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Physically interacting proteins form macromolecule complexes that drive diverse cellular processes.
Advances in experimental techniques that capture interactions between proteins provide us with pro-
tein–protein interaction (PPI) networks from several model organisms. These datasets have enabled
the prediction and other computational analyses of protein complexes. Here we provide a systematic
review of the state-of-the-art algorithms for protein complex prediction from PPI networks proposed
in the past two decades. The existing approaches that solve this problem are categorized into three
groups, including: cluster-quality-based, node affinity-based, and network embedding-based approaches,
and we compare and contrast the advantages and disadvantages. We further include a comparative anal-
ysis by computing the performance of eighteen methods based on twelve well-established performance
measures on four widely used benchmark protein–protein interaction networks. Finally, the limitations
and drawbacks of both, current data and approaches, along with the potential solutions in this field are
discussed, with emphasis on the points that pave the way for future research efforts in this field.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Proteins are essential components of all living organisms and
are composed of a polypeptide chain of amino acids that translates
information encoded in genes. The three-dimensional shape of a
protein is described by its tertiary structure. The protein ternary
structure enables specific chemical groups to be placed at exact
positions in a three-dimensional space, leading to particular enzy-
matic functions and other important structural, transport, and reg-
ulatory functions in an organism [29]. However, most proteins do
not function as a single entity. Instead, they often interact with
other proteins to form large macromolecules that coordinate and
perform diverse molecular functions within the cell [75,100].

Protein-protein interactions (PPI) have different structural char-
acteristics which are related to their physiological function and
evolution [67]. If an interaction occurs between two or more iden-
tical polypeptide chains, it is referred to as a homo-oligomeric
complex. In contrast, if the interaction involves two or more non-
identical chains, it leads to a hetero-oligomeric complex [56]. In
addition to composition, other types of complexes are distinguish-
able according to whether they are obligate or non-obligate. In a
non-obligate complex, a protein forms a stable well-folded struc-
ture without any assistance from other proteins. However, some
proteins cannot make a stable well-folded structure themselves
and form protein complexes to stabilize the constituent proteins,
leading to obligate protein complexes [2].

Furthermore, protein complexes can be grouped into transient
and permanent based on their lifespan. The PPIs of transient com-
plexes are established and resolved transiently, whereas the PPIs of
permanent complexes are stable. Interestingly, most obligate pro-
tein complexes are also permanent; however, the non-obligate
complexes can be permanent or transient [2]. For instance, hemo-
globin is an important permanent protein complex composed of
four globular protein subunits [65]. In multicellular organisms,
cells must communicate with other cells by forming transient pro-
tein complexes, e.g. during cell signaling to transfer information
[20]. It is important to note that not all PPIs and protein complexes
fall into distinct categories.

Proteins are often involved in more than one complex in differ-
ent subcellular compartments and biological processes. Therefore,
it is important to accurately identified protein complexes to under-
stand not only protein complex formations but also the higher-
level cellular organization [25]. Several techniques are available
to determine protein complexes, which can be categorized into:
(i) experimental and (ii) computational techniques. Tandem Affin-
ity Purification and Mass Spectrometry (TAP-MS) [70] is one of the
most commonly used experimental methods to reveal a global
map of the complexome (i.e. the set of protein complexes in a cell)
for different species [42,33]. Nevertheless, the protein complexes
from TAP-MS are incomplete and reliable only to a certain degree
due to the in-built technical biases [25]. The advent of high-
throughput techniques, such as: yeast two-hybrid (Y2H) [96] and
affinity purification mass spectrometry (AP-MS), have facilitated
the assembly of genome-wide protein–protein interaction (PPI)
data for several model organisms [34,68]). These datasets have
enabled the study and identification of protein complexes compu-
tationally, through mapping interaction data into network repre-
sentations. In these networks, individual proteins serve as nodes
and their interactions as edges [26,98]. It should be noted that
the current state-of-the-art high-throughput techniques produce
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a considerable proportion of spurious interactions, which results
in false-positive as well as false-negative interactions in PPI net-
works [85,6]. Therefore, computational approaches should con-
sider the effect of noisiness and incompleteness of PPI data to
enable the prediction of more accurate protein complexes. To con-
sider the effect of false-positive interactions, the quality of PPIs
needs to be assessed by assigning a confidence score (i.e. affinity)
to each interaction that reflects the reliability of the inferred inter-
actions [17–18,44]. The interactions with low confidence values
may, in turn, be discarded in subsequent analyses. On the other
hand, link prediction algorithms [40,10] and different local and
global network topological metrics can be employed to score
false-negative interactions and insert the high-scored ones to the
original PPI networks as a result [59].

Although experimental data contain biological and technical
noise, that may lead to false-positive and false-negative interac-
tions, several computational approaches have been proposed to
moderate these limitations by efficiently analyzing a large amount
of data to predict protein complexes. Consequently, several surveys
[77,15,88,97] have reviewed and summarized existing computa-
tional approaches by comparing and evaluating their performance
on available PPI networks. While these studies cover only
approaches until 2016, with this review, we aim to systematically
compare and contrast the state-of-the-art approaches that have
been proposed within the last two decades, from 2002 until 2022.

In this study, before going through the current approaches, we
first introduce important terminologies in this field. We then pro-
vide a comprehensive and updated review of various state-of-the-
art computational methods in the field of protein complex identi-
fication. The computational methods are organized into three cat-
egories, namely: (i) cluster-quality-based methods, (ii) node-
affinity-based methods, and (iii) network embedding methods
(see Fig. 1). Furthermore, we will discuss the advantages and disad-
vantages of the methods in these three categories, followed by an
evaluation of the performance of 18 state-of-the-art approaches
from the three categories on four PPI networks. Finally, the bottle-
neck problems and their potential solutions in this important field
will be discussed.

2. Graph-theoretic concepts

Let G ¼ ðV ; EÞ be a simple graph with a set of nodes V and edges
E. A weighted graph G ¼ ðV ; E;wÞ is a graph, in which each edge is
assigned a weight, specified by the function w : E ! Rþ, that quan-
tifies the affinity for interactions between the two end nodes (i.e.
proteins). Graph G is connected if there is a path between every
pair of nodes; otherwise, it is disconnected. Nodes u and v are
neighbors if there is an edge between them. An adjacency matrix
is a squared matrix such that its elements indicate whether pairs
of nodes are neighbors or not in the graph. The nodes in a line
graph of a graph G corresponds to the edges of G; the nodes in
the line graph are adjacent if the corresponding edges in G are adja-
cent. A graph G is complete (i.e. clique) if for every pair of nodes
u;v 2 V in the graph, there exists an edge ðu; vÞ. A graph is called
bipartite if the node set can be divided into two disjoint partitions
M and N, such that every edge connects a node in M to one in N. A
complete bipartite graph (i.e. biclique) is a special kind of bipartite
graph where every node of M is connected to every node of N with
an edge. A biclique spanned graph is a biclique that may include
additional edges between the nodes in each partition. The density



Fig. 1. Categories of the network clustering algorithm used in the protein complex prediction with PPI networks. The network clustering algorithms require as input
either only a PPI network (methods in black color) or both on PPI network and biological information (methods in red color). Regardless of the input, the existing network
clustering algorithms with applications to complex prediction can be divided into three categories, namely: node affinity-based, cluster quality-based, and network
embedding-based methods. For each category, several examples are given and explained in this review. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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of a graph G indicates to what extent G differs from a clique; this is
quantified by the ratio of the number of edges in G and the maxi-
mum possible number of edges in the graph on the same number
of nodes. The shortest path is a path between two nodes in a graph
for which the sum of edge weights between two nodes is
minimized.
3. PPI networks and gold standards of protein complexes

There are already several databases of PPIs across differentmodel
organisms. However, it is worth noting that regardless of which
technique is used, the molecular interaction data may contain arti-
facts due to their design [93], multiple stages of washing in their
purification step [47], or the cell lysis step [80,74], to name a few.

