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Abstract: Based on the generalized Lorenz-Mie theory (GLMT), this paper 
reveals, for the first time in the literature, the principal characteristics of the 
optical forces and radiation pressure cross-sections exerted on 
homogeneous, linear, isotropic and spherical hypothetical negative 
refractive index (NRI) particles under the influence of focused Gaussian 
beams in the Mie regime. Starting with ray optics considerations, the 
analysis is then extended through calculating the Mie coefficients and the 
beam-shape coefficients for incident focused Gaussian beams. Results 
reveal new and interesting trapping properties which are not observed for 
commonly positive refractive index particles and, in this way, new potential 
applications in biomedical optics can be devised. 
© 2010 Optical Society of America 
OCIS codes: (350.4855) Optical tweezers or optical manipulation; (160.3918) Metamaterials; 
(350.3618) Left-handed materials; (080.0080) Geometric optics; (290.4020) Mie theory. 

References and links 
1. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 

1517–1520 (1987). 
2. M. W. Berns, W. H. Wright, B. J. Tromberg, G. A. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-

induced optical force trap to study chromosome movement on the mitotic spindle,” in Proceedings of the 
National Academy of Science of the United States of America 86, (1989), pp. 7914–7918. 

3. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-
stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996). 

4. G. D. Wright, J. Arlt, W. C. K. Poon, and N. D. Read, “Experimentally manipulating fungi with optical 
tweezers,” Mycoscience 48, 15–19 (2007). 

5. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” in Proceedings of the National 
Academy of Science of the United States of America 94, (1997), pp. 4853–4860. 

6. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004). 
7. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using 

near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004). 
8. L. A. Ambrosio and H. E. Hernández-Figueroa, “Inversion of gradient forces for high refractive index particles 

in optical trapping,” Opt. Express 18(6), 5802–5808 (2010). 
9. V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. 

Phys. Usp. 4, 509–514 (1968). 
10. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with 

simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). 
11. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 

292(5514), 77–79 (2001). 
12. N. Engheta and R. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. 

Theory Tech. 53(4), 1535–1556 (2005). 
13. N. Engheta and R. Ziolkowski, Metamaterials – Physics and Engineering Explorations (IEEE press, Wiley-

Interscience, John Wiley & Sons, 2006). 
14. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications 

(IEEE press, Wiley-Interscience, John Wiley & Sons, 2006). 

#133019 - $15.00 USD Received 6 Aug 2010; revised 13 Oct 2010; accepted 17 Oct 2010; published 4 Nov 2010
(C) 2010 OSA 1 December 2010 / Vol. 1,  No. 5 / BIOMEDICAL OPTICS EXPRESS  1284



15. L. A. Ambrosio and H. E. Hernández-Figueroa, “Trapping double negative particles in the ray optics regime 
using optical tweezers with focused beams,” Opt. Express 17(24), 21918–21924 (2009). 

16. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. 
J. 61(2), 569–582 (1992). 

17. A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie 
resonances on trapping in optical tweezers,” Opt. Express 16(19), 15039–15051 (2008). 

18. Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved 
optical trapping,” J. Appl. Phys. 103, 093119 (2008). 

19. G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 
(1908). 

20. G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. (Paris) 13, 97–103 
(1982). 

21. B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for 
arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988). 

22. G. Gouesbet, G. Gréhan and B. Maheu, “Expressions to compute the coefficients gn
m in the generalized Lorenz-

Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988). 
23. C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 

John Wiley & Sons, 1983). 
24. G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients gn

m in the 
generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990). 

25. K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized lorenz-mie theory,” 
Appl. Opt. 37(19), 4218–4225 (1998). 

26. G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape 
coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). 

27. G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape 
coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). 

28. H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a 
focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998). 

29. K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a 
Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 
108, 343–354 (1994). 

30. K. F. Ren, G. Gréhan, and G. Gouesbet, “Symmetry relations in generalized Lorenz-Mie theory,” J. Opt. Soc. 
Am. A 11, 1812–1817 (1994). 

31. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971). 
32. A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–

588 (1974). 
33. A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976). 
34. A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30, 

202–204 (1977). 
35. A. Ashkin and J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical 

levitation,” Appl. Opt. 19(5), 660–668 (1980). 
36. K. R. Fen, Diffusion des Faisceaux Feuille Laser par une Particule Sphérique et Applications aux Ecoulements 

Diphasiques (Ph.D thesis, Faculté des Sciences de L’Université de Rouen, 1995). 
37. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). 

1. Introduction 

Optical micromanipulation of molecules and biological organelles has revolutionized 
biomedical research and opened the way for an enormous quantity of promising studies 
evolving viruses and bacteria [1], chromosomes [2], DNA [3], fungi [4], human cells, general 
particles [5,6] and, maybe the most interesting, new proposals in cancer treatment [7]. 

Technological developments in the area of optical trapping are evident during the past 
forty years since the first experiments on Bell labs, by A. Ashkin. In a series of experiments, 
he put the theory behind tridimensional optical micromanipulation on solid grounds. Initially 
based on a pair of counter propagating moderately diverging Gaussian beams (2-beam traps) 
to capture randomly diffused small particles, he further improved the experimental setup to 
achieve levitation schemes (levitation traps), where the scattering forces exerted on a particle 
by one single vertical beam were used to cancel the effects of gravity. Finally, the adoption of 
one single focused beam paved the way for the systems now known as optical tweezers by 
allowing particles to be easily stretched and manipulated. A robust theory in damage-free 
optical traps of particles by using infrared laser beams is now available. 
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Optical traps are based on momentum transfer from the photons of the laser beam to the 
trapped particle, thus giving rise to axial and transverse forces that, in certain conditions, can 
pull them to high intensity regions of the beam. The relation between the repulsion/attraction 
profile and the relative refractive index nrel between the particle (refractive index np) and the 
surrounding medium (nm) in which it is immersed leads to a well known behavior: particles 
with nrel > 1 will always be directed towards high intensity regions of the incident beam, 
whereas for nrel < 1 the contrary can be observed: the particle will be directed away from 
these regions. For high refractive index particles (e.g., nrel > 3 or 4), however, this relation is 
no longer valid due to the prevailing of repulsive axial (scattering) forces [8]. 

