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Abstract

Background: Emergence of antibiotic resistance is a global public health concern. The relationships between
antibiotic use, the gut community composition, normal physiology and metabolism, and individual and public
health are still being defined. Shifts in composition of bacteria, antibiotic resistance genes (ARGs) and mobile
genetic elements (MGEs) after antibiotic treatment are not well-understood.

Methods: This project used next-generation sequencing, custom-built metagenomics pipeline and differential
abundance analysis to study the effect of antibiotic monotherapy on resistome and taxonomic composition in the
gut of Balb/c mice infected with E. coli via transurethral catheterization to investigate the evolution and emergence
of antibiotic resistance.

Results: There is a longitudinal decrease of gut microbiota diversity after antibiotic treatment. Various ARGs are
enriched within the gut microbiota despite an overall reduction of the diversity and total amount of bacteria after
antibiotic treatment. Sometimes treatment with a specific class of antibiotics selected for ARGs that resist antibiotics
of a completely different class (e.g. treatment of ciprofloxacin or fosfomycin selected for cepA that resists
ampicillin). Relative abundance of some MGEs increased substantially after antibiotic treatment (e.g. transposases in
the ciprofloxacin group).

Conclusions: Antibiotic treatment caused a remarkable reduction in diversity of gut bacterial microbiota but
enrichment of certain types of ARGs and MGEs. These results demonstrate an emergence of cross-resistance as well
as a profound change in the gut resistome following oral treatment of antibiotics.
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Background
Currently, multiple health organizations including the U.
S. Centers for Disease Control and Prevention [1], the
World Health Organization [2] as well as others [3] have
identified proliferation of antimicrobial resistance as a glo-
bal crisis. Antibiotics are globally used in the treatment of
bacterial infections [4–6] and typically kill most antibiotic-
susceptible bacterial populations in a relatively short time.
However, a small fraction of bacteria can survive and rep-
resent a major concern for emergent antibiotic resistance
and recurrent infection [7]. Dependent upon mechanism
of action, resistant bacteria may revert to a non-resistant
state in the absence of antibiotics [8]. However, when
novel genetic mutations or resistance conducting plasmids
appear, antibiotic-resistant strains can persist in the ab-
sence of this selective pressure contributing to the reser-
voir of antibiotic resistance [9].
The gut microbiome has been increasingly implicated

in disrupting health and behavior [10–14]. Recent mo-
lecular studies discovered that the taxonomic compos-
ition of human intestines is host specific [15, 16],
relatively stable over a time [16, 17], and linked to many
human diseases [18–22]. Microbial communities in the
gut produce extensive amounts of metabolic products,
interact intimately with human cells, and play an im-
portant role in maintaining many physiological processes
and functions [23, 24]. These communities can be dra-
matically disturbed after the oral use of antibiotics and
lead to profound alterations in the relevant abundance
of different bacterial species, the rise of new species,
and/or complete eradication of existing species [9, 25,
26]. While these are unintended off-target effects of anti-
biotic use, large shifts in community composition of bac-
teria linked to health and well-being [27] could have
potential repercussions for the host, including over-
growth of antibiotic-resistant species. In addition, it is
presently unclear how large changes in taxonomic com-
position might influence the spread and stabilization of
antibiotic resistant genes in bacterial populations par-
ticularly with use of antibiotics [9]. The resistome may
potentially change drug efficacy and safety through in-
teractions that modulate drug metabolism [28–30]. One
long-standing concern is that the use of single or mul-
tiple systemic antimicrobials may select for resistant mu-
tants in the gut flora, creating the threat of new
untreatable infections. Recently CDC launched Anti-
biotic Resistance (AR) Solutions Initiative to understand
resistance and to explore new strategies and innovative
approaches to slow antibiotic resistance [27]. The first
step in this process is to better understand the shifts in
community composition in response to antibiotic treat-
ments in the context of treatment for infection.
The public platform of analysis, Quantitative Insights