The Database of Interacting Proteins (DIP) [90] collects experi-
mentally verified PPIs from scientific articles for different species.
A general repository for interaction datasets (BioGRID) [78] is
another database that is similar to DIP and includes interactions
through comprehensive curation of experimentally reported PPIs.
On the other hand, the STRING database [79] integrates both,
experimentally and computationally reported PPIs and assigns a
score to an interaction based on available evidence.

There exist other datasets that are species-specific and for sim-
plicity, these PPI networks are just named after the corresponding
Table 1
Summary of protein–protein interaction networks.

Name Version / update date Sp

DIP [90] 5/Feb/2017 A
BioGRID [78] 4.4.206 A
STRING [79] 11.5 A
Babu [5] 27/Nov/2017 E.
Cong [19] 12/Jul/2019 E.
Collins [17–18] Mar/2007 S.
Gavin [24] Jan/2006 S.
Krogan [42] Marc/2006 S.
PIPs [52] v1.1 H
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first author. Gavin [24], Collins [17–18], Krogan Core, and Krogan
Extended [42] are commonly used as PPI networks for S. cerevisiae.
These PPI networks are edge-weighted and were obtained experi-
mentally. The weights (in the range between zero and one) denote
the reliability of each interaction. The interaction weights in the
Collins PPI network are based on the purification enrichment score,
while in the Gavin PPI network, the weight indicates the socio-
affinity index which calculates the log-odds of how many times
pairs of proteins are observed together as preys, or bait and prey
in the network. The interactions in the Krogan PPI network are
weighted based on the integration of mass spectrometry scores.
Moreover, Babu [5] and Cong [19] are two E. coli PPI networks.
The former is obtained experimentally from affinity purification
mass spectrometry (AP-MS), while the latter contains interactions
that are predicted by utilizing evolutionary signatures in protein
sequence and structure. Finally, PIPs [52] is a database of predicted
H. sapiens PPI networks based on a naïve Bayes classifier [72]. The
key graph-theoretic properties of the aforementioned PPI networks
can be found in Table 1.

Besides PPI networks, different sets of protein complexes are
available as gold standards. CYC2008 [66], an update to the Munich
Information Centre for Protein Sequences (MIPS) catalog [54], and
complexes derived from the Saccharomyces Genome Database
(SGD) [31] are the most common protein complex reference sets
for S. cerevisiae. These contain protein complexes that are verified
ecies #Proteins #Interactions

ll 28,255 76,881
ll 80,939 1,191,174
ll 67.6 mio >20 bln
coli 2,045 12,801
coli 1,476 1,618
cerevisiae 1,622 9,074
cerevisiae 1,855 7,669
cerevisiae 6,380 21,440
. sapiens 5,751 79,441



Table 2
Summary of protein complex gold standards.

Name Species #Proteins #Complexes #Complexes � 3

CYC2008 [66] S. cerevisiae 1,627 408 236
SGD [31] S. cerevisiae 1,279 323 238
CORUM [27] H. sapiens 4,479 4,274 2,783
EcoCyc [37] E. coli 749 299 181
Met [40] E. coli 475 206 118

S. Omranian, Z. Nikoloski and D.G. Grimm Computational and Structural Biotechnology Journal 20 (2022) 2699–2712
in small-scale experiments. Furthermore, CORUM [27] provides a
reference set of manually annotated protein complexes frommam-
malian organisms. Finally, the EcoCyc [37] and Metabolic (Met)
[40] reference sets include manually curated protein complexes
and complexes based on genome-scale metabolic networks,
respectively. An overview of different gold standards of protein
complexes is shown in Table 2.
4. Computational prediction of protein complexes from PPI
networks

Several computational approaches have been developed to
identify the underlying protein complexes and functional modules
in PPI networks. They arise as a complementary tool next to exper-
imental techniques to enhance the existing recourses and knowl-
edge by finding novel protein interactions and complexes.
However, due to the highlighted limitations of experimental
screens, the performance of computational approaches is
restricted. These limitations convey three main challenges of com-
putational methods for protein complex predicton: (1) difficulties
in detecting sparse complexes; (2) difficulties in detecting small
complexes constituting of two or three proteins; (3) difficulties
Fig. 2. Categories of computational approaches to detect protein complexes. Node a
based approaches cast the protein complex prediction as an optimization problem on PPI
both categories. The network embedding-based approaches predict protein complexes, fi
between pairs of node vectors. Lastly, they utilize any network clustering algorithms to
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in detecting overlapping complexes, i.e. the complexes that share
one or many proteins [76]. Moreover, most of the existing
approaches depend on several parameters, which complicate the
interpretation of the predicted protein complexes. The latter is
due to the need to identify the best parameter values for every
combination of PPI networks, gold standards, and performance
measures (see Section 5 ‘‘Evaluation metrics”)—a challenging and
practically infeasible task. Consequently, different values for the
parameters may result in different sets of predicted protein
complexes.

The computational approaches can be categorized in several
ways. Some methods rely solely on PPI networks, whereas others
depend on additional biological information. The methods in the
latter category, such as Dense neighborhood Extraction using

Connectivity conFidence Features (DECAFF) [46] and
Restricted Neighborhood Search Clustering (RNSC) [39],
utilize functional information and gene ontology data to predict
protein complexes. The methods that use the network topology
to find densely connected components are known as community
detection methods or graph clustering algorithms in graph theory.
Further, graph clustering algorithms can be organized into three
subcategories according to their methodology: (i) node affinity-
ffinity-based approaches use different node scoring methods, while cluster quality-
networks. However, the next steps to find protein complexes are almost the same for
rst by transforming each node to a vector, which is followed by finding similarities
find protein complexes.



Table 3
Overview of computational approaches for prediction of protein complexes from PPI networks. The current state-of-the-art methods are divided into three categories: node-
affinity, cluster-quality, and network embedding-based approaches. The input of each method is shown in the second column. A link to the public implementation of each method
(if available) along with the year of publication is given in the third column. Other properties such as the number of parameters, the capability of the method to use edge-weights
or to predict overlapping protein complexes are given in the last three columns, respectively.

Category Biological
Knowledge/data

Method –
Website

Feature(s)

Node Affinity-based
approaches

� MCL [2002] MCL has 2 parameters and utilizes edge weights. It detects non-overlapping clusters. The size
of the clusters depends on the inflation parameter.

MCODE [2003] MCODE depends on 5 parameters and does not utilize the edge weights. By setting the fluff
parameter, it can detect overlapping clusters. The predicted clusters are of high density.
MCODE is unable to find sparse clusters.

CFinder [2006] CFinder has 2 parameters and employs edge weights. The predicted clusters have a clique
topology. CFinder detects overlapping clusters, while it is unable to find sparse ones.

AP [2007] AP has 1 parameter, that affects the cluster formation, and it does not use edge weights. It
detects non-overlapping and dense clusters.

