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Abstract: Sleep disruption from causes, such as changes in lifestyle, stress from aging, family
issues, or life pressures are a growing phenomenon that can lead to serious health problems. As such,
sleep disorders need to be identified and addressed early on. In recent years, studies have investigated
sleep patterns through body movement information collected by wristwatch-type devices or cameras.
However, these methods capture only the individual’s awake and sleep states and lack sufficient
information to identify specific sleep stages. The aim of this study was to use a 3-axis accelerometer
attached to an individual’s head to capture information that can identify three specific sleep stages:
rapid eye movement (REM) sleep, light sleep, and deep sleep. These stages are measured by heart rate
features captured by a ballistocardiogram and body movement. The sleep experiment was conducted
for two nights among eight healthy adult men. According to the leave-one-out cross-validation
results, the F-scores were: awake 76.6%, REM sleep 52.7%, light sleep 78.2%, and deep sleep 67.8%.
The accuracy was 74.6% for the four estimates. This proposed measurement system was able to
estimate the sleep stages with high accuracy simply by using the acceleration in the individual’s head.

Keywords: ballistocardiogram; head acceleration sensor; sleep stages; sleep disruption; REM sleep

1. Introduction

Sleep accounts for about one-third of human life. Sleep disruptions from causes such
as changes in lifestyle, stress from aging, family issues, or life pressures, is a growing
phenomenon that can lead to serious health problems. Insomnia, one of the sleep disorders,
affects about 33% of the general population [1]. Sleep disorders can lead to serious health
issues including an increased risk of death [2]. As such, sleep disorders need to be identified
and addressed early on.

The disruption of sleep rhythms can be determined by measuring sleep stages [3].
In clinical practice, multiple electrodes are attached to the individual and biological signals
are measured to determine sleep stages. This approach requires a technician with special-
ized knowledge and experience, and the sleep stage determination test is laborious and
complicated. As the individual needs to go to bed with electrodes and an electroencephalo-
graph attached, the examination itself may affect normal sleep patterns as well. Therefore,
sleep patterns have recently been investigated by using a wristwatch-type device or a
camera to capture body movement information. However, this method only discriminates
between the individual’s asleep and awake states [4,5]. Other researchers have found that
by using time-series data on gross movements, such as turning over during sleep, it is
possible to estimate other sleep stages. However, this is based on the knowledge that gross
movements tend to increase a few minutes before the start of the rapid eye movement
(REM) sleep stage and the longer the appearance interval of the gross movements, the
deeper the non-REM sleep. Hence, it is difficult to achieve a high level of accuracy with
this approach as the information is based only on the tendencies of the sleep stages [6].
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To improve on this, we focus on the movement of the twitch of the head. This twitch
movement is part of the ballistocardiogram (BCG) that captures the body’s mechanical
response to the physical movements of the heart and the pumping of blood. The J wave,
which is the prominent part of the BCG, represents the acceleration of blood in the descend-
ing aorta and abdominal aorta and the deceleration of blood in the ascending aorta [7].
An individual’s heart rate interval can be derived from the J-J interval (JJI) [8]. Studies
have confirmed that one’s heart rate interval fluctuates dramatically, even during sleep,
due to the influence of the autonomic nervous system [9]. As this relationship with sleep
stages has been shown, as well, the heart rate interval can be a factor that can be used
to effectively estimate other stages of sleep beyond the distinction between being asleep
and being awake. The human body also has resonance frequencies, as muscles and bones
act as springs and dampers [10]. During REM sleep, all one’s muscles, such as eyes and
respiratory muscles, are relaxed, so the human body’s vibrations are transmitted in minute
movements such as breathing and BCG changes [3]. Our supposition is that REM sleep can
be captured by analyzing the frequency of these characteristics. There are three reasons
why we focused on the head among the twitch movements. Firstly, according to Kato et al.,
the rate of gross movements in overall sleep is 39.39% for the limbs, 27.43% for the trunk,
and 22.91% for the head [11]. Therefore, when measuring the pulsation with the arm, it is
possible that body movement noise due to the movement of the limbs will be included and
the pulsation measurement system will be lowered. Moreover, since the head has fewer
large movements than the arms, the influence of pulsation measurement is small. Secondly,
a study by Yousefian et al. found that wrist BCG was affected by arm mass, spinal damping,
and arm stiffness [12]. In the lateral decubitus position, the trunk may fix the arm and make
BCG measurement difficult. The movement of the head by BCG is a vertical movement [13],
and it is not easily affected by the posture during sleep. Therefore, the measurement of
BCG during sleep is better on the head than on the wrist. Finally, the twitch movements of
the head can be measured by using an earphone-type accelerometer [8] or camera [13,14],
which is practical.

Our study objective is to estimate sleep stages by using two features, body movements
and heart rate information, derived only from the acceleration in an individual’s head.
The heart rate information is collected from twitch movements, including a BCG of the
individual’s head. In recent years, there is a wristwatch-type device of Fitbit Inc. for
easy monitoring of daily sleep, but they are a little different from the polysomnography
(PSG) test data used clinically [15]. Therefore, in this study, we conducted a comparative
experiment with the sleep stages used in the PSG test, which is also used clinically.