into Microbial Ecology (QIIME), and other 16S rRNA

and 18 s rRNA sequence analyses are widely used for gut
microbiome taxonomical composition analysis [31, 32].
Metagenome sequencing and analysis have been used
extensively for studying microbial communities as well
as for bacterial gene mutation and genome variation
analyses [33]. MetaPhlAn is a public platform computa-
tional tool for profiling the composition of microbial
communities (Bacteria, Archaea, Eukaryotes and Vi-
ruses) from metagenomic shotgun sequencing data at
the species-level [34]. Metaxa2 is a software tool capable
of extracting partial and full-length small subunit (16S/
18S) rRNA and large subunit (23S/28S) sequences from
metagenomic shotgun sequencing data and assign taxo-
nomic classification to the extracted sequences by com-
paring them against publicly available reference
databases [35]. In the present project, metagenome se-
quencing data derived from the gut of mice treated for
urinary tract infection (UTI) were analyzed using
MetaPhlAn [34] and Metaxa2 [35] to characterize com-
munity composition at different timepoints during anti-
biotic treatment. Changes in gut resistome were studied
by mapping sequences against the Comprehensive Anti-
biotic Resistance Database (CARD) [36]. The UTI mouse
model was created by instilling uropathogenic E. coli
into the urinary bladder via transurethral catheterization.
Beginning 24 h after bacterial inoculation, treatment was
initiated with ampicillin (amp), ciprofloxacin (cipro), or
fosfomycin (fosfo); each a commonly used antibiotic in
clinical UTI treatment [37]. The UTI model was used as
UTI is one of the most common bacterial infections en-
countered in clinical practice in Europe and North
America and E. coli was used as the experimental organ-
ism because it is the most prevalent (75–95%) bacteria
found in common clinical UTI [37].
The initial objectives of the work include tracking the

evolution of resistance of the pathogens in the bladder
and characterizing the similarities and differences in in-
fluence of antibiotics with differing mechanisms of ac-
tion on the gut resistome and community composition.
While work about the first objective was published else-
where [38], this manuscript reports findings about the
second objective and characterizes the changes in the
gut microbiome. The initial endpoints of
characterization were shifts in gut microbial community
and changes in relative abundance of recognized anti-
biotic resistance genes, or identification of emergent
antimicrobial-resistant genes.

Results
Antibiotic-induced changes in taxonomic composition of
mouse gut
Figure 1a-c presents the control samples allowing a
comparison of species relative abundance before treat-
ment with each antibiotic. There was individual

Xu et al. BMC Genomics          (2020) 21:263 Page 2 of 18



variability in the identified species, but each control
group had a very similar species abundance pattern. A
total of 36 bacterial species were identified from the gut
microbiota of the three control groups of mice using the
Metaphlan2 [34] reference genome (Supplementary
Table 7).
After treatment, each antibiotic produced increased

relative abundance in different species but also shared a
large common list of species that were eradicated or un-
detectable after treatment. Figure 2a-c shows that in
each antibiotic exposure the microbiota of treated ani-
mals generally clustered together and were hierarchically
separable from control animals that clustered together
separately from the treated mice indicating that treated
mice microbiotas were more similar to one another than
to their respective controls with the exception of two
treated mice in the post 24-h amp exposure group that
clustered with the control group. This could be due to
an inconsistency in delivery of the antibiotic dosage,
variation in absorption by the individual mice or a vari-
ation in ampicillin sensitivity of gut community of indi-
vidual mice. This general trend in sample clustering was
verified with ordination plots (PCoA) generated using
16S rRNA and ARG abundance data, Figs. 6 and 8,

respectively. Naïve (uninfected) and infected controls
consistently clustered together across all the antibiotic
studies. This is confirmed with a PCoA plot (Supple-
mentary Fig. 1) based on Bray–Curtis dissimilarity of
ARG abundances of all control and treatment samples
from all three antibiotics.
In Fig. 3a-c, the change in species relative abundance

caused by the antibiotic exposures can be visualized.
With each antibiotic treatment, a large percentage of the
bacteria identified pre-treatment were absent or greatly
diminished after treatment. Observing the change in
heatmap patterns, impacted species appear similar across
the three antibiotics, although as with abundance of spe-
cies in controls, there was some variability. Fosfo had an
immediate and persistent influence on the number of
species detected. By 24-h after a single treatment, all the
change that was to take place had occurred and the
remaining species became the prevalent species for the
remainder of the experiment. This change in community
composition is depicted in PCoA plot (Fig. 6c) as well.
Box plots in Fig. 5c shows changes in Shannon Diversity
where a similar pattern was observed for fosfo. With
cipro treatment, major changes were also observed
within 24 h, but it took 48 h for some of the bacterial

Fig. 1 Control group of gut microbiome analysis. Heatmap representing log-transformed relative abundance of the bacterial species in each
control group (a, b, c). A total of 36 individual bacteria species were identified from the three control groups
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species to be maximally impacted. The species that as-
sumed prominence post-cipro were different from those
that did so after fosfo treatment. Figures 5b and 6b con-
firm a similar trend for cipro. Treatment with amp re-
sulted in more variation in the timing of effects. By 48 h
post-treatment, all the influence of treatment had been
seen in the species that were diminished and in those
that rose to highest relative abundance. PCoA plot and
box plots (Figs. 5a and 6a) show a gradual shift in the
relative abundance and Shannon Diversity index of the
community. Multiple Acinetobacter species became part
of the enriched microbiota following amp treatment, but

similar Acinetobacter population enrichment was not
observed with either cipro or fosfo. The most prominent
emergent species noted for fosfo were greatly diminished
with amp and cipro treatment.
Twenty-four hours after treatment with amp, most

species noted in controls were still detectable as shown
in Supplementary Table 4, while after 48 to 72 h of treat-
ment, most pre-treatment species (including Eubacter-
ium plexicaudatum, Lachnospiraceae bacterium 3 1
46FAA, Lachnospiraceae bacterium 8 1 57FAA, Oscilli-
bacter sp. 1–3, Oscillibacter unclassified, Anaerotruncus
sp. G3–2012, Anaerotruncus unclassified, Ruminococus