CMC [2009] CMC has 2 parameters and employs edge weights. The clusters have a clique topology. CMC is
unable to find sparse clusters. The size of the clusters depends on the parameters. CMC can
detect overlapping clusters.

PEWCC [2013] PEWCC has 2 parameters and uses edge weight. It deals with false-positive interactions by
introducing a PE-score, while it does not consider the effect of false-negative ones. PEWCC
detects highly overlapped and repetitive clusters.

ProRank + [2014] ProRank + has 2 parameters and employs edge weights. It considers the effect of false-
positive interactions but not the false-negative ones. ProRank + detects overlapping clusters.

DPC-NADPIN
[2016]

DPC-NADPIN has 2 parameters and does not utilize edge weights. It incorporates gene
expression data to create a dynamic PPI network. It is unable to predict small clusters. DPC-
NADPIN detects overlapping clusters.

idenPC-MIIP
[2020]

idenPC-MIIP has 2 parameters and employs edge weights. It considers the effect of false-
positive interactions by calculating MIIP-score. idenPC-MIIP can detect overlapping clusters.

Microarray data
DMSP [2007] DMSP depends on 2 parameters. It considers the effect of false-positive edges by calculating

the gene-expression similarity between pairs of protein. DMSP can predict non-overlapping
clusters.

Cluster quality-based
approaches

� miPALM [2010] miPALM has 2 parameters and assigns edge-weights. It detects dense clusters and is unable
to predict small and sparse clusters. miPALM predicts overlapping clusters; however, it does
not consider the effect of false-positive and false-negative interactions.

ClusterOne
[2012]

ClusterOne has 3 parameters and it utilizes edge weights. It is unable to find small and sparse
clusters. ClusterOne predicts overlapping clusters; however, it does not consider the effect of
false-negative interactions.

Core&Peel [2016] Core&Peel depends on 3 parameters and it uses the edge weights. It predicts dense
complexes. The size and density of the clusters depends on 2 parameters. Core&Peel can
detect overlapping clusters; however, it does not consider the effect of false-negative
interactions.

IMHRC [2017] IMHRC has 5 parameters and it employs edge weights. It is unable to find small and sparse
clusters. IMHRC can detect overlapping clusters; however, it does not consider the effect of
false-negative interactions.

PC2P [2020] PC2P is a parameter-free algorithm. It can detect small and large as well as sparse and dense
clusters. However, it does not utilize edge weights, but can detects non-overlapping clusters.

CC [2021] CC is a parameter-free approach. It can detect small and large as well as sparse and dense
clusters. However, it does not utilize edge weights, and can detect non-overlapping clusters.

OCC [2021] OCC is a parameter-free approach. It can detect small and large as well as sparse and dense
clusters. Although it does not utilize edge weights, it can detect overlapping clusters.

WCC [2021] WCC is a parameter-free approach. It can detect small and large as well as sparse and dense
clusters. While it utilizes edge weights, it can detect non-overlapping clusters.

OWCC [2021] OWCC is a parameter-free approach that uses edge weights. It can detects small and large as
well as sparse and dense clusters. OWCC detects overlapping clusters, however it does not
consider the effect of false-negative interactions.

CUBCO [2022] CUBCO is a parameter-free approach that uses edge weights. It can detect small and large as
well as sparse and dense clusters. CUBCO considers the effect of false-negative as well as
false-positive interactions; however, it cannot detect overlapping clusters.

Functional
homogeneity

RNSC [2004] RNSC depends on 7 parameters and it does not consider edge weights. RNSC is a randomized
algorithm and in each round, it generates different clusters. It is highly dependent on the
initial clusters and it is unable to detect overlapping clusters.

Network embedding-based
approaches

� CPNM [2020] CPNM has 6 parameters and uses edge weights. It finds non-overlapping clusters. CPNM
detects dense clusters and not sparse ones.

DPCMNE [2021] DPCMNE is dependent on 5 parameters and uses the edge weights. It is not able to detect
sparse clusters, but it can detect overlapping clusters.

Gene Ontology GANE [2018] GANE has 3 parameters and it utilizes edge weights. While it cannot detect sparse clusters, it
is able to predict overlapping clusters.
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based methods; (ii) cluster quality-based methods, and (iii) net-
work embedding methods (Fig. 2, Table 3).

5. Node affinity-based methods

Node affinity-based approaches consider the inherent relation-
ship among nodes during the process of identifying clusters. The
2703
clusters are generated from seeds and expanded by nodes in their
neighbor with a high affinity score.

The Markov CLustering algorithm (MCL) is one of the most
widely used graph clustering algorithms [22]. The MCL simulates a
flow in PPI networks using two steps: expansion and inflation. The
expansion parameter allows the flow to connect different regions
of the graph, whereas the inflation parameter is used for strength-
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ening and weakening the flow that tunes the granularity of the
clusters. Therefore, the size of the clusters is highly dependent
on the inflation parameter. The algorithm repeats the expansion
and inflation procedure until convergence and then the PPI net-
work is partitioned into non-overlapping clusters.

The Molecular COmplex DEtection (MCODE) method is a
heuristic approach and works based on local neighbor densities
[7]. It has three main steps: (1) node scoring, (2) molecular com-
plex prediction, and (3) post-processing. In the first step, it assigns
a score to each node based on the density of the node neighbor-
hood. Next, starting from a node with the highest score, a protein
complex is grown iteratively. The depth limit parameter controls
how far the growth should be continued to form a protein complex,
while the vertex weight percentage parameter regulates the score
differences between nodes within the complex. Finally, MCODE
has two post-processing steps: fluffing and haircut. In the former,
the complex will be expanded by other nodes that interact with
many nodes of the same complex. In the latter one, the nodes with
only a single interaction with the rest of the nodes in the complex
will be removed. By setting the fluff parameter, the MCODE can
also detect overlapping clusters.

The CFinder algorithm is based on the clique percolation
method [1]. CFinder finds all k-cliques of the original network in
which k is an adjustable parameter, such that the larger the value
of k, the higher the stringency during the identification of dense
groups. As a result, smaller clusters with higher intra-cluster den-
sity are detected and the algorithm constructs a k-clique accessibil-
ity graph in which two k-cliques are adjacent if they share exactly
k� 1 nodes. From the connected component of the k-clique acces-
sibility graph, CFinder detects the overlapping clusters. Further-
more, an intensity threshold I is introduced to include only the
cliques whose product of edge weights products is greater than
the threshold in the k-clique accessibility graph.

The Affinity Propagation algorithm (AP) finds clusters
based on a random walk and passing messages between nodes
[23]. A so-called preference parameter controls the likelihood of
each node to be selected as an exemplar (i.e. representative of a
cluster) by exchanging real-valued messages between all nodes.
Next, the nodes are grouped with their most representative exem-
plar. Finally, the messages are exchanged between nodes itera-
tively until the algorithm converges and finds the high-quality
group of exemplars and corresponding non-overlapping clusters.

The Detect Module from Seed Protein (DMSP) integrates
PPI networks and microarray data to predict protein complexes
[51]. It first assigns weights to the edges in the network based on
gene-expression similarities of the given pair of proteins by utiliz-
ing a fuzzy c-means algorithm [60]. Then, DMSP starts with a seed
protein and extends it by its most promising neighbors, which is
called a ‘‘kernel”. This augmentation is based on multiple criteria,
such as the number of neighbors, the weight of each connection,
and the final subgraph. Finally, the kernel is expanded iteratively
by adding its adjacent neighbors based on the same criteria and
an extra one. The new criteria indicates that a kernel can be aug-
mented by its adjacent neighbor, u, only if the u weight is less or
equal to a specific percentage of the weighted degree of a given
kernel.