Because of the increasing interest in metamaterial applications, especially among those 
with negative refractive index (NRI), it is plausible to ask ourselves what would happen to a 
NRI particle in an optical tweezers system. Would it be trapped in the same way as a positive 
refractive index (PRI) particle? 

This special type of material is not a recent development. In fact, its properties are known 
since the final 60’s, when russian physicist Veselago predicted the hypothetical existence of 
NRI materials and consistently established a theoretical background for subsequent works [9]. 
It took, however, more than thirty years for scientific community to realize the importance 
and the revolution behind Veselago’s medium, when the first experimental evidence of 
negative permittivity and permeability was published [10,11]. 

Since then, research in metamaterial phenomena rapidly flourished (for a review of the 
subject see, e.g [12]. For further theoretical and experimental background, see [13,14]). 
Interesting applications were proposed such as perfect lenses and optical cloaking. 
Transmission-line analogies can predict most of one- and two-dimensional behaviors of NRI 
materials. Although one- and two-dimensional resonant and non-resonant structures were 
developed and experimentally verified, 3D NRI structures are still a challenge. The search for 
a homogeneous, isotropic, linear dielectric NRI material remains, and we can possibly benefit 
from their properties in the near future. 

In a previous work, we presented some basic principles behind what can be called 
“negative refractive index” or “double-negative” optical trapping, without, however, going 
into a profound analysis. Using ray optics considerations, gradient and scattering optical 
forces exerted on hypothetical spherical NRI particles were analyzed and it was concluded 
that new displacement behaviors could be observed [15] and that the limit nrel = 1 (in the NRI 
analogue, nrel = −1) does not play such a significant role as it does for PRI particles. 

This paper is the natural extension of [15] and is organized as follows: section 2 reviews 
and significantly expands the analysis of [15] for negative refractive index optical trapping 
using geometrical optics considerations, the main results concerning optical forces being then 
outlined; section 3 introduces the Mie coefficients and the equivalence between Snell’s law 
inversion and the differences in the Mie scattering coefficients when nrel goes from nrel > 0 to 
nrel < 0. A brief resume of the well-known generalized Lorenz-Mie theory (GLMT) is also 
presented. Finally, section 4 is devoted to discussing the application of the GLMT – and 
focused Gaussian beams – to NRI optical trapping. Transverse and longitudinal radiation 
pressure cross-sections (radiation pressure forces) are then numerically evaluated. In the final 
section, our conclusions are presented. 

2. Ray optics 

Suppose an arbitrary laser beam with wavelength λ, propagating along a medium of refractive 
index nm, impinges on an arbitrary NRI dielectric spherical particle with radius a. The particle 
is assumed to be homogeneous, isotropic and linear, with a refractive index np. In this section 
we consider that the ray optics condition, i.e., a >> λ, is tacitly satisfied, so that we may 
visualize the impinging beam as being composed of a set of infinite rays, all of them 
contributing to the total force exerted on the particle. 
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It is well-known that when a ray hits a positive refractive index particle with an incident 
angle θi, part of its incident power is reflected with the same incident angle and part of it is 
transmitted according to Snell’s law, i.e., sinθi = nrelsinθt, where θt is the transmission angle 
and nrel = np/nm. Subsequent reflections/refractions give rise to a multiple 
reflection/transmission diagram. 

Due to the momentum transfer from the ray to the particle, one can analytically calculate 
the individual axial and transverse forces (Fz, z-directed, Fy, y-directed, according to the 
convention adopted in Fig. 1(c) of [15]) by summing up the contribution of all rays leaving 
the particle, i.e., these individual forces are given by the contribution of the rays with power 
PR, PT2, PT2R, PT2R2, …, PT2Rm,…, P being the power of the original incident ray, R and T 
the Fresnel coefficients of reflection and transmission, respectively, their expressions 
depending upon the polarization of the incident beam, and m an integer number [16]. 

For a NRI particle, however, due to the inversion of Snell’s law, the first transmitted ray 
into this particle is deflected with a “negative” angle θt, so that the individual transverse and 
axial forces must change accordingly (for instance, replace α by 2θi + 2θt and β by π + 2θt in 
Appendix I of [16]. This leads to Eqs. (1) and (2) of [15]). 

Let us suppose that nrel = −1, so that R = 0 (T = 1) for a circularly polarized beam. 
Furthermore, assume that one of its infinite rays is a z-propagating ray impinging the NRI 
particle with an incident angle θi = 45°. For this particular ray, the first associated transmitted 
ray (with the same power as the incident ray, PT = P) is now y-directed, and the final ray 
exiting the particle propagates along –z, in a situation that resembles total reflection (R = 1, T 
= 0), except by the fact that the counter propagating final ray is spatially y-shifted from the 
incident ray. But conservation of linear momentum results in the same repulsive (away from 
the laser beam source) axial force. Of course, this situation would never happen for a PRI 
particle. Even though the axis of the incident ray does not coincide with the z-axis, being only 
parallel to it, there is no net transverse force. For rays with θi > 45°, Fy > 0 (i.e., repulsive), 
whereas Fy < 0 (attractive) for rays with θi < 45°. We can generalize this result by stating that, 
given a negative relative refractive index nrel, there is always an specific incident angle θi,s to 
which the following are true: Fy = 0 for θi = θi,s; Fy > 0 for θi > θi,s; and Fy < 0 for θi < θi,s. 
Axial forces are always repulsive for any single ray. 