The rest of the paper is organized as follows. Section 2 discusses our methods and
subjects, how we created correct answer data for supervised learning, how we extracted
features, how we created a classifier, and how we performed the evaluation. Section 3
presents the results and Section 4 our discussion. Section 5 concludes.

2. Subjects and Methodology
2.1. Subjects

Sleep is affected by age [16,17], gender [18], marriage [19], and working stress [20].
Therefore, we recruited unmarried experimental subjects, who live a regular life and are
physically and mentally healthy, with posters at Ritsumeikan University. Eight healthy
male students (age 20–23 years) participated in the experiment. Table 1 shows the subject
information. Each subject underwent three nighttime sleep experiments. Since sleeping
in an unfamiliar place may change sleep patterns and REM sleep [3], the first night was
excluded and only the records for the second and third nights were used for our analysis.
The subjects were given sufficient informed consent in advance to ensure there were no
sleep-inhibiting factors such as pre-experimental caffeine intake and excessive exercise.
The study was conducted with the approval of the BKC Research Ethics Review Committee
(BKC-2019-076).
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Table 1. Subject information.

Subject No. 1 2 3 4 5 6 7 8 Mean SD

Age (years) 21 22 22 23 22 21 21 22 21.8 0.7
Height (m) 1.79 1.72 1.70 1.79 1.70 1.65 1.69 1.70 1.718 0.046
Weight (kg) 83 54 68 67 85 55 63 60 66.9 10.9

SD: standard deviation.

2.2. Experiment

Subjects were instructed to go to bed by 23:00 for one week before the experiment.
Furthermore, subjects were restricted from caffeine intake, drinking, and excessive exercise
for 3 h before the experiment. In addition, each subject decided the experiment date to
reduce their stress. As shown in Figure 1, the experimental environment was a private
room where the temperature was 22–24 ◦C, the humidity 50–60%, the illuminance was
3 lux or less, and the noise was 40 dB or less, the conditions used in a general sleep stage
test [21]. During the sleep experiment, only the study subjects were allowed in the room.
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Figure 1. Example of the measurement environment.

The experimental equipment used were a biological amplifier Polymate Pro 6000
(Digitex Lab. Co., Ltd., Tokyo, Japan) and the KXM52-1050, 3-axis accelerometer module
(Kionix, Tokyo, Japan measurement range ±19.6 m/s2, sensitivity 0.66 V/(m/s2)). Since the
acceleration of the head by BCG is in the range of 0.98 m/s2 [22], KXM52-1050 was selected.
An electroencephalogram (EEG) based on the international 10–20 method (C3-A2, C4-A1,
O1-A2, O2-A1), an electrooculogram (EOG), an electromyogram (EMG) of the chin, and
an electrocardiogram (ECG) were measured using the bio-amplifier of Polymate Pro 6000.
The ECG was not used to create an automatic sleep classifier but rather for comparison
with the JJI, which could be gathered from the BCG. As an external input of the Polymate
Pro 6000, 3-axis acceleration was recorded at 200 Hz. The 3-axis accelerometer was directly
fixed to the center of the forehead using biological tape and had little effect on bedtime.
For safety, the sponge and the sensor were bonded with silicon.
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2.3. Methodology
2.3.1. Defining the Sleep Stage

When estimating sleep stages, sleep stage data are required as teaching data. For the
sleep stages in this study, the EEG, EOG, and EMG of the chin were collected as one epoch
each of 30 s. Sleep stages were determined using the American Academy of Sleep Medicine
(AASM) Manual for the Scoring of Sleep and Associated Events [23]. As shown in Figure 2,
we used four sleep stages, with WAKE for the awake stage, REM for the REM sleep stage,
LIGHT for the non-REM sleep stage N1-2, and DEEP for the non-REM sleep stage N3.
REM, LIGHT, and DEEP, which are all sleep states, are collectively referred to as SLEEP.
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Figure 2. Classification of sleep stages.

2.3.2. Sleep Stage Estimating

We used a two-step classification method in this experiment. In this two-step method,
first, classifier 1 is used to estimate the two states: WAKE and SLEEP. Next, in classifier
2, the three states of REM, LIGHT, and DEEP are estimated in SLEEP using the features
extracted from the results of classifier 1. Finally, sleep is classified into four states from the
two steps (Figure 3). We applied the two-step classification method because we needed to
extract features based on the first results of WAKE and SLEEP. In addition, the difference
between the WAKE and SLEEP states was considerably larger than the differences among
REM, LIGHT, and DEEP sleep states [3]; therefore, we could improve our estimation
accuracy if WAKE and SLEEP were classified first.
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There were five features used in the first-step to classify WAKE and SLEEP as shown
in Table 2.

Table 2. Features of the first-step classifier.

No. Name Extraction Method

1 Average of gross movements (AGM) Gross movements
2 Variance of gross movements (VGM) Gross movements
3 Full spectrum (FS) Spectrum
4 Average of JJI (AJJI) Twitch movements
5 Variance of JJI(VJJI) Twitch movements

Two of these were extracted from gross movements (Nos. 1 and 2), which included
body movement information, such as turning over; one was extracted from frequency
(No. 3); and two were extracted from twitch movements, including the BCG (Nos. 4 and 5).