Fig. 2 a-c Heatmap with dendrogram demonstrating log-transformed relative abundance and clustering of microbial species in the mouse gut.
Relative abundance influenced by Ampicillin (a), Ciprofloxacin (b), or Fosfomycin (c) after 24, 48, and 72 h of treatment. Note the clustering
together of control versus the clustering together of treated mice. Species were ordered in each graph to facilitate visualization of clustering.
Color indicates the relative abundance data after log transformation
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torques, Butyrivibrio unclassified, and Enterococcus fae-
calis) were undetectable except for Mucispirillum schae-
dleri and Streptococcus thermophilus that were
detectable in limited samples. Interestingly, Escherichia
species, such as Escherichia coli and Escherichia unclas-
sified were still present after 72 h of treatment and mul-
tiple species of Acinetobacter, such as Acinetobacter
pittii calcoaceticus nosocomialis, Acinetobacter ursingii
and Acinetobacter unclassified arose to become the
prominent species in the 48- and 72-h treatment groups
(Figs. 2a and 3a). Acinetobacter genus is one of the gen-
era that was found to have a statistically significant en-
richment (based on 16S rRNA analysis) after treatment
with Ampicillin (Table 1A).
Cipro impacted species are captured in Supplementary

Table 5. After 24 h treatment, unclassified species of
Anaerotruncus, Oscillibacter, Dorea were minimally de-
tected with species of Eubacterium, Lachnospiraceae,
Oscillibacter, Anaerotruncus, and Escherichia undetect-
able after 48 h treatment. Though its abundance in the
control group was not high, E. coli was not identified in
the microbiota 24 h after treatment with cipro while

Lactobacillus johnsonii, Lactobacillus reuteri, Lactobacil-
lus murinus emerged as the dominant bacteria increas-
ing in relative abundance (Figs. 2b and 3b). 16S rRNA
analysis confirms this result in that the Lactobacillus
genus showed a statistically significant increase in rela-
tive abundance (Table 1B).
The fosfo influence on species relative abundance is

shown in Supplementary Table 6. Pseudomonas unclassi-
fied, Mucispirillum schaedleri, Eubacterium plexicauda-
tum, Anaerotruncus sp. G3–2012 and Anaerotruncus
unclassified, Oscillibacter sp. 1–3 and Oscillibacter un-
classified, the majority species of Lactobacillus, such as
Lactobacillus johnsonii and Lactobacillus reuteri were
reduced by over 90% with fosfo exposure, although
Lactobacillus murinus was an exception experiencing
minimal change. E. coli was not identified in the 24-h
post-treatment group. With large groups of the bacterial
population undetectable, two species, Parabacteroides
goldsteinii and Bacteroides ovatus, were enriched becom-
ing the prominent species (Figs. 2c and 3c). Parabacter-
oides and Bacteroides are some of the genera that had a
statistically significant increase in abundance (Table 1C).

Fig. 3 a-c Heatmap presentation of antibiotic modulation of the log-transformed relative abundance of microbial species in the gut by Ampicillin
(a), Ciprofloxacin (b), or Fosfomycin (c) after 24, 48, and 72 h of treatment, respectively. These heatmaps represent the species listed in the same
order across each heatmap to allow comparisons. Color indicates the relative abundance data after log transformation
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Table 1 A-C Top 10 statistically significant changes in genera after oral treatment with Ampicillin (A), Ciprofloxacin (B), or Fosfomycin (C)