Figures 1(a) and 1(b) reveals the intensity of the axial force Fy for a PRI spherical particle 
as a function of both θi and np for a circularly polarized incident ray, where nm = 1.33 is 
assumed. According to the coordinate system adopted [15], Fy > 0 (Fy < 0) corresponds to a 
repulsive (attractive) axial force. Two zero force lines, Fy = 0, have been highlighted in  
Fig. 1(b). The first one, Fy(nrel = 1), is the matched case where R = 0, T = 1, and θi = θt. The 
second zero-force line, Fy (nrel = nc), can be interpreted as the limit situation where, given an 
incident ray with an incident angle θi, an increase of the relative refractive index nrel (above a 
critical value nc) implies on the prevailing of the first reflected ray with power PR over all 
secondary rays of powers PT2, PT2R and so on [10]. The scattering (axial) force Fz is always 
positive, i.e., repulsive, as expected [16]. 
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Fig. 1. Normalized (over nmP/c) individual transverse force Fy as a function of both θi and np 
for a circularly polarized ray over (a) a PRI and (c) a NRI particle. The difference observed 
between these two cases leads to new trapping phenomena for nrel < 0. (b) and (d) are the 
contour plots of (a) and (c), respectively. 

Figures 1(c) and 1(d) are plots of Fy as function of np and θi. Two zero force lines, 
representing the (nrel,θi = θi,s) points where Fy = 0, are now highlighted in Fig. 1(d). Contrary 
to Fig. 1(b), transverse forces do not become zero when |nrel| = 1. Note, furthermore, that in 
specifying nrel we are actually imposing the constraint between the force and the incidence 
angle and, as shown in Fig. 2 for nrel =  ± 1.2 and ± 0.8 (assuming the same values for the 
incident beam as before), the magnitude of the individual axial force exerted on a NRI particle 
can be significantly different from the PRI analogue. 

A real situation can be used to illustrate how disparate these conclusions can be for both 
PRI and NRI optical trapping. Assume that the objective lens that focuses the Gaussian beam 
exiting the source has an associated numerical aperture θNA = 66°, and that 0.5 < nrel < 3. In 
this way, for all incident rays that compose the focused Gaussian beam, if the centre of the 
particle is located close to the focal point, θi < θNA = 66° and, according to Figs. 1(a) and 1(b), 
one can expect that an attractive (repulsive) transverse force will always occur whenever 1 < 
nrel < 3 (0 < nrel < 1). 

But for nrel < 0 the situation is a little bit more involved, as now each ray can produce an 
attractive or a repulsive transverse force depending upon its incidence angle, so that, 
theoretically, the trapping properties for NRI particles depends upon the shape of the incident 
laser beam. For example, we could, in principle, design a particular laser beam such that, for 
an specific nrel, the particle will always be directed towards its high intensity regions, and 
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another laser beam such that, for the same nrel, will always pull the particle towards nulls of 
intensity. This possibility is just impracticable for nrel > 0. 

 
Fig. 2. Normalized (over nmP/c) individual transverse force Fy as a function of θi for (a) nrel = 
1.2 (dotted) and −1.2 (solid) and (b) nrel = 0.8 (dotted) and −0.8 (solid). Force profiles can 
significantly vary for NRI and PRI particles possessing the same (in modulus) electromagnetic 
parameters. In (b), total reflection occurs for θi > 0.9273 rad. 

When considering a global coordinate system, each ray of our focused Gaussian beam 
impinges on the particle with a different angle relative to the optical axis [15,16]. Thus, we 
must consider total axial and transverse forces relative to a tridimensional global coordinate 
system. Although the details concerning the calculation of total axial and transverse forces are 
outside the scope of this paper, the reader is referred to [15,16] for further details. 

The total transverse force exerted on a PRI particle is plotted in Fig. 3(a) as function of 
both nrel and the distance r between the centre of the particle and the optical axis of a 
circularly polarized focused Gaussian beam (θNA = 66°) with a beam waist w0 = 1 μm. The 
particle is assumed to be on a plane transverse to the optical axis and containing the focal 
point of the beam (the beam waist centre). The radius of the particle is a = 10λ, λ = 1064 nm. 
One can see attractive (negative) forces for all nrel just above 1 and repulsive (positive) forces 
for 0 < nrel < 1. Obviously, Ftransverse = 0 for nrel = 0, as expected. It is interesting to note the 
inversion of this transverse force from attractive to repulsive for high refractive index 
particles. In terms of ray optics, this is due to the fact that, as nrel increases, the power PR of 
the first reflected ray also increases, thus with a prevailing of repulsive forces [8]. As for the 
ripples, this is due to the vector nature of the optical force and, at least in the Mie regime, this 
phenomenon is associated with interference and resonance effects [17,18]. Figure 3(b) is a 
contour plot of Fig. 3(a). 