For the features extracted from gross movements, a 0.1 Hz high-pass filter was first
used for the 3-axis acceleration raw data. The purpose of this was to remove noise and
direct current (DC) components from the EMG. Next, the root mean square (RMS) was used
for the 3-axis acceleration after bandpass filtering, with the acceleration converted to 1-axis.
This reduces the effects of peak emphasis, changes in acceleration due to sleep posture,
and changes in acceleration due to errors during sensor installation. Finally, to unify the
sampling time with the sleep stage data, the mean (average of gross movements: AGM)
and variance (variance of gross movements: VGM) were calculated every 30 s. For the
features extracted from frequency, the discrete Fourier transform was performed every 30 s
on the data centered on one axis by the RMS to obtain the total spectrum of all frequency
bands (Full spectrum: FS). These data are considered effective in estimating the WAKE
stage as they capture the tendency to wake up when gross movements are frequent [5].

The features that could be extracted from twitch movements were those from the JJI.
To do this, we obtained the JJI following the procedure shown in Figure 4. In preparing for
peak detection, a 1–10 Hz bandpass filter was used first for the 3-axis acceleration raw data.
As in the case of gross movements, this is to remove noise, DC components, and respiratory
components from the EMG. Next, the RMS is used for 3-axis acceleration after bandpass
filtering and converted to 1-axis. This again reduces the effects of peak emphasis, changes
in acceleration due to sleep posture, and changes in acceleration due to errors during sensor
installation. Finally, we used a moving average filter with a window width of 0.325 s for
the RMS data. This smoothed data to prevent over-detection during peak detection.
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In the peak detection process, the heartbeat has a refractory period of approximately
0.2 s [7], with the heartbeat interval more stable during sleep than during exercise. There-
fore, maximum value detection was performed with a minimum peak detection interval of
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0.365 s. A median filter every 0.365 s was used as the peak correction. We captured the J
wave, which was the peak value, and the JJI.

Because the JJI does not occur at equal time intervals, it was resampled to 2 Hz
using cubic spline interpolation. When extracting the features that will be effective for
estimating sleep stages from heart rate intervals, frequency analysis can be performed
for each heart rate interval epoch [9]. This means that a sampling frequency above a
certain level is required. However, as there was a delay of 0.1–0.3 s between the heartbeat
interval obtained from the BCG and the heartbeat interval obtained from the ECG [8],
resampling was set to 2 Hz, to avoid the error that would occur if the sampling frequency
was higher than necessary. Finally, a median filter with a window width of 7 s was used
for outlier processing.

After calculating the JJI, its average (Average of JJI: AJJI) and its variance (Variance of
JJI: VJJI) every 30 s were calculated to unify the sampling time of the sleep stage data and
the JJI data. For the features extracted from the twitch movements, when gross movements
occur, these twitch movements become difficult to detect and an abnormal value appears.
Therefore, when gross movements appear frequently, the tendency to wake up [6] can be
detected by abnormal values of body movements.

The features for the WAKE and SLEEP estimations were all parameters that used gross
movements, including turning over.

There were nine features in the second-step classifier, which classify REM, LIGHT, and
DEEP sleep, as shown in Table 3. Two features could be extracted from gross movements
(Table 3, Nos. 1–2), which include body movement information, such as turning over; one
could be extracted from frequency (Table 3, No. 3); four could be extracted from twitch
movements, including the BCG (Table 3, Nos. 4–7); and two from the results in the first-step
classifier (Table 3, Nos. 8–9).

Table 3. Features used in the second-step classifier.

No. Name Feature Effective for
Sleep Stage Estimation

1 Standardized average of gross movements (SAGM) DEEP
2 Standardized variance of gross movements (SVGM) DEEP
3 Standardized full spectrum (SFS) REM, LIGHT DEEP
4 Standardized average of JJI (SAJJI) REM, LIGHT DEEP
5 Standardized variance of JJI (SVJJI) REM
6 Standardized HF/TF (SHF/TF) REM, LIGHT, DEEP
7 Standardized HF/LF (SHF/LF) REM, LIGHT, DEEP
8 Sleep elapsed time (SET) REM, LIGHT, DEEP
9 Head rest time (HRT) DEEP