The Clustering based on Maximal Clique (CMC) is another
clique percolation-based algorithm [45], where CMC finds the
maximal clique instead of detecting k-clique in the CFinder algo-
rithm. CMC utilizes an iterative edge scoring method to weigh
the interactions, which indicates the reliability of the protein inter-
actions. It enumerates all maximal cliques in the network followed
by a series of merging highly overlapped cliques to obtain the final
complexes. The CMC has two parameters: overlap threshold and
merging threshold. The overlap threshold determines when two
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cliques are highly overlapped, whereas the merge threshold deci-
des how to proceed with the two highly overlapping cliques: the
two cliques will be merged if the density of the overlapping part
is greater than the merge threshold, otherwise the smaller clique
will be discarded. The identified clusters have only clique topology,
and their size is highly dependent on the parameters.

The PEWCC consists of two steps: pre-processing and finding
protein complexes based on a local clustering coefficient [99].
Due to the availability of false-positive interactions in PPI net-
works, the PEWCC calculates the PE-score for each interaction
and removes the edges with a reliability score lower than a given
threshold r. The PE-score is calculated based on the probability that
the neighboring nodes of the interacting proteins do not support
the interaction between the two proteins. Next, the PEWCC calcu-
lates the clustering coefficient for each node and removes the
nodes with the lowest degree until a core complex with three
nodes is identified. This procedure is followed by expanding the
core complex by nodes that interact with more than a given
threshold of t% of the core nodes. Although PEWCC takes the nois-
iness of the PPI networks into account, it detects highly overlapped
and repetitive clusters.

The ProRank+ is based on a ranking algorithm and has several
steps, including pruning, filtering, ranking, finding protein com-
plexes, and post-processing [30]. The pruning stage assigns a score
to the interactions based on AdjustCD [45], a weighting procedure
that iteratively calculates a score for each edge based on topologi-
cal structure. The interactions with a score less than a given
threshold are discarded. Next, ProRank + filters the proteins that
act as a bridge, have a sparse neighborhood, and have at least
one neighbor with significantly fewer interactions with other pro-
teins. In the next step, the proteins are ordered decreasingly based
on the ranking procedure. The protein complexes are formed by
grouping the high-ranked proteins (i.e. essential proteins) and
their neighbors as a cluster. The algorithm utilizes a merging
threshold parameter to merge the protein complexes that share
several essential proteins beyond a given threshold. Although
ProRank + might remove false-positive edges, it does not consider
false-negative edges.

The Discovering Protein Complexes based on Neighbor

Affinity and Dynamic Protein Interaction Network (DPC-
NADPIN) is a neighbor affinity-based algorithm [73]. The algorithm
starts by ordering the nodes according to their local clustering
coefficient. Next, nodes with clustering coefficient scores higher
than a given threshold Tc , including their neighbors, initiate the
core complexes. The procedure continues by expanding the clus-
ters with their neighboring nodes per their neighbor affinity score.
The expansion continues iteratively such that each time the neigh-
bor node with the highest neighboring affinity score will be added
to the corresponding cluster. The procedure terminates when the
extension level reaches a recommended threshold of Tg . The final
protein complex set is obtained after removing redundant clusters.
Finding protein complex process in DPC-NADPIN does not define
how to distinguish between protein complexes and functional
modules dynamically. However, they integrate gene expression
data with the PPI network to build dynamic PPI networks and then
apply their algorithm to each temporal PPI network.

The identify Protein Complexes from weighted PPI net-

works using Mutual Important Interacting Partner rela-

tion (idenPC-MIIP) [89] predicts protein complexes in three steps.
First, it finds MIIP for each node by defining mutually important
neighbors on the weighted network. The parameter a is used to
show to what extent the two neighbor proteins are mutually
important to each other. Next, the seed node is a node with the
highest degree, and all its MIIPs have formed a cluster c. In several
rounds, the cluster c is expanded by its neighboring proteins based
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on specific rules, depending on whether the added protein is con-
nected to the seed until there are no more proteins to be added.
This is then identified as a cluster, and the procedure continues
with the node of the next highest degree which does not belong
to any of the generated clusters. Finally, the algorithm removes
the clusters that are included in others or have only one node,
and two clusters are merged if their overlap score is higher than
the given threshold.

5.1. Cluster quality-based methods

The cluster quality-based approaches define a quality function
and detect the clusters such that the maximum quality is obtained.
The clusters are formed from different seeds via iteratively adding
or removing nodes to gain their optimal quality.

The Restricted Neighborhood Search Clustering (RNSC)
algorithm identifies protein complexes based on two cost functions
and the algorithm has two main steps, (i) clustering and (ii) filter-
ing clusters based on their functional similarity [39]. To predict
protein complexes, RNSC starts with (random) clusters provided
by the user as an input. The algorithm utilizes a naive cost function
(simple integer-valued cost function) in the few initial steps. To
refine the clusters, in each round, RNSC randomly moves nodes
between clusters to improve the cost function. In the further steps,
the algorithm upgrades to use a scaled cost function (more expres-
sive real-valued cost function) until convergence. Finally, the clus-
ters with size, density, and functional homogeneity lower than the
given thresholds will be removed. Since RNSC is randomized, it
returns different clusters in different executions.

The Module Inference by Parametric Local Modularity

(miPALM) algorithm [101] combines the parametric local modular-
ity measure and a greedy search to identify protein complexes.
First, miPALM assigns weights to all interactions based on the
number of common neighbors and node degrees. It then enumer-
ates all triangles followed by ranking them based on triangle
weights obtained by averaging pair-wise edge weights. Next, the
miPALM repeatedly merges the top-ranked triangle with its imme-
diate neighbor to maximize the local modularity until no addi-
tional neighbor leads to an increase in the local modularity. This
procedure is then continued with a new top-ranked triangle.
miPALM has two parameters a and d; the former controls the back-
ground neighborhood size around a candidate complex, and the
latter checks the density of the candidate complex. Finally, the
small complexes are removed from the final set. The algorithm
detects overlapping clusters, however it does not consider the
effect of false-positive and false-negative interactions.

The Clustering with Overlapping Neighborhood Expan-

sion (ClusterOne) algorithm aims to detect clusters with high
cohesiveness [55]. The algorithm consists of three main steps.
ClusterOne, iteratively, starts from a seed node with the highest
degree. Then, a greedy procedure adds or removes nodes to detect
clusters with high cohesiveness. Since the procedure for adding
and removing nodes starts from multiple nodes, there is a possibil-
ity of finding overlapping clusters. In the second step, the algo-
rithm quantifies the extent of overlap between pairs of clusters
and merges them, where the overlap score is higher than a speci-
fied threshold. The overlap score calculates the number of common
nodes between pairs of clusters to the power of two divided by the
product of the total number of nodes in both clusters. Finally, the
algorithm discards the clusters with a density below a given
threshold or containing less than three nodes. ClusterOne incorpo-
rates the reliability of the protein interactions in its algorithm, and
it finds overlapping clusters. However, it does not account for the
effect of false-negative interactions, and it only predicts dense
clusters.
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The Core&Peel method [63] attempts to maximize the density
of obtained clusters. In the initial phase, the algorithm computes
the core decomposition of an original network where each node
belongs to a maximal connected subgraph that all nodes have a
degree of at least k. A node with the highest k-core is then selected
as a seed. The induced subgraph of a selected node along with its
neighbors, who are part of the same or greater k-core, should sat-
isfy two criteria: the number of nodes in this subgraph should be
greater than a pre-defined threshold q and have a density higher
than a given value d. Next, the peeling process iteratively removes
nodes with a minimum degree until the density of the cluster is
above or equal to the user-defined d or the number of nodes drops
below the threshold q. The final cluster set will be obtained after
eliminating duplicates as well as clusters completely embedded
in other clusters. The Core&Peel can detect overlapping clusters
while it does not consider the noisiness of PPI networks in its
algorithm.