Figure 4 is the equivalent of Fig. 3 for a NRI particle with the same parameters as before. 
In this situation, the transverse total force profile can be interpreted as follows: regardless of 
nrel >



 1 or nrel <


 1, if the centre of the particle is close to the focus (beam waist centre), then 
it will always be attracted to the optical axis because transverse forces are attractive for low r. 
As |nrel| increases from zero, the range of possible r that still leads to attractive forces also 
increases but, above a certain distance, this force becomes repulsive, making optical trapping 
difficult to be achieved. There are no specific (constant) nrel that makes Ftransverse = 0, as in the 
PRI case (for nrel = 1). Finally, one can compare the amplitudes of Ftransverse in both figures. 
Attractive Ftransverse forces can be much stronger than these same forces acting on the 
equivalent PRI particle. For n = −1.31, Ftransverse|max = −7.24 (a.u.), whereas for n = 1.31, 
Ftransverse|max = −2.96 (a.u.), more than two times the expected force for a conventional PRI 
particle. Resonance effects are also observed for NRI particles with high refractive indices. 
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Fig. 3. (a) Ftransverse as a function of both nrel and r for a PRI particle under the influence of a 
focused Gaussian beam with w0 = 1000 nm. The particle has a radius a = 10λ, where λ = 1064 
nm is the wavelength of the beam. When nrel = 1, Ftransverse is always zero, as expected. (b) The 
contour plot of (a). Arbitrary units are adopted. 

 

Fig. 4. (a) Ftransverse as a function of both nrel and r for a NRI particle under the influence of the 
same laser beam and electromagnetic parameters as in Fig. 3. (b) The contour plot of (a). The 
same arbitrary units of Fig. 3 are adopted. 

Although the results for geometrical optics are very interesting, we now go beyond ray 
optics and present a generalized theory capable of furnishing a deep physical meaning for the 
differences observed for the optical forces in NRI and PRI optical trapping. This is 
accomplished in the next sections by adopting the generalized Lorenz-Mie theory (GLMT). 

3. Review of the generalized Lorenz-Mie theory and its extension to negative refractive 
indices 

The GLMT is an extension of the Lorenz-Mie theory [19] for an incident beam of arbitrary 
shape and consists in expanding the incident electromagnetic field into a series of vector 
spherical harmonics, the coefficients of which being calculated by imposing the boundary 
conditions at the surface of the sphere and by making use of similar expressions for the 
scattered and internal fields [20–22]. 

In the framework of the Lorenz-Mie theory, in which the incident beam is a plane wave, 
the Mie scattering coefficients are known to be given as [23] 

#133019 - $15.00 USD Received 6 Aug 2010; revised 13 Oct 2010; accepted 17 Oct 2010; published 4 Nov 2010
(C) 2010 OSA 1 December 2010 / Vol. 1,  No. 5 / BIOMEDICAL OPTICS EXPRESS  1290



 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

rel n rel n p n n rel
n

rel n rel n p n n rel

n n x x x n x
a

n n x x x n x

µ ψ ψ µ ψ ψ

µ ψ ξ µ ξ ψ

′ ′−
=

′ ′−
  (1) 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

p n rel n rel n n rel
n

p n rel n rel n n rel

n x x n x n x
b

n x x n x n x

µ ψ ψ µ ψ ψ

µ ψ ξ µ ξ ψ

′ ′−
=

′ ′−
  (2) 

where μp and μ are the permittivity of the particle and its surrounding medium, respectively, 
nψ  and nξ  are Riccati-Bessel functions, n (not to be confused with nrel, the relative refractive 

index) is an integer that ranges from 1 to + ∞ and x = ka is the size parameter of the particle, k 
being the wave number of the incident wave. The primes indicate derivatives with respect to 
the argument of the Riccati-Bessel functions. These relations should remain the same 
regardless of the scatter being a NRI or a PRI particle, because the tangential components of 
the fields at the interface (surface of the particle) are not affected by the negative refractive 
index of the particle [9]. 

When an arbitrary beam is considered, the coefficients in the GLMT expansion are 
weighted, according to the shape of the beam, by the well-known beam-shape coefficients 
(BSC’s) of the GLMT which, by adopting the integral localized approximation, can be written 
as [24,25] 

 ( )
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0 0
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which depends only on the radial component of the electric and magnetic fields Er and Hr, a 
localization operator Ĝ  and normalization factors m

nZ , -n < m < n. Note that, in Eqs. (3) and 
(4), spherical coordinates (r,θ,φ) are assumed and, therefore, the incident beam must be 
changed to a spherical coordinate system accordingly (in this paper, we tacitly assume that the 
reader is familiarized with both the mathematical background and the notation adopted herein. 
As the BSC’s are not altered whether the particle is of NRI or PRI nature, we shall not go into 
further details (for additional information see, e.g., [20–22,24,25] and references therein). All 
simulations and results presented in this paper assume a first-order Davis approximation for a 
focused Gaussian beam, as adopted by previous works [26,27], so that ,

m
n TEg  and ,

m
n TMg  in 

Eqs. (3) and (4) read, for a + z-propagating linearly x-polarized beam, as [26,27]: 
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where m
nk are normalization factors, ,

Davis
j pΨ  and DavisF  are functions of the spatial coordinates 

(x0,y0,z0) of the beam (relative distance between the beam waist centre and the centre of the 
spherical particle) and its parameters in an spherical coordinate system [27]. δij is the 
Kronecker delta symbol. For circularly polarized focused Gaussian beams, the BSC’s can be 
easily evaluated by considering symmetry relations [28]. 
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Let us turn our attention to Eqs. (1) and (2) and present, for the first time, the extension of 
the Mie scattering coefficients for a NRI particle. It is well known that resonance effects can 
be observed when their denominators approaches zero [23]. This can be mathematically 

represented by two transcendental equations: ( ) ( ) ( ) ( )( )n rel n rel p n rel nn x n x x n xψ ψ µ ξ µ ξ′ ′=  

and ( ) ( ) ( ) ( )( )n rel n rel rel n p nn x n x n x xψ ψ µ ξ µ ξ′ ′=  for an and bn, respectively. Because nrel/μp 
is always positive, regardless of nrel being positive or negative, the right side of both equations 
remains unaffected whether we replace nrel by –nrel. On the other hand, the left side will be 
affected by this change in sign, and its slope will be reshaped, i.e., the size parameter 
associated to the peaks of an and bn will be different for a NRI and a PRI particle with the 
same (in modulus) refractive index. Note that this change of sign also affects both numerators 
in Eqs. (1) and (2), so that, in general, an and bn will differ significantly from the PRI case. 