We captured the features in Table 3 as follows. Nos. 1–5 were obtained by standardiz-
ing the features in Table 2 with an average of 0 and a variance of 1. We did not standardize
the features of the first-step classifier for two reasons. The first is that the acceleration in the
head is larger in gross movements than in twitch movements; therefore, if the WAKE data,
including most of the gross movements, are not removed, they become a standardization
that depends on the amount of WAKE data. Second, since there is little difference in the
features among REM, LIGHT, and DEEP sleep, we needed to standardize and reduce
errors between subjects. Moreover, as WAKE is clearly different from the other sleep
states, there is no need to standardize it to reduce individual differences. For Nos. 6 and 7,
after calculating the JJI as shown in Figure 4, we performed a discrete Fourier transform
every 30 s to obtain a high frequency (HF, 0.15–0.4 Hz band spectrum), low frequency (LF,
0.04–0.15 Hz band spectrum), and total frequency (TF, 0.04–0.4 Hz band spectrum), used
then to calculate the HF/TF and HF/LF. No. 8, a feature obtained from the first estimate,
is the elapsed time since the first estimate of sleep. No. 9, also obtained from the first
estimation, is calculated based on the duration of sleep.
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The features shown in Table 3 are effective for estimating the following sleep stages.
The SAGM (Table 3, No. 1) and the SVGM (Table 3, No. 2) are considered effective for
estimating DEEP sleep. These features capture that DEEP sleep has less head movement
than REM and LIGHT sleep [6]. The SFS (Table 3, No. 3) is considered effective for estimat-
ing REM, LIGHT, and DEEP sleep. Since the BCG of the head is considered proportional
to the force of blood pumped by the heart [14], the supposition is that the spectrum of
each sleep stage will change according to the spectrum of the acceleration of the head.
The SAJJI (Table 3, No. 4) is considered effective for estimating REM, LIGHT, and DEEP
sleep. Since SAJJI is the average of the JJI every 30 s, it contains information close to very
low frequency (VLF: spectrum of the frequency band of 0.0033–0.04 Hz) of the heartbeat
interval. Studies have shown that VLF is associated with blood pressure regulation [24]
and is influenced not only by the autonomic nervous system activity but also by random
physical activity [25]. Our aim was to capture its characteristics via the SAJJI. We did not
obtain the VLF through spectral analysis from the JJI because the sampling frequency was
too low. The SVJJI (Table 3, No. 5) is considered effective for estimating REM sleep. During
REM sleep, the autonomic nervous system and the heartbeat interval are disturbed [3].
The SHF/TF (Table 3, No. 6) and SHF/LF (Table 3, No. 7) are considered effective for
estimating REM, LIGHT, and DEEP sleep. The HF/TF is commonly used as an indicator of
the parasympathetic nervous system and increases from REM to DEEP sleep [26]. HF/LF
is commonly used as an indicator of the sympathetic nervous system and decreases from
REM to DEEP [25]. SET (Table 3, No. 8) is considered effective for estimating REM, LIGHT,
and DEEP sleep. DEEP sleep increases in the first half of sleep and decreases in the second
half while REM sleep increases [3]. HRT (Table 3, No 9) is considered effective for estimat-
ing DEEP sleep. This is because there are changes, such as a decrease in body movements,
about 10 min before DEEP sleep. These body movements decrease because DEEP sleep is
deeper than REM and LIGHT sleep [6].

The classifier used a random forest technique (module uses scikit-learn), an ensemble
learning method, as it is easy to check the contribution rate of the features, and how each
feature affects each sleep stage. In addition, the effect of overfitting is reduced compared
with a decision tree, and slight fluctuations in features have less effect on the classifier. Deep
learning was not used as there were little training data. The random forest hyperparameters
were adjusted through a grid search. In the grid search, we performed leave-one-out cross-
validation using data from all subjects and obtained the hyperparameters that maximize
the F-score. There were three hyperparameters that needed to be adjusted: threshold
determination method (Gini coefficient, entropy), tree depth (1–10), and number of trees
(1–10). The other hyperparameters were the initial values of the scikit-learn random forest.

2.3.3. Evaluation Methods

To evaluate the features in the first-step classifier, features every 20 epochs were
randomly extracted from each sleep stage and a Wilcoxon-signed rank test was performed.
For the evaluation in the second-step classifier, features every 20 epochs were randomly
extracted from each sleep stage and the Freidman test was performed. If a significant
difference was found, multiple comparisons were made using the Wilcoxon signed-rank
test and Bonferroni correction was performed. The significance level was <5%.

An evaluation of the classifier was created using leave-one-out cross-validation to
obtain the F-score, precision, and recall of each sleep state and their accuracy. In addition,
leave-one-out cross-validation was performed on all subjects to show the overall perfor-
mance of the classifier, and the test results of each iteration were averaged to obtain receiver
operation characteristic (ROC) curves and areas under curves (AUCs) were calculated.
Leave-one-out cross-validation was done using data (n = 14) of seven subjects for two
nights as training data and data of the one remaining subject for two nights as test data.
Leave-one-out cross-validation is more practical than k-cross-validation because the test
and training data are from completely different subjects. However, if the training dataset is
small, accuracy will be low because it will depend on individual differences among the



Sensors 2021, 21, 952 8 of 19

subjects. In addition, we chose leave-one-out cross-validation since k-fold cross-validation
could not be used due to our two-step classification.

3. Results
3.1. Results of Sleep Stages Used as Correct Data

Table 4 shows the number of sleep stage epochs on the second and third nights for
each subject. We can see that there is not a large difference in the ratio of sleep stages
between the second night and the third night. Only on the third night for subject 3, REM is
extremely short compared with the general time [3], and it is clear that this is not normal
sleep. Therefore, the subsequent analysis excludes the third night of subject 3.

Table 4. Results of sleep stages used as correct data.