For each antibiotic cohort, the top 10 statistically significant changes in bacterial genera determined using edgeR are listed in tabular form. Plus sign in the last column
indicates that the genera count increased after treatment and a minus sign indicates a decrease in the count after treatment. A complete list of these genera for each
cohort/treatment combination along with their log2 fold change, p-value & FDR values reported by edgeR are provided in Supplementary Table 2A-I
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Changes in resistome of mouse gut after antibiotic
treatment
Despite the reduction in taxonomy diversity after anti-
biotic treatment, Fig. 7 and Table 2 show an increased
relative abundance for many ARGs. This is against a
background of a large number of ARGs declining in
relative abundance in samples treated with either amp,
cipro or fosfo antibiotics (Supplementary Table 3A-I).
For example, cepA beta-lactamase sharply increased in
relative abundance after the first treatment at 24 h in
both cipro and fosfo samples. cmeB and tet37 that were
undetectable in control samples show a slight increase in
relative abundance after fosfo treatment. Rifampicin re-
sistant ARGs Nocardia rifampin resistant beta-subunit
of RNA polymerase (rpoB2) and Bifidobacterium adoles-
centis rpoB conferring resistance to rifampicin (rpoB)
were detected in cipro samples and their relative abun-
dance in treated samples at 24, 48 and 72 h increased
progressively compared to controls. A similar pattern is
seen with respect to ugd and mupB ARGs that were de-
tected in fosfo samples. Like the taxonomy composi-
tions, the resistome compositions (ARG profiles) are
generally similar within samples collected at the same
time point after treatment with an antibiotic (Fig. 8).
Change of MGEs, which have been implicated in the ac-
cumulation and dissemination of ARGs (Figs. 9 and 10),
were also checked. Relative abundance of transposases
increased sharply by more than 40% after second (48 h)

Table 2 A-C All statistically significant ARGs that are enriched
after oral treatment with Ampicillin (A), Ciprofloxacin (B), or
Fosfomycin (C)

ARG Increase/
Decrease

24 h 48 h 72 h

A. Ampicillin

efrB – + –

LlmA 23S ribosomal RNA methyltransferase – + –

macB – – +

mupA – + –

mupB – + –

patB – + –

Streptomyces rishiriensis parY mutant
conferring resistance to aminocoumarin

– + –

tetB(46) – + –

tetB(60) + + –

B. Ciprofloxacin

ANT(6)-Ib + – –

arlR + – +

Bifidobacterium adolescentis rpoB conferring
resistance to rifampicin

+ + –

cepA beta-lactamase + – +

cmeB + – –

efrA + – –

efrB + – +

lsaB – + –

macB + – –

mupA – + +

Nocardia rifampin resistant beta-subunit of RNA
polymerase (rpoB2)

+ + +

Streptomyces rishiriensis parY mutant conferring
resistance to aminocoumarin

+ – –

TaeA – + –

tet(W/N/W) + – –

tetA(60) + – +

tetB(P) + – –

tetM + – –

tetW + – –

ugd + – –

vanRC + – +

vanRG – + –

vanRI – + –

vanSC + – –

vanWG + – –

vanYG1 – + –

C. Fosfomycin

ANT(6)-Ib + – +

Table 2 A-C All statistically significant ARGs that are enriched
after oral treatment with Ampicillin (A), Ciprofloxacin (B), or
Fosfomycin (C) (Continued)

ARG Increase/
Decrease

24 h 48 h 72 h

Bifidobacteria intrinsic ileS conferring resistance
to mupirocin

– + –

catB10 + – –

cepA beta-lactamase + + +

cmeB + + +

macB + – –

msbA + + +

mupB + + +

Nocardia rifampin resistant beta-subunit of RNA
polymerase (rpoB2)

+ + –

TaeA + + –

tet37 + + +

ugd + + +

For each antibiotic cohort, all bacterial ARGs with a statistically significant
increase in relative abundance at any timepoints are listed in tabular form.
Plus sign in the column for a timepoint indicates that the ARG count increased
after administering treatment at that timepoint and a minus sign indicates a
decrease in the count
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and third (72 h) treatments with cipro (Fig. 10b). In amp
treated 24-h samples integrases showed a slight increase
(Fig. 9a) but this increase was not sustained in later
treatments. Treatment with fosfo caused a complete de-
cline in the relative abundance of integrases (Fig. 9c).

Discussion
Although it is known that oral use of antibiotics can dis-
rupt the gut microbiome [22] and could potentially gen-
erate antibiotic resistance [8], many factors critical to
the gut community-host relationships remain obscure.
The scope and complexity of the gut community com-
position and its impact on host physiology remains an
evolving story. The adverse or beneficial results of
changes in the taxonomic composition are not well
understood. And, the role of the gut microbiome in
emergent antibiotic resistance has not been thoroughly
characterized. This investigation focused on making pre-
liminary contributions toward defining some of these re-
lationships. Use of a shotgun metagenome sequencing
approach over 16S/18S rRNA sequencing allowed for
identification of gut microbial species as well as the
components of resistome and changes within the resis-
tome in as little as 24 h after antibiotic exposure.
After antibiotic treatment, large populations of bacterial