As an example, suppose a lossless and simple dielectric spherical PRI particle with  
nrel = 1.33. Figure 5 shows Re(an) and Im(an) for n = 1, 4, 9 and 16 and 15 < x < 35, while  
Fig. 6 is the equivalent of Fig. 5 for nrel = −1.33. We can conclude that, for a specific size 
parameter, i.e., given a PRI particle of fixed radius, the Mie scattering coefficients an will 
radically differ from the NRI analogue, the same being valid for the coefficients bn. 

 
Fig. 5. Real (solid, red) and imaginary (dashed, blue) parts of the Mie scattering coefficient an 
as a function of the size parameter x for nrel = 1.33 and (a) n = 1, (b) n = 4, (c) n = 9 and (d) n = 
16. In the framework of the GLMT, the coefficients an and bn modulates the phase and 
amplitude of the scattered fields. 

Thus, the scattered fields will have completely distinct spatial intensity distributions, as it 
was already pointed out by ray optics in section 2, where the fundamental difference between 
nrel > 0 and nrel < 0 lied solely in the inversion of Snell’s law. Here, the difference in the 
values of the Mie scattering coefficients accounts for an entire reshape (spatial intensity 
distribution) of the scattered fields due to its phase and amplitude contributions to each 
propagating mode. 
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As already pointed out, we can safely use Eqs. (1) and (2) for the scattering problem of a 
NRI spherical particle just in the same manner that it has being used so far for the 
conventional PRI case. Care should be exercised, however, by adequately replacing the 
permeability of the particle by its negative value whenever nrel < 0 or, equivalently, np < 0. 
This ensures that the results will effectively represent the correct scattered electromagnetic 
fields for a NRI particle. The other two possibilities, viz., (i) when nm < 0 and np > 0 or (ii) nm 
< 0 and np < 0 could also be analyzed, but we must consider that achieving a liquid medium 
for which nrel < 0 is even more challenging than achieving negative refractive index for a solid 
particle. 

 

Fig. 6. Real (solid, red) and imaginary (dashed, blue) parts of the Mie coefficient an as a 
function of x for a NRI particle with nrel = −1.33 and (a) n = 1, (b) n = 4, (c) n = 9 and (d) n = 
16. Different phase and amplitudes are observed in comparison with Fig. 5, so that the 
scattered fields will also be different. 

Regardless of the feasibility of such negative refractive index liquid medium, it can be 
shown from Eqs. (1) and (2) that imposing nm < 0 and np > 0 or nm > 0 and np < 0 (or even 
replacing conditions nm > 0 and np > 0 by nm < 0 and np < 0) leads to the same Mie scattering 
coefficients and, therefore, to the same force profiles. Accordingly, in the ray optics approach, 
these conditions imply in the same multiple reflection/refraction diagrams observed in 
previous works [15,16]. 

4. Radiation pressure calculations for NRI particles 

In section 2, it was shown that the inversion of Snell’s law leads to different axial force 
profiles due to the linear momentum transfer from the incident beam to the particle. In this 
section, we numerically calculate the radiation pressure cross-sections in rectangular 
coordinates Cpr,z, Cpr,x and Cpr,y for right-hand circularly polarized focused Gaussian beams, 
one of the most common laser beams used in optical trapping experiments and also one of the 
first to provide full tridimensional trapping of biological particles. A + z-propagation is 
assumed. The radiation pressure cross-section Cpr,z is, then, the longitudinal cross-section 
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component along the optical axis of the beam, while Cpr,x and Cpr,y are the transverse 
components, all of which being intrinsically related to the optical force exerted by the laser 
beam on the particle. 

Radiation pressure formulas for arbitrary laser beams incident on spherical particles are 
readily available from literature and are usually expressed as [29,30]: 
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and the coefficients , , , ,, , ,p p p p
n m n m n m n mU V S T  read as 

 1 1
, , , , , ,p p p p p

n m n m n TM m TM n m n TE m TEU a a g g b b g g∗ + ∗ ∗ + ∗= +   (10) 

 1 1
, , , , , ,p p p p p

n m n m n TE m TM n m n TM m TEV ib a g g ia b g g∗ + ∗ ∗ + ∗= −   (11) 

 ( ) ( )1 1
, , , , , ,p p p p p

n m n m n TM m TM n m n TE m TES a a g g b b g g∗ + ∗ ∗ + ∗= + + +   (12) 

 ( ) ( )1 1
, , , , , .p p p p p

n m n m n TE m TM n m n TM m TET i b a g g i a b g g∗ + ∗ ∗ + ∗= + − +   (13) 
A Fortran code was developed for calculating Eqs. (7)–(13) by using the Mie coefficients 

from Eqs. (1) and (2) and the associated BSC’s from Eqs. (5) and (6). This code is available 
under request. We used Eqs. (1) and (2) to generate the right-hand circularly polarized BSC’s, 
in accordance with [28], but we have not used any symmetry relation. This is more time 
consuming, but leads to a more ease-to-read program for those not familiar with the GLMT. 