Subject No. 1 2 3 4 5 6 7 8 Mean SD %Rate

Day 2

WAKE (epoch) 33 74 95 53 31 52 32 74 55.5 22.1 6.4
REM (epoch) 123 99 85 95 101 135 108 137 110.4 18.0 12.8

LIGHT (epoch) 653 515 471 488 537 597 443 575 534.9 65.7 62.0
DEEP (epoch) 119 206 175 184 141 140 157 170 161.5 26.1 18.7

Day 3

WAKE (epoch) 32 60 85 65 21 57 38 33 48.9 20.0 5.7
REM (epoch) 121 102 4 63 141 156 161 123 108.9 49.3 12.7

LIGHT (epoch) 597 421 581 472 517 562 528 653 541.4 68.6 63.0
DEEP (epoch) 150 197 98 138 129 279 171 119 160.1 53.3 18.6

SD: standard deviation.

3.2. Relationship between Features of First-Step Classifier and Sleep Stages

Figure 5 shows the measured data of the BCG and ECG during sleep. The BCG
captures the data obtained through steps 1–5 in Figure 4. The red points on the BCG reflect
the acquired J wave, and the red points on the ECG reflect the acquired R wave. As shown
in Figure 5a, there is little difference in the JJI and RR intervals (RRI) between the BCG
and the ECG in the resting state. However, as shown in Figure 5b, there are few J waves
acquired in the BCG, including gross movements.
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Figure 6 shows the relationship between the features of the first-step classifier on the
second night for subject 1 and his sleep stages. As shown in Figure 6a–c,e, the estimated
WAKE values tended to be considerably larger than the estimated SLEEP values. In contrast,
for the AJJI and other features shown in Figure 6d, there tended to be a smaller difference
in values between WAKE and SLEEP. The AJJI tended to have many abnormal values in
the WAKE estimation. In addition, it showed that the value normally acquired during
WAKE decreased.
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Figure 6. One subject’s results for overnight features with first-step classifier and sleep stage. (Sub-
ject: 1, Day: 2): (a) Average of gross movements; (b) Variance of gross movements; (c) Full spectrum;
(d) Average of JJI; (e) Variance of JJI.

Figure 7 shows the results of the Wilcoxon signed rank test for each feature in the first-
step classifier. There were highly significant differences in all the features: AVG (1.88 × 10−1

± 0.20 × 10−1 m/s2 and 1.87 × 10−2 ± 7.37 × 10−3 m/s2, p < 0.01), VGM (1.12 × 10−1

± 1.94 × 10−1 (m/s2)2 and 3.24 × 10−4 ± 2.07 × 10−3 (m/s2)2, p < 0.01), FS (1.83 ± 1.56
(m/s2)/Hz and 1.85 × 10−1 ± 9.40 × 10−2 (m/s2)/Hz, p < 0.01), AJJI (1.22 ± 1.72 × 10−1 s
and 1.12 ± 1.80 × 10−1 s, p < 0.01), and VJI (2.19 × 10−1 ± 1.93 × 10−1 s2 and 1.70 × 10−2

± 2.80 × 10−2 s2, p < 0.01).

3.3. Relationship between Features of Second-Step Classifier and Sleep Stages

Figure 8 shows the relationship between the features of the second-step classifier on
the second night for subject 1 and the sleep stages. Although, the second-step classifier
includes only data estimated as SLEEP in the first-step classifier, Figure 8 also includes
WAKE data. Figure 9 shows the results of the Wilcoxon signed-rank test for each feature of
the second-step classifier.
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(b) Variance of gross movements; (c) Full spectrum; (d) Average of JJI; (e) Variance of JJI.

Figure 8a–c reflect large values before and after WAKE. However, as shown in Figure 9a–c,
the REM sleep of the SAGM was −5.39 × 10−2 ± 5.02 × 10−1, the LIGHT sleep of the SAGM
was −4.68 × 10−2 ± 7.76 × 10−1, and the DEEP sleep of SAGM was 4.18 × 10−2 ± 1.48.
The REM sleep of the SVGM was −7.30 × 10−2 ± 1.97 × 10−1, the LIGHT sleep of the SVGM
was 6.25 × 10−4 ± 6.65 × 10−1 and the DEEP sleep of the SVGM was 9.96 × 102 ± 1.81. The
REM sleep of the SFS was −7.68 × 10−2 ± 5.5 × 10−1, the LIGHT sleep of the SFS was
−1.96 × 10−2 ± 9.03 × 10−1, and the DEEP sleep of the SFS was 1.70 × 10−2 ± 1.46; as
p > 0.05 among REM, LIGHT, and DEEP sleep stages, there was no significant difference.

As shown in Figure 8d, the SAJJI value increases as it approaches DEEP sleep and de-
creases as it approaches REM sleep. In Figure 9d, the REM sleep of SAJJI was −5.92 × 10−1

± 1.18, the LIGHT sleep of the SAJJI was 1.48 × 10−1 ± 9.45 × 10−1, and the DEEP sleep of
the SAJJI was 1.86 × 10−2 ± 7.92 × 10−1. Except for LIGHT sleep and DEEP sleep, p < 0.01;
thus, it was highly significant.