were no longer detectable and the total amount of bacter-
ial genomic DNA was greatly reduced. In some mice, in-
sufficient DNA was acquired for sequencing, thus some
numbers in analyses are less than the total number of an
experimental group. According to the data generated, the
relative abundance of Acinetobacter in all control groups
was very low, in most cases being undetectable. However,
in the groups treated for 48 to 72 h with amp, several spe-
cies of Acinetobacter increased in relative abundance be-
coming the predominant species (Table 1A, Fig. 3a). Multi
species of Acinetobacter are pathogens and are very resist-
ant to antibiotics [39]. Emergence of these species with
amp treatment could present a resistant infection risk to
the individual and to the community. Increase in Acineto-
bacter relative abundance was not seen following cipro
and fosfo treatment. This result is consistent with clinical
experience with amp. Not only is resistance to amp much
more prevalent than resistance to cipro or fosfo across
most bacteria, but the sensitivity of Acinetobacter to amp
is much less than to cipro or fosfo [37, 40, 41]. In groups
treated with cipro (24, 48 and 72 h), Lactobacillus species
exhibited high relative abundance (Table 1B, Fig. 3b)
which could be due to the intrinsic resistance harbored by
Lactobacilli to cipro [42]. Since Lactobacillus species are
widely used in probiotics [43] and food production [44],
their resistance to cipro could be problematic as they
could serve as a potential reservoir for antibiotic resist-
ance. Enrichment of Parabacteroides goldsteinii and Bac-
teroides ovatus is observed in samples treated with fosfo

(Table 1C, Fig. 3c). B. ovatus has been implicated in the
pathogenesis of irritable bowel diseases (IBD) [45]. Gut
community dysbiosis induced by fosfo treatment and sub-
sequent selection of B. ovatus could potentially increase
the risk of gastrointestinal side effects.
Although the majority of the ARGs that were detected

in control groups were undetectable after treatment with
antibiotics, a few ARGs were selected for and increased
in relative abundance, especially in samples treated with
cipro and fosfo (Fig. 7 and Table 2). Ciprofloxacin is a
fluoroquinolone, works by binding to DNA gyrase and
prevents unwinding of DNA for transcription [46].
ARGs that are selected for after cipro treatment are
resistant to a different class of antibiotics. ARGs rpoB
and rpoB2 are resistant to rifampicin and cepA beta-
lactamase confers resistance to beta-lactam antibiotics
like ampicillin. Similar results were reported in an earlier
genome-wide study (Lázár, 2014) on Escherichia coli that
mapped out a cross-resistance network for several differ-
ent classes of antibiotics in which E. coli treated with
cipro was found to have decreased sensitivity to amp
and vice versa [47].
Fosfomycin’s mechanism of action involves suppress-

ing bacterial cell wall synthesis [48] and the ARGs it se-
lected for are resistant to various antibiotics like beta-
lactams (cepA), tetracycline (tet37), mupirocin (mupB)
and peptide antibiotics (ugd). Fosfo also selected for
cmeB an efflux pump membrane transporter conferring
resistance to several different classes of antibiotics. Efflux
pumps are a part of intrinsic resistance mechanism of
bacteria and are used to decrease levels of different mol-
ecules including antibiotics within the cell by pumping
them out of bacteria [49, 50]. Evolution of more power-
ful efflux pumps has been a cause for concern due to
their capability to confer cross-resistance to multiple an-
tibiotics. A recent study (Yao, 2016) reported on a new
pump RE-CmeABC in Campylobacter jejuni with in-
creased virulence that can be transferred horizontally
[51]. Within the CmeABC efflux system, cmeB protein
plays a role in identifying and binding to the substrate.
Therefore, mutations in cmeB are hypothesized to be re-
sponsible for enhanced activity of the RE-CmeABC
pump [51].
Transposases are proteins encoded by transposons that

allows the transposons to move from plasmid to
chromosome or vice versa and could carry antibiotic re-
sistant gene payload [52, 53]. Interestingly, after treat-
ment with cipro a significant jump in the relative
abundance of transposases was observed and could sig-
nify an increased potential for horizontal gene transfer
in the gut community of cipro treated mice. Further
studies will need to be designed to verify this result and
explore the increase in transposon driven HGT events in
cipro treated mice.
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This study observed an increase in relative abundance
of certain ARGs that were present in control mice as
well as new ARGs that were only detectable in treated
samples. However, the ability to detect newly emergent
resistance genes and mobile genetic elements was lim-
ited by the number of known resistance genes within the
CARD database [54] and MGEs catalogued in Mobile-
GeneticElementDatabase [55], respectively. This project
was not positioned to detect totally novel and previously
undescribed ARGs and MGEs. Given that multiple ave-
nues of genetic material exchange have been recognized
in bacteria, the increased risk for this concentration of
genetic resistance to move to other bacteria in either the
gut community or the host’s environment merits future
investigation. Moreover, these findings were the result of
a 3-day treatment regimen in experimental animals.
Other regimens and durations of exposure may have a
different impact on the taxonomic composition and
resistome and will require further study to characterize
the off-target effects of antibacterial treatment.

