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Pseudomonas chlororaphis EA105, a strain isolated from rice rhizosphere, has shown antagonistic activities against a rice fungal
pathogen, and could be important in defense against rice blast. We report the draft genome sequence of EA105, which is an esti-
mated size of 6.6 Mb.
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Pseudomonas chlororaphis strain EA105 was isolated from rice
cultivar M-104 and is capable of inhibiting growth of Magna-

porthe oryzae, the fungus responsible for rice blast, as well as re-
ducing disease in the rice plant with pretreatment (1). P. chlorora-
phis have been studied as biocontrol agents in tomatoes (2), canola
(3), and cocoyam roots (4); several strains exhibit antifungal ac-
tivities to protect plants from pathogens (2, 4–6), while others
induce systemic resistance in their host (7, 8). Pseudomonas spe-
cies are well suited for use as biocontrol agents due to the range of
secondary metabolites they produce (5, 9). Biocontrol provides a
safer alternative to chemical pesticides for crop protection (10).
Analysis of this genome will help provide insight into the mecha-
nisms underlying biocontrol activity by EA105, including produc-
tion of antifungal compounds, and systems by which EA105 in-
teracts with pathogens and its plant host.

Genomic DNA was isolated from P. chlororaphis EA105 using
the Wizard Genomic DNA purification kit (Promega). The
genomic library was prepared using a Nextera XT sequencing li-
brary preparation kit (Illumina). Sequencing was carried out at
Tufts University Genomics Core using a MiSeq genome sequencer
(Illumina), which generated 3,188,442 2 � 250 bp paired end
reads. The genome was assembled using CLC v7.5, producing 74
contigs ranging in size from 506 to 829,175 bp. The assembled
genome had 121-fold coverage, with an N50 scaffold size of
183,112 bp.

The draft genome sequence of P. chlororaphis EA105 consists of
6,595,581 bp, with a G�C content of 59.2%. Annotation was per-
formed using the NCBI PGAP pipeline, which predicted 5,655
protein-coding sequences and 53 tRNAs. The 5S, 16S, and 23S
rRNA genes were detected, but because the assembly is based on
short reads, the numbers and locations of multiple copies could
not be determined. An initial analysis of the genome sequence for
genes related to antifungal activity and interactions with other
species revealed a cluster of genes putatively involved in synthesis
of hydrogen cyanide (HCN) in contig 20 (11), but unlike other
P. chlororaphis strains (2, 6, 8, 12, 13), we did not find genes spec-

ifying pyrrolnitrin or phenazine (14, 15), nor did we find evidence
of the ability to produce two other well-known biocontrol metab-
olites pyoluteorin or 2,4-DAPG (16, 17). Clusters of genes associ-
ated with type VI secretion structural components were found on
contigs 2 and 24, similar to Pseudomonas aeruginosa PAO1’s locus
1-type and locus 4A-type, respectively (18). We also found nu-
merous hits to putative type VI secretion system effectors from a
variety of Pseudomonas species, including some clustered with the
structural components in contigs 2 and 24. This genome sequence
will enable further comparative genomic studies among P. chloro-
raphis strains and facilitate genetic and transcriptomic analysis of
the plant protection capability of P. chlororaphis EA105.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession no. JSFK00000000. The version described in this
paper is version JSFK01000000.
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