As shown in Figure 8e, the SVJJI value tended to be stable as it approached DEEP sleep,
and the value tended to diverge as it approached WAKE and REM sleep. In Figure 9e, the
REM sleep of the SVJJI was 1.13 × 10−1 ± 8.34 × 10−1, the LIGHT sleep of the SVJJI was
−9.61 × 10−2 ± 6.85 × 10−1, and the DEEP sleep of the SVJJI was −4.27 × 10−2 ± 7.99 ×
10−1. Except for LIGHT and DEEP sleep, p < 0.01; thus, it was highly significant.
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Figure 8. One subject’s overnight results with second-step classifier and sleep stage (Subject: 1, Day:
2): (a) Standardized average of gross movements; (b) Standardized variance of gross movements;
(c) Standardized full spectrum; (d) Standardized average of JJI; (e) Standardized variance of JJI;
(f) Standardized HF/TF; (g) Standardized HF/LF; (h) Sleep elapsed time; (i) Head rest time.
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Figure 9. Wilcoxon signed-rank test results for first-step features: (a) Standardized average of gross
movements; (b) Standardized variance of gross movements; (c) Standardized full spectrum; (d) Stan-
dardized average of JJI; (e) Standardized variance of JJI; (f) Standardized HF/TF; (g) Standardized
HF/LF; (h) Sleep elapsed time; (i) Head rest time.
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Figure 8f,g had similar shapes, with the values increasing as they approached DEEP
sleep and decreasing as they approached REM sleep, but the signal-to-noise (S/N) ratio
was low. In Figure 9f,g, the REM sleep of the SHF/TF was −2.66 × 10−1 ± 9.76 × 10−1, the
LIGHT sleep of the SHF/TF was 1.78 × 10−2 ± 1.00, and the DEEP sleep of the SHF/TF
was 2.54 × 10−1 ± 9.19 × 10−1. The REM sleep of the SHF/LF was −2.64 × 10−1 ±
7.88 × 10−1, the LIGHT sleep of the SHF/LF was 1.17 × 10−2 ± 9.68 × 10−1, and the
DEEP sleep of the SHF/LF was 2.31 × 10−1 ± 1.06. Except for the LIGHT and DEEP sleep,
p < 0.01; thus, it was highly significant. In addition, between the LIGHT and DEEP sleep
stages, p < 0.05; thus, it was significant.

Figure 8h was linear, as it reflects the elapsed sleep time. DEEP sleep increased as
the SET value decreased, and REM sleep increased as the SET value increased. As shown
in Figure 9h, the REM sleep of the ST was 2.57 × 10 ± 2.56 × 10 min, the LIGHT sleep
of the ST was 2.39 × 10 ± 3.15 × 10 min, and the DEEP sleep of the ST was 4.24 × 10 ±
2.68 × 10 min. Among REM, LIGHT, and DEEP sleep stages, p < 0.01; thus, it was highly
significant.

The HRT shown in Figure 8i has a lower value for REM and LIGHT sleep stages than
for DEEP sleep. In Figure 9i, the REM sleep of the HRT was 2.87 × 10 ± 9.48 × 10 min,
the LIGHT sleep was 2.22 × 10 ± 1.24 × 10 min, and the DEEP sleep was 1.49 × 10
± 1.22 × 10 min. Except for the REM and LIGHT sleep stages, p < 0.01; thus, it was
highly significant.

3.4. Results of Sleep Stage Estimations

Figure 10 shows the results of the comparison between the sleep stage estimations
for subject 1 on the second night and the correct answer data. The basis was estimated as
LIGHT sleep, which accounted for most of the sleep stage. WAKE had a high estimation
for all measurements. REM sleep could be estimated intermittently, but not continuously.
The estimation of DEEP sleep was high in the first half of the measurement, but it could
not be estimated in the second half of the measurement.

Figure 11 shows the estimation results of all data for subject 3, except the third night,
showing F-score, precision, and recall for each sleep stage and the accuracy. The average
value of each result was 74.6% for Accuracy, 72.6% for all sleep stages F-score (AF), 75.1%
for the WAKE F-score (WF), 76.6% for WAKE precision (WP), 72.6% for WAKE recall (WR),
52.7% for the REM F-score (RF), 61.3% for REM precision (RP), 49.0% for REM recall (RR),
78.2% for the LIGHT F-score (LF), 71.2% for LIGHT precision (LP), 87.4% for LIGHT recall
(LR), 67.8% for the DEEP F-score (DF), 73.0% for DEEP precision (DP), and 65.6% for DEEP
recall (DR).

Table 5 shows the results of the confusion matrix obtained from leave-one-out cross-
validation for all data. Most of the mistakes from estimating WAKE, REM, and DEEP were
estimated to be LIGHT. Most of the mistakes from estimating LIGHT were estimated to be
REM and DEEP.

Table 5. Confusion matrix obtained from leave-one-out cross-validation (n = 15).

Correct Answer Result
WAKE REM LIGHT DEEP

Estimation result

WAKE 604 17 170 27
REM 11 975 627 47

LIGHT 131 685 6613 750
DEEP 4 73 619 1651
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Figure 11. The estimated results of accuracy, F-score, precision, and recall (n = 15).