Conclusions
In summary, oral antibiotic therapy caused a longitudinal
decrease in the overall gut microbial diversity along with
enrichment of specific taxa and ARGs in UTI mouse
model. Results from this model also point to a selection
pattern with respect to ARGs that result in emergence of
cross-resistance to multiple classes of antibiotics after 24
to 72 h of treatment with cipro and fosfo.

Methods
Animal model and antibiotic exposure
All animal studies were conducted in 8–10 weeks old fe-
male Balb/c mice purchased from Taconic Farms

(Derwood, MD), housed and cared for via the Guide for
the Care and Use of Laboratory Animals 8th Edition,
under an Institutional Animal Care and Use Committee
approved protocol in the AAALAC accredited Animal
Program of the White Oak Federal Research Center. To
limit the individual variation of the gut microbiome in
experimental groups, the same strain, sex and age mice
were obtained from the same vendor and the same loca-
tion in the vendor facility. Mice were maintained on the
same diet with social housing conditions for each experi-
ment. Contamination from the sampling process and
equipment were considered and procedures established
to mitigate bacterial contamination. Within these experi-
ments, control mice demonstrated minimal variation in
microbiome composition despite using different batches
of mice for each antibiotic exposure (Fig. 1 and Supple-
mentary Fig. 1). Three cohorts of 20 mice each were se-
lected, and each cohort contained 12 treatment and 8
control group animals. The control group was split into
two sub-groups – naïve and infection with four animals
in each group. Naïve group animals were neither in-
fected nor treated with antibiotic and infection group
animals were infected but not treated with antibiotic.
Mice were randomly allocated to treatment groups that
were subsequently housed together in groups of either 4
(controls) or 6 (treated) mice. The ascending, unob-
structed UTI model was used as previously described
[56, 57] with slight modification using CFT073 uro-
pathogenic E. coli acquired from ATCC (Manassas, VA,
U.S.). Antibiotics, ampicillin trihydrate (Sigma, St. Louis,
MO, U.S.) 200 mg/kg in 0.1M HCl, ciprofloxacin 5%
oral suspension (Bayer HealthCare, Whippany, NJ, U.S.)
50 mg/kg and Monurol® (Fosfomycin tromethamine,
Forest Pharmaceutical, INC, St Louis, MO, U.S.) 1000

Table 3 Experimental design

Details about number of animals present in each cohort and time points at which the antibiotic was administered, and samples harvested
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mg/kg in water were all administered orally. Food and
water were allowed ad libitum. Literature was used to
design in-house pharmacokinetic studies [58–60] and re-
sults from those studies were used to select dosing con-
centrations and intervals for the present study in which
amp and cipro were given twice daily at 8-h intervals
and fosfo was given once daily for three consecutive
days. Fecal samples were collected at euthanasia from
the distal ileum and proximal colon after 24 h (1 day),
48 h (2 days) and 72 h (3 days) of treatment. After 72 h,
all control group animals were euthanized, and fecal
samples harvested. Humane euthanasia was achieved by
exsanguination under isoflurane anesthesia and pneumo-
thorax. The details of the experiment design are pro-
vided in Table 3.

Genomic DNA extraction and metagenome shotgun
sequencing
After 1, 2, or 3 days of treatment with fosfo, cipro, or amp,
stool samples were obtained from the intestinal tract at

sacrifice. Genomic DNA was extracted using QIAamp
DNA Stool Mini kit (Qiagen, MD), modified in the first
step using Tungsten Carbide Beads 3mm (Qiagen, Str. 1,
40,724 Hilden, Germany) in sample disruption with Tis-
sueLyser LT (Qiagen, MD) for high-speed shaking at 50hz
for 1min. Stool samples were then homogenized in lysis
buffer and heated for 10min at 70 °C and PCR Inhibitors
were removed by inhibitEX Tablets (Qiagen, MD). Super-
natants were enzymatically digested using proteinase K
(Qiagen, MD) for 5min at 70 °C. Genomic DNA was puri-
fied using QIAamp mini spin column. DNA quality was
evaluated with an Agilent 2100 Bioanalyzer A260/280 and
quantified with a Qubit 4 Fluorometer (Thermo Fisher
Scientific, NY). Seventy-five nanograms of genomic DNA
was used for library preparation following the Nextera
DNA library prep reference guide 2016. Tagmented DNA
was purified using DNA Clean & ConcentractorTM-5
(Zymo research, Irvine, CA) and library DNA was purified
by AMPure XP beads (Beckman Coulter Life Science,
Brea, CA). Incubation and thermal cycling were

