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ABSTRACT Three Pseudomonas sp. strains isolated from marine sponges have
shown potential quorum sensing inhibition (QSI) activity. We sequenced the draft
genomes of the three strains with the goal of determining which genes or gene
cluster(s) could be potentially involved in the QSI activity. Average nucleotide iden-
tity (ANI) and phylogenetic analysis classified the three strains as belonging to the
Pseudomonas fluorescens species.

Pseudomonas is a Gram-negative bacterial genus belonging to the Gammaproteo-
bacteria class, whose members are known to colonize and survive in a wide range

of diverse environments, mainly due to inherent broad metabolic diversity (1, 2). This
bacterial genus encompasses different species involved in the degradation of xenobi-
otic compounds (3), human and plant pathogenesis (4, 5), and plant growth promotion
and biocontrol (6). Recently, the role of some Pseudomonas sp. strains in the inhibition
of quorum sensing (QS) signaling systems has been reported (7–9). Three Pseudomonas
sp. strains (B98C39, B98SK52, and B98SM8) were isolated from 2 different marine
sponges, belonging to the Hexactinellida class, that were collected off the west coast of
Ireland as part of a marine biodiscovery cruise in May 2010. The isolation of these
Pseudomonas sp. strains and their QS inhibition (QSI) activities were described previ-
ously (9). However, the genetic basis of the QSI activities remained unknown. Therefore,
in order to identify which genes or gene cluster(s) could potentially be involved in the
QSI activity, the draft genome sequencing of these strains was completed.

Overnight shaking cultures grown in lysogeny broth at 23°C for the three Pseu-
domonas sp. strains were used to perform total DNA isolation using the UltraClean
microbial DNA isolation kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA). DNA libraries
were prepared using a TruSeq exome library preparation kit. The draft genome se-
quencing was performed by the Beijing Genomics Institute (China) using the Illumina
HiSeq 2000 sequencing platform with paired-end reads and a read length of 90 bp for
B98C39. The HiSeq 4000 platform, with paired-end reads and a read length of 150 bp,
was used for B98SK52 and B98SM8. In order to obtain high-quality reads for assembly,
the FASTA/Q file manipulation tool readfq.v5 (10, 11) was used for quality trimming
using the same parameters as described previously (10). Thus, the high-quality-filtered
reads were all 90 bp in the case of B98C39 and 150 bp in the cases of B98SK52 and
B98SM8. The assembly of high-quality filtered reads was performed using SOPAdenovo
v2.04 with default parameters. Genome sequence annotation and gene identification
were carried out with the Rapid Annotations using Subsystems Technology (RAST) v2.0
server (using default parameters and RASTtk for the annotation scheme) (12, 13) and
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the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (using default parameters).
The main characteristics of the draft genome sequences obtained, including their
accession numbers, are summarized in Table 1.

Genome mining of the three strains identified orthologs of the quiP (14) and pvdQ
(15) genes, both of which encode acylase enzymes that were previously shown to

FIG 1 Phylogenetic analysis using the complete nucleotide sequences of the housekeeping genes gyrB and rpoD. Thirty-three Pseudomonas strains
belonging to the eight phylogenetic groups within the Pseudomonas fluorescens complex were used. Phylogenetic distribution was determined by
the maximum likelihood method and the Tamura-Nei model, with 100 bootstrap replicates, using MEGA7. The three Pseudomonas fluorescens strains
sequenced in this study are highlighted with gray boxes. The P. aeruginosa PAO1 strain was used as an outgroup. ANI values are represented as
percentages. According to previous work (20), the ANI value threshold for differentiating species in the Pseudomonas fluorescens complex is 85%.
Thus, an ANI value over 85% is considered to indicate the same species. The data for the strains used to generate this figure were
obtained from the NCBI database, with the following accession numbers: CP003041, CP007638, AHPN00000000, AHPP00000000,
CP006852, AM181176, AKXH00000000, UYXZ00000000, VFIL01000000, CP017687, BDAB00000000, CP049044, JYLB01000000, CP023466,
CP005960, NIWT01000000, NC_019670, LT629767, CP014947, LT629788, CP000094, LT629798, CP012680, CP003150, CP032358,
CP003190, CP031396, CP011110, CM001490, CM001559, and AE004091.
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control the QS system in Pseudomonas aeruginosa through the degradation of N-3-
oxododecanoyl-homoserine lactone. Furthermore, a nonribosomal peptide synthetase
secondary metabolite gene cluster was identified using antiSMASH bacterial version 5.0
(16); the cluster was related to the production of salicylic acid and pseudomonine
metabolites (17). Interestingly, salicylic acid was reported previously to inhibit the
production of N-acylhomoserine lactones in bacteria (18). Considering these results,
further in vitro investigations will be required to elucidate which enzymes or metabo-
lites could be involved in the QSI activity of these Pseudomonas sp. strains. Phylogenetic
analysis and pairwise ANI analysis using JSpeciesWS were performed (19) (Fig. 1). The
sequenced strains were classified as belonging to the species Pseudomonas fluorescens.

Data availability. The draft genome sequences discussed in this work have been
deposited at DDBJ/ENA/GenBank and the Sequence Read Archive (SRA). The corre-
sponding accession numbers are listed in Table 1.
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