Figure 12 shows the contribution rate of the created classifier. In Figure 12a, VGM, FS,
and AGM reflect 90% or more of the contribution of the WAKE and SLEEP estimates; the
parameter using JJI had a contribution of 10% or less. In Figure 12b, the contribution of the
REM, LIGHT, and DEEP sleep estimates for ET and ST, which were the features obtained
from the estimation results in the first-step, were 50% or more. SAJJI contributed about
15% to the estimation, and the contribution of SVJJI, SVGM, SFS, and SFGM were less than
10%. The contribution of SHF/LF and SHF/TF were less than 5%, with little effect on
the estimation.
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Figure 13 shows the results of the ROC curves. There is not much bias in the True
positive rate and False positive rate. The AUCs were 0.98 for WAKE, 0.88 for REM, 0.81 for
LIGHT, and 0.93 for DEEP.
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of the REM, LIGHT, and DEEP sleep estimates for ET and ST, which were the features 
obtained from the estimation results in the first-step, were 50% or more. SAJJI contributed 
about 15% to the estimation, and the contribution of SVJJI, SVGM, SFS, and SFGM were 
less than 10%. The contribution of SHF/LF and SHF/TF were less than 5%, with little effect 
on the estimation.  
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Figure 12. Random forest contribution rates: (a) First-step classifier; (b) Second-step classifier. 

Figure 13 shows the results of the ROC curves. There is not much bias in the True 
positive rate and False positive rate. The AUCs were 0.98 for WAKE, 0.88 for REM, 0.81 
for LIGHT, and 0.93 for DEEP. 
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4. Discussion

As shown in Table 4, the sleep stages of the subjects were all within the estimated
ranges [3] except for the third night for subject 3. As shown in Section 2.2, subjects were
given various restrictions to improve their consistency. From these, we can suppose
that our data acquired through this experiment reflect general data for healthy subjects.
Excluding the third night for subject 3, the number of datasets was 15, but in comparison
with the studies of Cabon et al. [27] and Ran et al. [28], this is still sufficient to create
an automatic sleep classifier under age- and gender-restricted conditions. However, to
create an automatic sleep classifier that can handle various patterns, such as other genders,
ages, and people suffering from sleep disorders, the number of subjects would need to be
increased. Since most of the sleep states were LIGHT as shown in Table 4, they were often
erroneously estimated as LIGHT as shown in Table 5. These results were similar to those of
Supratak et al. [29].

From Figure 6, Figure 7, and Figure 12a, we see that in estimating WAKE and SLEEP
stages, the features including gross movements, such as turning over, were more effec-
tive than changes in JJI and the error rate of JJI. This is because there is a tendency to
wake up when gross movements are frequent [6]. In addition, as shown in the study by
Alain et al. [30], the accuracy of the WAKE estimation is improved by using body move-
ment information in addition to the heart rate interval.

From Figures 8, 9 and 12b, we can see that it was effective to use the SET and HRT
obtained from the WAKE and SLEEP estimations for REM, LIGHT, and DEEP sleep. This
is because the sleep elapsed time is characterized by an increase in DEEP sleep in the first
half of sleep time, a decrease in DEEP sleep in the second half, and an increase in REM
sleep [3]. In addition, in the HRT, body movement decreases approximately 10 min before
DEEP sleep as DEEP sleep is deeper than REM and LIGHT sleep [6].

Next, the SAJJI, as shown in Figures 8d and 9d was an effective estimation. Since SAJJI
was a feature that standardizes the average JJI every 30 s, it contains information close to
the VLF of the heartbeat interval. The physiological meaning of VLF has not been clarified
as much as the LF and HF, but Eckberg et al. [24] and Taylor et al. [31] point out that VLF
acts as a renin-angiotensin system and as baroreceptor reflex sensitivity. Fleishere [32]
published a paper suggesting that VLF reflects temperature regulation activity. According
to the study by Johannes et al. [33], the VLF is significantly different among REM, LIGHT,
and DEEP sleep, emphasizing its effectiveness for estimating these sleep stages. In addition,
research has shown that sleep apnea can be detected by VLF [34], which is one of the merits
of obtaining information close to VLF by using the acceleration in the head.
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Figure 12b shows that SHF/TF and SHF/LF were not effective for estimating the REM,
LIGHT, and DEEP sleep stages. There was also little difference between JJI and RRI in the
BCG and ECG during the resting state, as shown in Figure 5a. Moreover, in Figure 5b, the J
waves were hardly perceptible in the BCG, including gross movements. Therefore, when
gross movements are included, the error of JJI becomes large, so it is necessary to correct it
through averaging processing. In this way, although it can be used at low frequencies, it
will be difficult to use at high frequencies because the detection accuracy for JJI is low. In
recent years, research has investigated improving JJI detection accuracy using template
matching [35]. With improved detection accuracy, estimation accuracy may increase if
HF/TF and HF/LF features are available.

As shown in Figure 9e, VJJI was significantly different in REM sleep than in the other
sleep states. The reason is that during REM sleep, the autonomic nerves are characterized
by irregular changes [3], which tend to result in irregular heartbeats and increased JJI dis-
persion. Moreover, as shown in Figure 13, this variance increased when gross movements
were included, so other less affected features were more useful for estimating REM, LIGHT,
and DEEP sleep stages.