The Inter-Module Hub Removal Clustering (IMHRC) algo-
rithm identifies clusters based on the cohesiveness cluster quality
measure in four steps [48]. The algorithm removes the top b% of
the nodes with the highest degree (hub nodes) to eliminate false-
positive interactions. In the second step, IMHRC predicts protein
complexes with the same greedy procedure as ClusterOne accom-
plishes. The algorithm continues by inserting the top c% of the
removed hub nodes into clusters and checks whether adding them
to the primary clusters will increase the cohesiveness quality mea-
sure or not. Next, the clusters with significant overlap above the
specified threshold are merged. In the final stage, the clusters with
a density below a fixed value (of 0.3) or consisting of fewer than
three nodes are discarded. The IMHRC performs closely to Clus-
terOne since the procedure of finding the protein complexes from
PPI networks is identical.

The last three approaches in this category, namely: Protein

Complexes from Coherent Partition (PC2P) [58], Greedy

Clustering Coefficient and its Variants (GCC-v) [57],
and minimum CUt to detect Biclique spanned subgraphs

as protein COmplexes (CUBCO) [59], formalize the protein com-
plexes as biclique spanned subgraphs to include both sparse and
dense complexes. As a result, they resolve the issues with commu-
nity density and size observed in existing approaches. Moreover,
these approaches cast the problem of protein complex prediction
as a network partitioning into biclique spanned subgraphs, which
is equivalent to the coherent network partition (CNP) problem
[3]. The optimum CNP is obtained by removing a minimum num-
ber of edges that results in a network partition into biclique
spanned subgraphs. This is shown to be an NP-hard problem
[3,4]. Thereby, the three approaches are based on parameter-free
greedy heuristics (without provable approximation ratios for gen-
eral graphs) that identify (sub)-optimal CNPs. Each method is
explained in detail in the following.

Given a graph G, PC2P [58] determines a score for every node u
that quantifies the quality of a biclique spanned subgraph in the
second neighborhood of u, denoted by N2ðuÞ. Then, it selects the
node with the smallest score and removes the biclique spanned
subgraph in N2ðuÞ from the graph as the first complex. The proce-
dure is repeated as long as there are connected components in G.

GCC-v [57] is a family of greedy algorithms based on the con-
cept of clustering coefficient and line graph. Given a graph G, the
greedy algorithm determines a score for every node based on the
clustering coefficient. Depending on whether the unweighted or
weighted clustering coefficient is used to calculate the score for
the nodes in the original or the line graph, the four different vari-
ants are obtained, namely: (i) clustering coefficient (CC), (ii)
weighted clustering coefficient (WCC), (iii) overlapping clustering
coefficient (OCC), and (iv) overlapping weighted clustering
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coefficient (OWCC). The greedy algorithm selects a node with the
highest score and removes its neighbors along with the node itself
from the graph. The next step updates the score of the nodes in the
first neighborhood of the nodes in the identified cluster. This pro-
cedure is repeated as long as there are connected components in G.

Unlike the two previous approaches based on local graph prop-
erties, CUBCO [59] utilizes global properties to partition the net-
work into biclique spanned subgraphs. The local algorithms
utilize the local node properties, such as their first and second
neighborhoods. In contrast, the algorithms based on global proper-
ties explore the whole graph at once. CUBCO iteratively finds the
biclique spanned subgraph in a given graph G in three steps: (i)

determine the complement of a graph G, i.e., G
�
, (ii) assign weights

to the edges in G
�
based on the degree-normalized number of paths

of length three between the endpoint nodes of an edge in original
graph G; (iii) iteratively find the global minimum cut of the edge-

weighted graph G
�

until all resulting components are biclique
spanned.
5.2. Network embedding-based methods

Network embedding transforms nodes of a given graph G into a
low dimensional space while preserving the structure and node/
edge attribute affinity of the graph. In doing so, node similarity
in the embedding space aims to provide a good approximation of
the node similarity in the original graph. Therefore, it is important
to find a mapping function f to transform the nodes into a d-
dimensional space. After embedding, the new node space can be
used with conventional machine learning methods as an input to
solve several network analysis tasks, such as network clustering,
link prediction, node classification, and network visualization
[92]. There exist several mapping functions with a focus on pre-
serving the topological structure of the original graph, such as
DeepWalk [64], node2vec [28], and LINE [81]. There are other map-
ping functions, which try to preserve both topological structure
and node/edge attribute affinity, such as MMDW [84], TADW
[95], and AANE [32]. In general, the network embedding-based
approaches first find the vector representation of nodes in low
dimensional space. Next, they find the pair-wise similarity
between the node vectors that are connected with an edge in the
original network to make a new weighted adjacency matrix. Sec-
ond, they use any clustering algorithm that considers the edge
weight to predict protein complexes.

The GANE algorithm predicts protein complexes based on Gene
Ontology (GO) attributed network embeddings [91]. The algorithm
detects protein complexes using two main steps: (1) it transforms
each protein to a vector representation by using a GO attributed
PPI network via accelerated attributed network embedding (AANE)
[32] mapping function. Hence, it preserves both the topological
structure and node/edge attribute affinity of the graph. Then, it
generates a weighted adjacency matrix based on the similarity of
vector representations for each pair of nodes; (2) it utilizes a
core-attachment structure to predict protein complexes. For this
reason, the candidate cores are generated by using the clique min-
ing method, and the core candidates are then ranked based on their
densities on the weighted adjacency matrix. The attachments of a
seed core are selected if the correlation score of a neighbor protein
is larger than a given threshold h. Finally, GANE returns the seed
core and its attachments as a predicted protein complex.

The Complex Prediction algorithm based on Network

Motif (CPNM) [62] predicts protein complexes through the
embedding of network motifs. The algorithm has two main steps.
First, it starts by finding network motifs followed by defining the
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role of each protein in every identified motif. The role of a protein
is quantified by its degree in the PPI network. Therefore, two pro-
teins are considered similar if they have the same role in different
network motifs. With this, CPNM introduces a role matrix R with
size n�m, where n is the number of proteins and m is the number
of different roles, in which each entry rij illustrates the number of
times the i th protein plays role j. Then, the feature matrix is
obtained by concatenating all role matrices from all the network
motifs and is then normalized. Each row of the normalized feature
matrix and its summation are referred to as NMVector and
NMWeight. In the second step, the CPNM procedure receives the
original PPI network, NMVector, and NMWeight as input argu-
ments to predict protein complexes by a neighborhood search
approach. Therefore, CPNM selects a seed node and iteratively adds
neighboring nodes based on three constraints: (1) the attached
node should be the neighbor of the nodes in the complex, (2) the
Manhattan distance between the NMVector of two nodes should
be the lowest between all the adjacent nodes, and (3) by augment-
ing a complex with a node, the average weight of the complex
should not be lower than the predefined threshold.