Fig. 4 a-c Change in the number of statistically significant genera detected in treatment samples compared to control samples based on 16S
rRNA analysis. The 16S rRNA sequences were re-constructed from metagenome shotgun and taxonomy was assigned using Metaxa2 and SILVA
database. metagenomeSeq used to find bacterial genera that were statistically significant, differentially represented between control and
treatment time points (24, 48, and 72 h) after oral treatment with Ampicilin (a), Ciprofloxacin (b), or Fosfomycin (c). Green bars represent number
of genera at each time point (24, 48, and 72 h) that exhibited a decreased relative abundance compared to control. Red bars represent number
of genera that exhibited increased relative abundance. A list of these genera for each cohort/treatment combination along with their fold change
values is provided in Supplementary Information Table 2a-i
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performed on a Thermo Scientific™ Arktik™ Thermal Cy-
cler (Thermo Fishere Scientific, Waltham, MA). Size range
was assessed on Agilent 2100 bioanalyzer (Agilent Tech-
nology, Santa Clara, CA) with High Sensitivity DNA Ana-
lysis Kit (Agilent Technology, Santa Clara, CA) and
quantified on the Qubit 4 Fluorometer. Library pools for
sequencing according to NextSeq System Denature and
Dilute Libraries Guide (Illumina, 2016). Metagenome se-
quencing was performed using NextSeq 500 sequencing
system ((Illumina, San Diego, CA) with paired-end (Ampi-
cillin & Ciprofloxacin) or unpaired-end (Fosfomycin)
shotgun sequencing [61]. Not all animals yielded usable
sequencing data due to premature loss of the animal, lim-
ited stool, or insufficient amount of extracted DNA. The
number of useable samples in the sequencing analyses
were as follows: Ciprofloxacin: there were a total of four
control samples (3 naïve plus 1 infection), the groups har-
vested after 24 and 48 h of treatment were comprised of 4
samples each, while the group sacrificed after 72 h of
treatment contained only 3 samples; Fosfomycin: the con-
trol group contained four animals (2 naïve plus 2

infection), the treatment groups that are harvested at 24,
48, and 72 h of treatment each contained 4 samples;
Ampicillin: there were a total of 6 (3 naïve plus 3 infec-
tion) controls, the groups sacrificed after 24 and 72 h of
treatment contained 3 samples each while the group sacri-
ficed after 48 h of treatment contained 4 samples. Samples
were never pooled in any of the experiments. Principle
Coordinate Analysis (PCoA) plot (Supplementary Fig. 1)
based on Bray–Curtis dissimilarity of ARG abundances of
all samples from three cohorts demonstrates that both
naïve and infection control group samples are similar to
each other as they congregate together in a single group.
Due to this reason, during downstream analysis, naïve and
infection control groups within each cohort were consid-
ered as single group of control samples.

Metagenomic analysis
Illumina bcl2fastq [62] version 2.18.0.12 was used to
demultiplex and trim adapter sequences. Read quality ana-
lysis was done with FastQC version 0.11.3 [63] and quality
trimming was performed using Trimmomatic version 0.39

Fig. 5 a-c Longitudinal change of microbiome diversity after antibiotic treatment. Time-dependent change of the microbiome diversity,
calculated as the Shannon diversity index based on 16S rRNA reads found by Metaxa2, is shown for the Ampicillin (a), Ciprofloxacin (b), or
Fosfomycin (c) cohorts. The diversity index of controls for Ampicillin and Fosfomycin are higher compared to ciprofloxacin. Ampicillin treatment
caused a gradual decrease in diversity whereas Fosfomycin treatment caused a steep decline in diversity at 24 h and a small but gradual recovery.
Ciprofloxacin treated samples at 24 h were more diverse than control, but the diversity was reduced at 48 and 72 h
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[64] with parameters SLIDINGWINDOW:4:15 MINLEN:
30. BWA version 0.7.16 [65] was used to remove the
mouse DNA by mapping reads against mouse genome
(GRCm38). Unmapped SAM files containing bacterial
reads were converted to FASTQ format using SamTo-
Fastq command in Picard Tools version 2.1.1 [66]. Sam-
ples with close to 10 million bacterial reads were retained
for downstream analysis. Sample information and read
counts at different stages of the process are shown in
Supplementary Table 1. Metagenome sequencing data
have been deposited in the National Center for Biotech-
nology Information (NCBI) BioSample Submission Portal
as Bioproject PRJNA478457 and SRA accession number
SRP152866.
makeblastdb command from NCBI BLAST+ version

2.3 [67] was used to create a custom BLAST database
from Comprehensive Antibiotic Resistance Database
[54] protein homolog model version 3.0.3 (CARD)
FASTA file and blastx command was used to character-
ized the resistome by mapping reads against this custom

BLAST database. BLAST results with an E-value cut-off
of 10− 5, identity ≥80% and query coverage ≥50% were
retained and counted to generate a list of ARG abun-
dances. MGE counts were determined by mapping bac-
terial reads against MobileGeneticElementDatabase [55]
using Bowtie2 version 2.3.2 [68] with parameters -D 20
-R 3 -N 1 -L 20 -i S,1,0.50. If both forward and reverse
reads of a paired-end sequence map to the same MGE,
then it was counted as one; if they both map to different
MGEs, they were counted towards those specific MGEs
[69]. MGE counts in each sample were aggregated based
on MGE type.