4.1. Longitudinal radiation pressure cross-section Cpr,z 

During the first experiments on optical trapping, Ashkin noticed that negative values of Cpr,z 
were possible, depending on the longitudinal distance between the beam waist centre and the 
centre of the sphere. This was due the gradient of the intensity of the beam [16]. In fact, full 
tridimensional traps demand Cpr,z = 0 at some specific point where Cpr,x and Cpr,y are also zero, 
thus providing stable equilibrium. For Cpr,z always non-negative, a point where Cpr,z would 
eventually be zero corresponds to a point of unstable equilibrium. It is still possible, however, 
to trap a particle even for Cpr,z ≥ 0, but this would require, for example, alternative schemes, 
such as levitation traps [31–35]. Here, we shall not be concerned in obtaining an efficient 
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tridimensional trap for NRI particles, but to examine some differences in their properties 
relative to PRI particles. 

Let us consider that the beam waist centre of a right-hand circularly polarized Gaussian 
beam is located somewhere along the line (0,0,z0). The beam has λ = 0.5 μm, beam waist w0 = 
5 μm and illuminates a particle of nrel = 1.5. Figure 7(a) shows Cpr,z as a function of z0 for 
several diameters of the particle, viz., d = 5, 10, 20 and 40 μm. The profiles observed are just 
those expected and already studied by other authors [29]. 

 
Fig. 7. Longitudinal radiation pressure cross-section Cpr,z as a function of z0 for x0 = y0 = 0 for 
(a) nrel = 1.5 and (c) nrel = 1/1.33. (b) and (d) are the NRI analogues of (a) and (c), respectively. 

Now, suppose a NRI particle with nrel = −1.5. Figure 7(b) presents the new Cpr,z profiles. 
Although the locations of maxima of Cpr,z occurs at about the same position z0, we can see the 
disparate values in magnitude for a specific d when compared to the PRI case in Fig. 7(a). For 
example, for d = 40 μm, maxima of Cpr,z(NRI) can be seen at z0 ≈5.64 × 10−4 m and −5.45 × 
10−4 m, whereas maxima of Cpr,z(PRI) occur at z0 ≈6.04 × 10−4 m and −5.84 × 10−4 m. The ratio 
of these maxima are Cpr,z(NRI)|z0 ≈5.64 × 10-4 m/Cpr,z(PRI)|z0 ≈6.04 × 10-4 m ≈4.31 and Cpr,z(NRI)|z0 ≈-5.45 × 10-4 

m/Cpr,z(PRI)|z0 ≈-5.84 × 10-4 m ≈4.17, representing a much stronger longitudinal radiation pressure for 
the NRI particle. It must be emphasized that the longitudinal radiation pressure cross-section 
can be significantly different for the NRI case when compared with the conventional PRI 
analogue. Again, this is due to the numerical differences in the Mie coefficients observed in 
the previous section or, equivalently, due to the distinct reflection/transmission diagram for an 
incident ray in ray optics. 
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As a second example, Fig. 8(a) is a reproduction of Fig. 8.11 from [36] using the same 
parameters of the original work, i.e., a right-hand circularly polarized focused Gaussian beam 
with λ = 0.3682 μm, w0 = 1.8 μm and a = 3.75 μm. Six values of nrel are used. The analogous 
NRI case with the same relative refractive indices (in modulus) is shown in Fig. 9(b) for 
comparison. The following comments can be made regarding both figures: first, one notices 
negative longitudinal radiation pressure cross-section Cpr,z for positive nrel [Fig. 8(a)], whereas 
Cpr,z > 0 for all nrel < 0 [Fig. 8(b)]; second, the difference in magnitude (order of 102) of Cpr,z 
for the NRI and the PRI cases and the similitude of the slopes (superposed curves) for small 
variations of nrel when nrel < 0. Physical interpretations regarding the shape of the slopes of 
Cpr,z in Figs. 7 and 8 for nrel < 0, however, remains the same for nrel > 0 and can be found 
elsewhere [29]. 

 

Fig. 8. (a) Cpr,z for several values of nrel assuming a PRI particle with radius a = 3.75 μm 
immersed on a focused Gaussian beam with λ = 0.3682 μm and w0 = 1.8 μm. The same relative 
refractive indices were used in (b) for a NRI particle with the same radius as (a). The beam is 
shifted along its optical axis, i.e., x0 = y0 = 0. 

It must be emphasized that negative longitudinal radiation pressure cross-section can also 
be achieved with lossless NRI spherical particles, including the case nrel = −1, which has been 
under intense investigation due to its incredible, new and until recently unimaginable 
possibility of applications, such as the famous perfect lens idealized by Pendry [37]. So, 
consider as a final example a focused Gaussian beam with λ = 1064 nm (a typical injurious 
laser beam used in biological experiments) and spot w0 = 1000 nm. These values coincide, at 
least for an on-axis beam, with the approximate theoretical limit of applicability of the 
localized beam model to GLMT calculations, as the parameter s = 1/kw0 = 0.169 [26,27]. 
Calculations of Cpr,z for nrel = −1 for size parameters sp = 50, 100, 150 and 200 (viz., diameters 
of d ≈8.47, 16.93, 25.40 and 33.87 μm, respectively) are shown in Fig. 10, and we can clearly 
see negative values of Cpr,z and three points of stable equilibrium (indicated by arrows) 
concerning only the longitudinal pushing of the particle. 