Detecting Protein Complexes from protein-protein

interaction networks via Multi-level Network Embed-

ding (DPCMNE) [53] detects protein complexes by utilizing
multi-level network embeddings, which preserves global as well
as local topological information. The DPCMNE method hierarchi-
cally compresses the PPI network by adopting the Louvain cluster-
ing algorithm [9] to obtain multi-level smaller PPI networks
G0;G1; � � � ;GL. Then, DPCMNE employs DeepWalk [64] to every
compressed PPI network to generate protein embeddings
H0;H1; � � � ;HL. The final embedding of each protein is obtained by
concatenating the embeddings from all compressed PPI networks.
The pairwise cosine similarity of the interacted protein vectors is
calculated to obtain the new weighted adjacency matrix of the
original PPI network. In the next step, DPCMNE uses a similar
approach to the GANE method to predict protein complexes based
on the core-attachment structure. Therefore, it first finds all the
cores and ranks them based on their densities, which considers
the local and global properties. Then, it selects a core with the
highest score as a core seed to augment it with suitable attachment
proteins by calculating a connectivity function. The neighbor pro-
tein will be attached to the core seed if its connectivity score is
greater than a given threshold k. Finally, DPCMNE returns the core
seed and its attachment as a predicted protein complex.

6. Evaluation metrics

There exist twelve well-established metrics to evaluate the per-
formance of protein complex prediction approaches by comparing
the reference protein complexes from gold standards with pre-
dicted complexes, that is sensitivity, positive predictive value,
accuracy, separation [12], fraction match, maximum matching
ratio [55], precision, recall, and F-measure [45], as well as preci-
sion+, recall+, and F-measure+ [49]. Each of these metrics has its
advantages and disadvantages which are critically assessed in [49].

Let R ¼ fr1; r2; � � � ; rng and P ¼ fp1; p2; � � � ; pmg be the set of refer-
ence and predicted protein complexes, respectively. A contingency
table T is constructed with n rows representing complexes in R,
and m columns denoting predicted complexes in P. The entry ti;j
represents the number of shared proteins between ri and pj. The
positive predictive value (PPV), sensitivity (SN), accuracy (ACC),
and separation (SEP) are defined as:

PPV ¼
P

j max
i

ðti;jÞP
j

P
iti;j

; ð1Þ
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SN ¼
P

i max
j

ðti;jÞP
iti;j

; ð2Þ

ACC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PPV � SN

p
; ð3Þ

SEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nm

X
i

X
j
ðti;j
t:j

� ti;j
t:i
Þ �

X
j

X
i
ðti;j
t:j

� ti;j
t:i
Þ

s
: ð4Þ

The overlap score between the pair of protein sets ri and pj is
given by [7]:

OS ri;pj

� � ¼ jri \ pjj2
jrijjpjj

: ð5Þ

If OS ri; pj

� � � h, ri and pj match to each other. The value of h is
varied in different studies. For instance, in [55], the h value is set
to 0.25 while in [77] is equal to 0.5.

The fraction match (FRM) calculates the ratio of matched pre-
dicted protein complexes to the number of reference complexes.
The maximummatching ratio (MMR) is based on a bipartite graph,
in which the vertices in each partition correspond to reference and
predicted protein complexes, individually, and the edges are
weighted by the overlap score between the two partitions. Then,
MMR is given by the ratio of the sum of the weight of the maximal
matching edges to the number of reference complexes.

The precision, recall, and F-measure are based on the matched
predicted protein complexes and defined as:

Precision ¼ pi 2 Pj9rj 2 R;pimatchesrj
�� ��

Pj j ; ð6Þ

Recall ¼ ri 2 Rj9pj 2 P;pjmatchesri
�� ��

Rj j ; ð7Þ

F �measure ¼ 2� Precision� Recall
Precisionþ Recall

: ð8Þ

The precision+ and recall+ are given by Nþ
P
Pj j and

Nþ
r
Rj j , respectively.

Whereby, Nþ
P and Nþ

r are defined as:

Nþ
P ¼ fpi 2 Pj9rj 2 R;OSðpi; rjÞ � h; ðpi; rjÞ 2 MatchðP;R; hÞg�� ��; ð9Þ

Nþ
r ¼ frj 2 Rj9pi 2 P;OSðpi; rjÞ � h; ðpi; rÞ 2 MatchðP;R; hÞg

��� ���: ð10Þ

The MatchðP;R; hÞ function obtains the set of edges by employ-
ing a maximum non-weighted matching algorithm on the bipartite
graph that has reference complexes on one side and the matched
predicted complexes on the other side. The F-measure+ is calcu-
lated the same way as the original F-measure but with precision+

and recall+.
To summarize the twelve performance measures and to enable

its visualizations, two composite scores are defined. The first com-
posite score is given by the sum over MMR, FRM, SEP, ACC, F-
measure [55,13,87,55,55,59], and the second one is the sum over
MMR and F-measure+ across different threshold values 0 � h � 1
[49,59,55,59].

To further evaluate the predicted protein complexes concerning
biological relevance, two different types of analyses can be per-
formed, that is: Over Representation Analysis (ORA) [11] and GO
semantic similarity [35]. GO is a hierarchical controlled biological
vocabulary that estimates the functional similarity of gene prod-
ucts, relating to three categories: (i) Molecular Function (MF), (ii)
Biological Process (BP), and (iii) Cellular Component (CC).

ORA is one of the commonly used approaches to determine
whether a set of genes, i.e. proteins in a predicted protein complex,
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is overrepresented by known biological functions or processes
more than what we expected by chance. To this end, the p-value
is calculated by hypergeometric distribution as follows:

p� value ¼ 1�
Xk�1

i¼0

Fj j
i

� �
Vj j� Fj j
Cj j�i

� �
Vj j
Cj j

� � ; ð11Þ

Where V contains all proteins in the PPI network, F is a func-
tional group with annotated genes, and C is a predicted protein
complex that includes k proteins. The smallest p-value is selected
over all possible functional groups for each predicted protein com-
plex. Therefore, lower ORA indicates that the predicted protein
complex is enriched by proteins from the same functional group,
hence, it is more likely to be a true protein complex. By defining
a threshold on the statistical significance level one can count the
number of overrepresented predicted protein complexes whose
ORA value is lower than a given threshold to evaluate and compare
different algorithms. Although ORA is a well-established approach,
it suffers from several shortcomings. ORA is determined by the
assumption of gene-gene independence, while this is not valid bio-
logically [61]. Moreover, ORA depends on a set of differentially
expressed genes as input where all genes are treated equally irre-
spective of their magnitude of differential expression [38]. Finally,
determining an arbitrary threshold might affect the downstream
analysis result [50].

The GO semantic similarity [16] determines the functional sim-
ilarity of two given proteins based on two different measurements:
(i) information content-based (IC) and (ii) graph-based. The IC-
based approaches calculate the semantic similarity based on the
information content of their closest common ancestor, i.e., most
informative common ancestor (MICA). The Resnik [69], Rel [71],
Lin [43], and Jiang [35] methods are IC-based approaches, to name
a few. The graph-based methods determine semantic similarity by
employing the topological structure of the GO graph. One of the
widely used methods in this category is the Wang method [86].
Regardless of which category is employed, the GO semantic simi-
larity is determined for all pairs of proteins in every predicted pro-
tein complex for different categories of GO individually. The final
value for each complex can be obtained by calculating the mini-
mum, maximum, or median of its whole pairs. The distribution
of the GO semantic similarity overall predicted protein complexes
can be used to compare different approaches. This assessment can
support the hypothesis that a protein complex includes proteins
with similar molecular functions and involved in the same cellular
component. Despite the popularity of the GO semantic similarity
approaches, they suffer from limitations, such as not being able
to handle identical annotations, and similar to ORA, show strong
bias toward well-annotated proteins [94].

