity for each of the 
IDPs, non-IDPs, and confound variables (see below). 
For feeding into CCA (but not needed for univariate 
associations), we then applied an iterative PCA 
algorithm (based on the soft shrinkage of eigenvalues) 
to impute missing data values until convergence [132]. 
Finally, four confound variables were created relating to 
effects that may trouble the interpretation of computed 
correlations: absolute motion during MRI, relative 
motion during MRI, head size, and age. The confounds 
were regressed out of all IDP and non-IDP variables. To 
account for multiplicity, we assessed the strength of 
significance against two different types of multiple 
testing correction, controlling the familywise error rate 
(FWE) via Bonferroni and the false discovery rate 
(FDR) [133]. However, as FDR correction did not 
identify any additional tests already marked significant 
by Bonferroni, Figure 1 and Supplementary Figure 7A-
7B only show Bonferroni correction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. Population continuum.  CCA estimates a “population continuum” of covariation across subjects that jointly 
characterizes brain imaging and other (non-imaging) data through a single axis. We can describe each subject’s relation to this axis 
by assessing the value and polarity assigned to their individual CCA-derived subject weight and further evaluating how this value is 
related to the observed IDP and non-IDP measures. In this example, subjects with negative subject weights are characterized by 
high total cholesterol levels and low total brain volume, whereas subjects assigned with positive subject weights are characterized 
by low total cholesterol levels and higher total brain volume. 
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Validation test: subgroup univariate associations 
In order to assess the impact of the EGD, we 
separately compute univariate associations between 
each IDP and non-IDP measure for subgroup A 
(“improvers”) and subgroup B (“decliners”) subjects. 
Each subanalysis should be free of any spurious 
associations driven by average group differences in 
cognitive level (i.e., an example of Simpson’s paradox 
[134], whereby suboptimal pooling across variables 
such as cognitive level can potentially generate 
misleading associations).  
 
Whole-group univariate associations: adjusted for 
change in IQ (C∆) 
We compute univariate associations between each IDP 
and non-IDP measure and between each cognitive and 
all (other) non-IDP measures after adjusting for change 
in normalized IQ score pertaining to cognitive tests 
administered during early-life, youth and late-midlife. 
Specifically, change in IQ was estimated using the raw 
difference score (RDS) approach (i.e. subtracting 
normalized post-test scores from normalized pre-test 
scores). Here we explore the effect of cognitive change 
on brain-behavior univariate relations with a specific 
focus on how individual differences in cognitive change 
may contribute to the brain-cognition relations observed 
in late-midlife. The three cognitive change variables 
estimated include: C∆1 = IQ-57 – IQ-20, C∆2 = IQ-63 
– IQ-57, and C∆3 = IQ-20 – IQ-11. 
 
Whole-group adjusted multivariate associations 
To capture patterns of age-associated relations in 
multiple IDP and non-IDP measures simultaneously we 
applied CCA (Figure 7).  
 
For the CCA, we adopted a similar approach as 
described previously [78, 125]. In short, CCA was 
computed (canoncorr; MATLAB 2014a) following the 
model: U = AX and V = BY; where X represents the set 
of IDPs, Y is the set of non-IDPs, and A and B are 
optimized to maximize the correlation between each 
canonical variate pair, U and V [131]. The magnitude of 
the relationship between each variate pair is reflected by 
the canonical correlation coefficient (Rc), an indicator of 
how strongly the estimate of population covariation is 
reflected in both IDP and non-IDPs datasets. Intuitively, 
we can think of CCA as identifying two latent variables, 
Ui and Vi, from a specific linear combination of 
weighted MRI-derived brain measures that are most 
strongly associated to a specific linear combination of 
weighted non-imaging measures, Supplementary Figure 
5A-5B. 
 
IDP and non-IDP datasets for CCA analysis were 
prepared using the procedure described in “Whole-
Group Adjusted Univariate Associations”. This resulted 

in a brain-IDP matrix of size 193 x 453 (subjects × 
IDPs) and a non-IDP matrix of size 193 × 70 (subjects x 
non-IDPs). Typically, these datasets are the inputs fed 
into the CCA algorithm. However, to reduce overfitting 
(i.e., tending towards a rank-deficient CCA solution), 
prior to CCA we separately reduced the dimensionality 
of each dataset using PCA. Specifically, after 
accounting for missing data as before, we compressed 
the size of each matrix along the respective phenotype 
dimension to the top 30 subject-eigenvectors which 
accounted for ~75% of the total variance in our datasets 
(70.1% for IDPs, 77.6% for non-IDPs). The final 
dimension of each matrix fed into CCA was therefore 
193 x 30 (subjects x PCA-derived components), with an 
output of 30 CCA modes estimated. 
 
Statistical significance of the modes estimated was 
determined using 10,000 permutations of rows of one 
matrix relative to another. CCA was then re-run after 
each permutation and the respective r-values for each 
permuted CCA mode was estimated. Each observed 
canonical correlation r is compared to the null per-
mutation distribution of the largest canonical correlation, 
creating family wise error p-values corrected for 
searching over all 30 canonical correlation dimensions. 
 
Post-hoc correlations 
To relate the CCA mode estimated back to the observed 
IDP and non-IDP variables, we perform post-hoc 
correlations. This is achieved by computing the 
correlation between each original (observed) variable 
and the CCA-derived canonical variate weights (U or 
V), Supplementary Figure 6. This approach is 
analogous to the computation of factor loadings in 
factor analysis, and are also known as canonical 
structure coefficients. Generally, variables with larger 
loadings indicate greater association with a CCA mode. 
Finally, to formally assess the degree of similarity in the 
CCA subgroup analysis, we provide a coefficient of 
factor congruence between groups (i.e. improvers vs 
decliners) for the IDPs and non-IDPs. 
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