4.2. Transverse radiation pressure cross-sections Cpr,x and Cpr,y 

In common optical trapping systems, auxiliary and biological particles always have positive 
refractive index, being an easy task to predict their direction of displacement due to the 
previous knowledge of the gradient intensity of the incident beam. Then, if the relative 
refractive index between the particle and its surrounding medium nrel > 1, an optical trap is to 
be expected with the particle localized at points of stable equilibrium or, as an another 
perspective, at high intensity regions of the laser beam. On contrary, if nrel < 1, then it will 
invariably be directed away from these high intensity regions. In the case of focused Gaussian 
beams, this last situation can be interpreted as a limitation in achieving an efficient trap. There 
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are, of course, other types of beams (viz., Bessel beams) where a set of spatial positions (low 
intensity regions of the beam) exists in which a particle possessing nrel < 1 can still be trapped, 
again allowing three- or two-dimensional manipulation of particles. 

 

Fig. 9. (a) Cpr,x for several diameters of a PRI particle with nrel = 1.5. The beam is shifted along 
x with y0 = z0 = 0, x0 being the transverse distance between the optical axis and the centre of the 
particle. (b) The NRI analogue with nrel = −1.5. 

 

Fig. 10. (a) Cpr,z for a NRI particle with nrel = −1 and four different size parameters. The 
incident beam is a focused Gaussian beam with λ = 1064 nm and w0 = 1.0 μm. The beam is 
shifted along its optical axis, i.e., x0 = y0 = 0. 

While the direction of displacement of a positive refractive index particle is relatively 
simple to determine, the situation for a negative refractive index particle is a little bit more 
involved. Suppose, for example, a NRI particle with a given refractive index np. We can 
conclude, by recalling the previous analysis of section 2, that the relative distance between the 
focal point and the centre of the particle is a determinant variable in calculating axial forces. 
While these forces seem to be attractive for short relative distances, as the particle goes away 
from the focus, they may become repulsive, a behavior which would never be expected for a 
PRI particle but that can be easily predicted for a NRI particle using simple ray optics 
considerations. Thus, we cannot try to use only gradient intensity considerations (together 
with the well-known repulsive/attractive critical limits nrel < 1 and nrel > 1) when studying 
NRI particles immersed in a positive refractive index medium. 

#133019 - $15.00 USD Received 6 Aug 2010; revised 13 Oct 2010; accepted 17 Oct 2010; published 4 Nov 2010
(C) 2010 OSA 1 December 2010 / Vol. 1,  No. 5 / BIOMEDICAL OPTICS EXPRESS  1297



In the framework of the GLMT, axial forces are intrinsically related to the transverse 
radiation pressure cross-sections Cpr,x and Cpr,y, so that we can use Eqs. (5) and (6), adapted 
for a right-hand circularly polarized focused Gaussian beam [28], in the set of Eqs. (8)–(13) 
for calculating Cpr,x and Cpr,y for a focused Gaussian beam, just as we did for the longitudinal 
radiation pressure cross-section Cpr,z in the last subsection. Let us again assume a right-hand 
circularly polarized Gaussian beam, with λ = 0.5 μm and w0 = 5 μm, illuminating a particle of 
nrel = 1.5. Figure 9(a) shows how Cpr,x changes as we shift the beam along x for four possible 
diameters d = 40, 20, 10 or 5 μm of a PRI particle with nrel = 1.5. Because now it is the beam 
which is spatially displaced (in section 2, by varying γ we were shifting the particle in space), 
here Cpr,x > 0 (Cpr,x < 0) implies in attractive (repulsive) forces for x0 or y0 > 0. As we can 
clearly see, PRI particles will always be pushed towards the high intensity region of the beam, 
regardless of its diameter. But if we replace them by NRI particles with nrel = −1.5, as in  
Fig. 9(b), besides the raise in amplitude, a new axial force profile appears. As we had already 
pointed out, depending upon the diameter of the NRI particle and its relative distance to the 
optical axis (beam waist centre), both attractive and repulsive axial forces are exerted on the 
particle. For example, when d = 40 μm and x0 < −16.6 μm, the particle will suffer an influence 
of a repulsive force whose maximum, however, is only 18.3% that of the attractive force 
observed for −16.6 μm < x0 < 0. Figure 11 corresponds to Fig. 9, but for particles whose 
relative refractive index is smaller than |1| (nrel =  ± 0.5), and Figs. 12 and 13 are the 
equivalent of Figs. 9 and 11, respectively, but now for Cpr,y and a displacement of the laser 
beam along y. 

 

Fig. 11. Cpr,x for several diameters of a PRI particle with (a) nrel = 0.5 and (b) nrel = −0.5. This 
corresponds to Fig. 9 but now for |nrel| < 1. 

If we focus our attention into Figs. 9(a), 11(a), 12(a), and 13(a), we will see the expected 
profile for a PRI particle under the influence of a right-hand circularly polarized focused 
Gaussian beam: whenever nrel > 1, the gradient of intensity of the beam generates attractive 
forces and, for 0 < nrel < 1, these forces are repulsive. But there is something more to which 
we should look at carefully, regarding the optical regime and the vector nature of the incident 
beam. First, the amplitudes observed in Figs. 9(a) and 12(a) and also in Figs. 11(a) and 13(a) 
are close to each other, so that we should ask ourselves if this is correct. Looking back at the 
literature, Gouesbet et al [29] found different amplitudes for these same parameters. But a 
moment thought would lead us to conclude that this should not happen because of the 
symmetry of the incident beam, its polarization (circular) and the electromagnetic properties 
and the ratio d/λ of all particles (e.g., for d = 5 μm, d/λ = 10, which would ultimately define 
the lower limit of applicability of geometrical optics). Obviously, if a linearly polarized beam 
is used, then Cpr,x and Cpr,y differ in magnitude, depending upon the relative direction of 
displacement between the beam waist centre and the centre of the particle. These 
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considerations are immediately extended to the NRI case, viz., Figs. 9(b), 11(b), 12(b), and 
13(b). 