As shown in Figures 8c, 9c and 12b, SFS was not effective for estimating REM, LIGHT,
and DEEP sleep states. Moreover, there was no significant difference between the REM,
LIGHT, and DEEP sleep states. As the BCG of the head is proportional to the force of blood
pumped by the heart [14], the sequenced relationship for blood pressure and cerebral blood
flow magnitude is REM > LIGHT > DEEP sleep [3]. Therefore, we assume that the spectral
area of the BCG of the head comprises the relationship between REM > LIGHT > DEEP
sleep. However, the classification became difficult due to errors between subjects and the
measurement error due to the slight difference in these characteristics. For this reason, the
SAGM and SVGM (Figure 8a,b, Figure 9a,b and Figure 12b) features using information
on gross movements were not effective for estimating REM, LIGHT, and DEEP sleep, and
there was no significant difference among the REM, LIGHT, and DEEP sleep states.

The performance of our automatic sleep classifier reflected 74.6% accuracy, 72.6% all
sleep stages F-score (Figure 11). Like our study, Willemen et al. [36], Zhang et al. [37],
Nochino et al. [38], and Mitsukura et al. [35] have also developed automatic sleep classifiers
that can estimate four states: WAKE, REM, LIGHT, and DEEP (Table 6). As a result, the
accuracy of the study by Willemen et al. [36] was 69%, the all sleep stages F-score of
the study by Zhang et al. [37] was 62%, and the study by Nochino et al. [38] was 41%.
Therefore, our research had a better performance. However, using the BCG as we did
for the sleep stage estimation, Mitsukura et al. had an accuracy of 89% [35]. In their
research, they combined multiple high-performance sensors for their processing. In our
study, we achieved our high accuracy sleep estimation by attaching only one inexpensive
3-axis accelerometer to the individual’s head. In addition, the WAKE F-score is 76.6% in
this study and 70.2% in the study by Mitsukura et al. [35], and this study has a better
performance. In the study by Nochino et al. [38], the performance of REM was poor
because only body movement was used as a feature. Since there is little difference in
body movement between REM and LIGHT [6], it is considered that the performance will
improve if heart rate information is added as in this study.

Table 6. Performance of sleep stage classification in related works for reference.

References (Years) Sensor (Number) Modality n Accuracy (%) F-Score (%)

Mitsukura [35] (2020) Bed leg BCG sensors (1–4) BCG 25 89 -

Willemen [36] (2014) ECG (1), RIP (1),
DynaSleep system (1)

Heart rate, Breathing
rate, Body movements 85 69 -

Zhang [37] (2018) Wrist type sensor (1) Heart rate, Wrist
actigraphy 39 - 62

Nochino [38] (2019) Camera (1) Body movements 23 41 -
This study 3-axis accelerometer (1) BCG, Head movements 15 77 73

RIP: Respiratory inductance plethysmography.
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As shown in Figure 10, continuous REM and DEEP sleep estimates are difficult.
The reason is that the time resolution of the measured data were high, while the correct
answer data, PSG, were a value once every 30 s. Therefore, if the correct answer data
defined by PSG have the same resolution as the measurement data, it may match the
estimation result. In addition, our belief is that performance can be improved by using
bidirectional long short-term memory (BLSTM) used by Supratak et al. [29], which can use
epochs before and after the estimated epoch.

As shown in Figure 13, the ROC curve and the AUCs results prove that the proposed
method is discriminative in the case of data unbalance.

However, the database for this measurement is different from that used in previous
studies. Although our algorithms provide higher accuracy than traditional algorithms, this
does not necessarily mean that they are superior; moreover, this high accuracy could be
simply from the dataset.

5. Conclusions

In this study, an inexpensive 3-axis accelerometer was attached to the individual’s
head, and the sleep stages were estimated by utilizing features of heart rate information
derived from the BCG and body movement.

Based on the leave-one-out cross-validation, our results showed that the estimation
accuracy was 74.6%, the WAKE F-score was 76.6%, the REM sleep F-score was 52.7%, the
LIGHT sleep F-score was 78.2%, and the DEEP sleep F-score was 67.8%. Our supposition
is that this estimating performance can be improved by using BLSTM. From these, if the
device can acquire gross movements from the acceleration of the head, including turning
over and twitch movements, along with the BCG, better study estimation accuracy will
be possible.

Our system was a prototype and was wired to build a stable communication en-
vironment. In addition, from the viewpoint of ease of measurement, we conducted an
experiment by fixing the sensor in the center of the forehead. From the viewpoint of ease of
measurement, it is not practical because the sensor was fixed in the center of the forehead
and the experiment was conducted. In the future, we are aiming to realize and put into
practical use a similar system by measuring the acceleration of the head with an earphone
equipped with a 3-axis accelerometer used by He et al. [8].

In addition, the system of this experiment is not general because various restraint
conditions were set in order to improve the consistency of the subjects in this experiment.
A wide variety of data are required to make it versatile.

Finally, there is a previous study showing that VLF of heart rate interval obtained
from BCG can detect sleep apnea disorder [34]. Therefore, we are also aiming to create an
apnea disorder detection system that uses the VLF of the heart rate interval obtained from
BCG. In Section 1, we hypothesized that the head is less affected by body position than
the arms, but we have not proved it. In the future, we would like to study the changes in
features depending on the body position.
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