The ORA and GO semantic analyses have their advantages and
disadvantages. Both analyses evaluate the predicted protein com-
plexes biologically and give an overview of how each computational
approach performs regarding biological significance. However, the
required information to calculate them is limited. The number of
predicted protein complexes and the number of proteins in each
of them can affect the two measurements. In [57], the distributions
of GO semantic similarity of three GO categories are computed and
shown for predicted protein complexes across several network
clustering algorithms. This investigation suggests that the
approaches detecting a smaller number of protein complexes illus-
trate narrower distributions for GO semantic similarities.

6.1. Biological relevance of protein complexes in the available gold
standards

Here, we analyzed the biological significance of complexes in
the gold standards of three species, E. coli, S. cerevisiae, and H. sapi-
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ens, by calculating the median GO semantic similarity of their ref-
erence complexes. It is expected that the reference complexes
would achieve high semantic similarity values; however, this is
not the case. In the case of E. coli, the number of proteins, protein
complexes, and protein complexes with more than three proteins
is lower in the gold standard of metabolic protein complexes than
Ecocyc, by � 57%, �45%, �53%, respectively. As a result, Ecocyc
contains larger protein complexes and covers more proteins than
Metabolic protein complexes.

In S. cerevisiae, the CYC2008 and SGD gold standards contain
almost the same number of protein complexes with more than
three proteins, SGD includes two complexes fewer than CYC2008.
The number of proteins and protein complexes is smaller in SGD
compared with CYC2008 by � 27%, and � 26%, respectively.

The GO semantic similarity across BP and MF categories of GO
in H. sapiens is less than the other two species, on average
by � 23% and � 36%, respectively, and on average in GO:CC, H.
Sapiens shows semantic similarity value close to that in the other
two species. To compare between categories of GO, it appears that
data on GO:CC is more incomplete than the other two categories in
E. Coli and S. cerevisiae. While GO:BP obtains better values in E. Coli
and S. cerevisiae and is comparable with GO:CC in H. sapiens (Fig. 3).

We further extend the analysis by providing the estimates for
the expected values of three categories of GO semantic similarity
across the three species when applied to randomized complex sets.
In order to randomize a complex set while maintaining the size
distribution of the complexes, first, a list of proteins for each gold
standard is created by joining all reference complexes. To this
end, the list is shuffled based on the Fisher-Yates shuffle [21],
and divided into random complexes such that the size of the orig-
inal reference complexes is preserved. The value of median GO
semantic similarity of three categories is computed for the gener-
ated random sets. Finally, this procedure is repeated 50 times, to
estimate the expected GO semantic similarity value for each cate-
Fig. 3. GO semantic similarity analysis of protein complexes of gold standards. The
with the randomly generated complexes from altogether five gold standards for three sp
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gory. We estimated these values for each gold standard across
three species (Fig. 3). We concluded that the median of the GO
semantic similarity over randomized gold standards is lower than
the median obtained from the protein complexes in gold standards,
in each of the three species. More specifically, for both gold stan-
dards of E. Coli, on average, the median GO semantic similarity of
expected value is lower by � 43.5%, �13%, and � 30.5% than the
median GO semantic similarity of true complexes for three cate-
gories, BP, CC, and MF, respectively. In the case of S. cerevisiae, on
average, the median GO semantic similarity of the expected value
of BP, CC, MF is lower by � 57.5%, �47.5, and � 74% than the med-
ian GO semantic similarity of reference complexes of CYC2008 and
SGD. Lastly, for H. sapiens, the expected GO semantic similarity val-
ues are only lower by � 38%, �28%, and � 26% than the corre-
sponding values for reference complexes in the CORUM,
concerning BP, CC, and MF, respectively.
7. Comparative evaluation of protein complex prediction
methods

Here, we compared the performance of eighteen state-of-the-
art approaches for protein complex prediction of which eight
belong to node affinity-based, nine to cluster quality-based, and
one to network embedding approaches. To facilitate a fair compar-
ison, the approaches are selected based on two criteria, (i) the pub-
lic availability of executable code and implementations and (ii)
that the method does not rely on any additional biological knowl-
edge or data. Therefore, MCL [22]), MCODE [7], CFinder [1], AP [23],
CMC [45], PEWCC [99], Prorank+ [30], and DPC-NADPIN [73] are
selected from the node affinity-based category; ClusterOne [55]),
Core&Peel [63], IMHRC [48], PC2P [58], CC [57], WCC [57], OCC
[57], OWCC [57], and CUBCO [59] from the cluster quality-based
category; and DPCMNE [53] from network embedding-based cate-
distribution of median GO semantic similarity of reference complexes is compared
ecies: (A) E. Coli, (B) S. cerevisiae, and (C) H. Sapiens and their randomized variants.



Fig. 4. Comparative analysis of approaches for prediction of protein complexes. Eighteen state-of-the-art approaches are applied on four PPI networks of S. cerevisiae,
which are (A) Collins, (B) Gavin, (C) KroganCore, and (D) KroganExt. The predicted clusters from different approaches are compared with protein complexes in the gold
standard CYC2008. The comparative analysis is conducted with respect to a composite score, which is the summation of four performance measures, maximum matching
ratio (MMR), fraction match (FRM), accuracy (ACC), and F-measure. Eighteen approaches are ordered first by their categories, node affinity-based (in brown), cluster quality-
based (in green), and network embedding-based (in pink). Second, the methods in each category are ordered by the year of publication. The result indicates that the cluster
quality-based methods, more specifically, those that model a protein complex as a biclique spanned subgraph outperformed the others. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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gory. For the parameter(s)-dependent approaches (see Table 3), we
used the default parameter values as suggested in the correspond-
ing original studies.

From the GO semantic similarity analysis of gold standards of
different protein complexes for different species, it can be con-
cluded that more accurate protein complexes are included in the
gold standards for the species S. cerevisiae (CYC2008 [66] and
SGD [31], see Fig. 3). While both CYC2008 and SGD show similar
results, we decided to use CYC2008 for our comparison, since more
protein complexes are included to compare with SGD. To conduct a
comparative analysis of different approaches, we used four PPI net-
works of S. cerevisiae namely, Collins [17–18], Gavin [24], Kro-
ganCore [42], and KroganExt [42]. Consequently, to assess the
performance of these approaches, we used CYC2008 as the gold
standard.