 
Fig. 12. (a) Cpr,y for several diameters of a PRI particle with nrel = 1.5. The beam is shifted 
along y with x0 = z0 = 0, y0 being the transverse distance between the optical axis (beam waist 
centre) and the centre of the particle. (b) The NRI analogue with nrel = −1.5. 

 

Fig. 13. Cpr,y for several diameters of a PRI particle with (a) nrel = 0.5 and (b) nrel = −0.5. This 
corresponds to Fig. 12 but now for |nrel| < 1. 

Because linear momentum is transferred to a NRI particle in a slightly different way, the 
Mie scattering coefficients alter the values of the longitudinal and transverse radiation 
pressure cross-sections in Eqs. (7) and (9), respectively, thus leading to new force profiles. 
Thus, the GLMT reflects the new scattered field for a NRI particle. 

When the relative refractive index is −1.5, one can see from Figs. 9(b) and 12(b) that both 
repulsive and attractive transverse forces can act on the particle, depending on the relative 
distance x0 between the beam waist centre and the centre of the particle. Because d/λ is always 
higher than or equal to 10, a qualitative explanation can be done, based on geometrical optics 
considerations. First, consider d = 40 μm. This implies d/w0 = 8, so that, for short relative 
distances x0, the rays impinge the particle with small incidence angles, thus giving rise to 
attractive forces. This can be better appreciated by considering individual transverse forces 
analogous to Fig. 2 but for nrel = −1.5, graphically represented by a dotted curve in Fig. 14. As 
the beam waist centre gets close to x0 = 17 μm, i.e., close to the radius of the particle, 
repulsive individual transverse forces prevails, as expected from Fig. 14 for high incidence 
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angles. Notice, however, that the peak of this repulsive force (Cpr,x ≈2.70 × 10−12 m2 at x0 
≈19.41 μm) is relatively low compared to the peak observed in the region of attractive force 
(Cpr,x ≈14.69 × 10−11 m2 at x0 ≈9.11 μm). As d/w0 decreases, so does the amplitude of the 
transverse force. When d/w0 = 1 (e.g., d = 5 μm), repulsive forces will take place for x0 > 7.52 
μm but, due to their low amplitude, this is not readily seen in Fig. 9(b). For Figs. 11(b) and 
13(b), we must further consider the fact that, above θi > 0.5236 rad, an incident ray will suffer 
total reflection and, according to the solid curve in Fig. 14, higher repulsive forces can be 
expected. This is, in fact, true, as shown for Cpr,x and Cpr,y in Figs. 11(b) and 13(b), 
respectively. Finally, because of total reflection, it is not always possible to trap NRI particles 
with −1 < nrel < 0. For the parameters used, NRI particles with nrel = −0.5 and d = 5 or 10 μm 
would always be directed away from the beam waist centre. Thus, as |nrel| decreases, repulsive 
forces prevail. This is illustrated in Fig. 15 for six different values of nrel. 

 

Fig. 14. Normalized (over nmP/c) individual transverse force Ftransverse as a function of θi for 
both nrel = −1.5 (dotted) and −0.5 (solid). For the last case, total reflection occurs for θi > 
0.5236 rad. 

 
Fig. 15. Cpr,x as a function of the displacement x0 and the relative refractive index nrel for a NRI 
particle with d = 40 μm. 

5. Conclusions 

Forces and radiation pressure cross-sections were systematically analyzed for lossless 
negative refractive index spherical and simple particles. It was shown, for the first time in the 
literature, both by ray optics and by adopting the generalized Lorenz-Mie theory with the 
integral localized approximation, that the forces and radiation pressure cross-sections behave 
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quite differently due to the new linear momentum transfer characteristic that takes place for 
NRI particles. 

In the ray optics, the inversion of Snell’s law accounts for individual forces whose 
dependence with the incidence angle reveals new capabilities in trapping NRI particles, 
because both attractive and repulsive forces can happen depending upon how the ray 
impinges the particle. This characteristic is just unrealizable for PRI particles, as the 
transmission angle is always “positive”. In the framework of the generalized Lorenz-Mie 
theory, a NRI particle will present different force profiles when compared to the conventional 
PRI optical trapping because of the new scattered field, theoretically represented by the Mie 
scattering coefficients. 

Negative longitudinal radiation pressure cross-sections can also be obtained in the NRI 
case by suitably choosing the relative refractive index of the particle and its dimensions 
relative to the parameters of the incident laser beam. It is not possible, however, to formulate 
an explanation of NRI optical trapping based solely on the relative refractive index of the 
particle and the gradient intensity of the beam in the optical regimes of this paper. 

The fact that repulsive transverse forces prevail over attractive ones as the relative 
distance between the beam waist centre and the centre of the NRI particle may turn NRI 
optical trapping into an experimentally more difficult task, because care would have to be 
exercised in spatially manipulating the laser beam so that an effective optical trap is produced. 

All results presented here were obtained for a (right hand) circularly polarized focused 
Gaussian beam. Other types of polarization could be implemented, as well as other laser 
beams such as Bessel and Laguerre-Gaussian beams. In fact, the whole theory of optical 
trapping, including resonance effects and torque properties, must be revised for NRI optical 
trapping. These studies are currently under investigation. 

The question of how to experimentally achieve a homogeneous, linear, isotropic, lossless 
spherical negative refractive index material is still open. Resonant tridimensional 
metamaterial structures possessing negative refractive index have been theoretically 
demonstrated, but the difficulty of realizing theoretical and experimental non-resonant 
tridimensional NRI materials may be overcome in the forthcoming years. 
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