To this end, we determined twelve well-established perfor-
mance measures, including maximum matching ratio (MMR), frac-
tion match (FRM), separation (SEP), sensitivity (SN), Positive
predictive value (PPV), accuracy (ACC), precision, recall, F-
measure, precision+, recall+, and F-measure+ (see Section 5 ‘‘Evalu-
ation metrics”). The range of the given metrics is between zero and
one, the higher value indicates the better performance. Moreover,
we calculated a composite score, which is the sum over MMR,
FRM, ACC, and F-measure for all eighteen approaches. The overlap-
ping score h is set to 0.5 as suggested by these studies
[77,59,55,59]. Supplementary Table 1 shows the overall perfor-
mance of all eighteen contenders with respect to the twelve perfor-
mance measures. Fig. 4 illustrates the results across the four PPI
networks concerning the composite score.
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Overall, based on comparative analysis, the approaches belong-
ing to cluster quality-based achieved better composite score than
the approaches in the other two categories across all PPI networks.
While MCL from node affinity-based methods ranked first in its
category and showed results on par with the cluster quality-
based approaches for Collins and KroganExt PPI networks. More-
over, the methods based on biclique spanned partitioning of the
network, PC2P, CC, WCC, OCC, OWCC, and CUBCO indicate similar
and consistent results across all PPI networks and exhibited the
highest performance. More precisely, PC2P obtained the highest
accuracy for all PPI networks and outperformed the other
approaches regarding separation, F-measure, and F-measure + for
three out of four PPI networks, Collins, KroganCore, KroganExt.
Likewise, WCC achieved the highest positive predictive value
across all PPI networks. Therefore, not surprisingly, WCC ranked
first in Collins and Gavin PPI networks, while PC2P and CC outper-
formed the other contenders in KroganExt and KroganCore, respec-
tively concerning the composite score (see Supplementary
Table 1).
8. Summary and outlook

A primary goal of biology is to understand how the different
components of cells function as a system to perform diverse tasks.
Proteins, as a key component of the cell, participate in various
molecular functions and biological processes, and more impor-
tantly, they do not act alone but interact with each other to form
macromolecular components, i.e. protein complexes. Therefore,
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the study of protein complexes plays an important role to under-
stand the cellular hierarchy and molecular mechanism.

The increasing availability of high-throughput data facilitates
the in silico study of protein complexes through the construction
of protein–protein interaction (PPI) networks. In the past decades,
several computational approaches have been proposed to address
the problem of predicting protein complexes given a PPI network
as input. The computational approaches show increasing improve-
ment of performance over time which has led to the detection of
more accurate protein complexes. However, there is still room
for improvement in this field, as pointed out in the following.

8.1. Critical assessment of existing PPI networks and protein complex
gold standards

Since PPI networks are the input of protein complex prediction
algorithms they play an important role in their performance. How-
ever, these networks are still incomplete and noisy [88] and
include false-positive as well as false-negative interactions. The
information on non-interacting proteins (NIPs) could be a great
advantage for algorithms in the field of protein interaction detec-
tion and the evaluation of the false-positive rate of PPIs in PPI net-
works. Negatome [8] is a database that includes 6532 PPIs that are
unlikely to physically interact with each other. To this end, we
selected BioGRID [78] as one of the pioneers in collecting PPIs,
including 798,241 interactions of H. Sapiens in its recent version
(4.4.206), and we compared BioGRID with PPIs in Negatome. First,
we converted the protein identifiers in Negatome, from UniProt to
gene name, and with this, we could only retrieve the gene name for
5808 PPIs in Negatome, of which 965 PPIs are also presented in the
BioGRID PPI network. On the other hand, due to the limitations of
high-throughput approaches, different types of false-negative
interactions are also present in PPI networks, such as week tran-
sient interactions [82]. In conclusion, future studies can benefit
from the set of non-interacting proteins to preprocess the input
PPI network. Moreover, it can be utilized as a negative set in super-
vised link prediction algorithms.

Another issue with current PPI networks is that most of the
existing data are largely static, providing only limited to no
insights into the dynamics of cellular activity [36]. Therefore,
understanding the dynamic nature of cellular processes remains
a difficult task. Proteins are not an exception to the dynamics that
take place at a molecular level; they associate and disassociate
with each other at different time scales and in various cellular
compartments to execute specific processes. Therefore, it is impor-
tant to unravel the temporal complexity of PPI networks to be able
to detect not only static, permanent protein complexes but also
transient ones. To this end, one can compile time-series gene
expression data and protein abundances along with protein
sequences to bring the dynamics of PPI networks into the analyses
and prediction of protein complexes. Several efforts have been
made on assigning dynamic weights to PPIs and constructing
dynamic PPI networks [101,14]. However, there is still room to
improve the quality and availability of these PPI networks across
different species.

In addition, the gold standards include different small subsets of
the proteins in the existing PPI networks. For instance, both Babu
and Cong PPI networks of E. Coli (Table 1), on average,
share � 27% and � 17% of their proteins with Ecocyc and Metabo-
lite gold standard, respectively. While Ecocyc and Metabolite gold
standards share, on average, �57% and � 67% of their proteins with
Babu and Cong PPI networks, respectively. This results in low cov-
erage of reference complexes from protein complex prediction
algorithms.
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8.2. Protein complex prediction algorithms

Computational approaches complement the experimental
methods to detect protein complexes from PPI networks. Several
computational approaches have been proposed to date, of which
we summarized 21 state-of-the-art approaches in this study along
with their advantages and disadvantages. We further evaluate the
performance of 18 out of 21 approaches on four PPI networks. The
result illustrates that cluster quality-based methods outperformed
the other two categories. More precisely, MCL from the node
affinity-based group outperformed the other contenders in the
same group. While PC2P, GCC-v, and CUBCO from the cluster
quality-based category outperformed the other contenders from
three categories in all cases.

One aspect that most of the approaches have in common is to
find a highly connected region as a protein complex in PPI net-
works. In addition, many approaches mainly find large complexes
and eliminate small, predicted clusters. However, recent studies
concluded that protein complexes are dense as well as sparse,
and they can be small, consist of two proteins, as well as large, with
more than three proteins. These limitations have been addressed in
(refs Omranian2021, Omranian2021a, Omranian_CUBCO) by cast-
ing the problem of protein complex prediction into biclique
spanned partitioning of the network. However, in the recent cate-
gory of protein complex prediction algorithms, network
embedding-based approaches, after integrating multiple data into
the network by constructing a weighted adjacency matrix of the
original network, employ core attachment methods to detect final
protein complexes. Therefore, the approaches in this category still
suffer from predicting large as well as dense protein complexes.

Another issue is that different approaches heavily depend on
multiple parameters, which render it difficult to interpret the pre-
dicted protein complexes. Depending on which PPI network, pro-
tein complex gold standard, and performance measure are used,
the algorithms predict different sets of protein complexes. This
problem is even worse in the case of network embedding-based
approaches since they must not only set the parameters but also
the hyperparameters to find the optimal set of protein complexes.

Moreover, most algorithms utilize different metrics to score the
protein interactions and remove those with a score below a given
threshold. However, they did not consider a way to bring the false-
negative interactions into the PPI networks except CUBCO [59],
which utilizes a link prediction algorithm. This is an important
issue and should be considered in future studies.

Finally, as mentioned earlier, PPIs play a significant role in
molecular functions and biological processes, and they can con-
tribute to our understanding of cellular activities. Due to the
labor-extensive and time-consuming experimental approaches,
several computational methods have been developed to facilitate
the prediction of PPIs (refs Patel2017, Wang2020). It is possible
to improve the performance of link prediction algorithms by utiliz-
ing protein complex prediction algorithms in such a way that, first,
the protein complex prediction algorithms cluster proteins with
similar structures or attributes into the same group, and then sev-
eral similarity measures can be used to compute the probability of
interactions between proteins in the same group. These ideas pro-
vide directions that can be explored in future studies.
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