Taxonomic analysis
16S rRNA reads were extracted and taxonomic counts
were generated from shot-gun metagenomic samples
using Metaxa2 [35] version 2.2 with default settings. The
classification database used by Metaxa2 was based on
SILVA SSU database [70] version 132 reference data-
base. Metaxa2 classifies sequences based on Hidden

Fig. 6 a-c Principle Coordinate Analysis (PCoA) reveals the time-dependent shift of metagenome profiles after oral treatment with Ampicillin (a),
Ciprofloxacin (b), or Fosfomycin (c). For each antibiotic cohort, the bacteria genera identified from each sample (solid dots) were subject to PCoA
and the first and second principle coordinates are shown as X and Y axis, respectively. Within all three cohorts, there was a general trend in the
way samples grouped together. Control samples grouped together and away from treated samples (24, 48, 72 h) indicating a change in genus
profiles after treatment. The only exception being ampicillin where two of the 24 h samples grouped with controls
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Fig. 7 (See legend on next page.)
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Markov models (HMMs) and requires generation of
HMM profiles and custom BLAST database. For this
purpose, Metaxa2 companion tool called Metaxa2 Data-
base Builder [71] was used to generate a custom
Metaxa2 classification database in conserved mode with

the following parameters --cutoffs 0,75,78.5,82,86.5,94.5,
98.65 --full_length 0 --plus T. Metaxa2 output was fur-
ther processed using Metaxa2 Diversity Tools [72]
(metaxa2_ttt and metaxa2_dc) to generate genus abun-
dance matrix for each cohort.

(See figure on previous page.)
Fig. 7 A-C Relative abundance of enriched ARGs (CARD database; 36) that are statistically significant and differentially represented at all three
timepoints (24, 48, or 72 h) in samples treated with antibiotics. Relative abundance of ARGs that were enriched and had a statistically significant
change at any of the three timepoints (24, 48, or 72 h) after oral treatment with Ampicillin (A1, LImA23s ribosomal RNA methyltransferase; A2,
efrB, a part of the EfrAB efflux pump; A3, parY mutant conferring resistance to aminocoumarin), Ciprofloxacin (B1,Bifidobacterium adolescentis
rpoB conferring resistance to rifampicin; B2, Nocardia rifampin resistant beta-subunit of RNA polymerase (rpoB2); B3, Streptomyces rishiriensis parY
mutant conferring resistance to aminocoumarin), or Fosfomycin (C1, ugd, required for the synthesis and transfer of 4-amino-4-deoxy-L-arabinose
(Ara4N) to Lipid A; C2, cmeB, the inner membrane transporter of the CmeABC multidrug efflux complex; C3, mupB, an alternative isoleucyl-tRNA
synthetase conferring resistance to mupirocin) are shown. The height of each bar corresponds to the average relative abundance of ARG for that
specific timepoint. The relative abundance was calculated as the percentage of reads mapped to each ARG within the sample. Statistically
significant change of relative abundance was defined as those pairwise comparisons between control and any time points with an FDR < =0.05 (*
FDR < =0.05, ** FDR < = 0.01, *** FDR < = 0.001, **** FDR < = 0.0001). Only representative ARGs are shown. The full list can be found in Table 2

Fig. 8 a-c Principle Coordinate Analysis (PCoA) based on Bray–Curtis dissimilarity of ARG abundances between samples reveals the time-
dependent shift of antibiotic resistant gene (ARG) profiles after oral treatment with Ampicillin (a), Ciprofloxacin (b), or Fosfomycin (c). For each
antibiotic cohort, the first and second principle components are shown on X and Y axis, respectively. For all three cohorts, there was a general
trend that control samples grouped together along either the X and/or Y axis, indicating control samples had similar profiles of ARG. All
treatment samples for Ciprofloxacin and Fosfomycin clustered along the Y axis away from control samples indicating a dramatic shift in the ARG
profiles compared to control samples. On the other hand, Ampicillin treated samples showed a gradual shift in ARG profiles with 24-h treatment
samples clustering along with controls, 48-h samples scattered in the middle and 72-h samples clustered at the other end of the plot
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Metaphlan2 profiles the compositional species of gut
microbial communities with accurate organismal relative
abundance relying on ~ 1M unique clade-specific marker
genes from metagenomic shotgun sequencing data. Vi-
ruses and other organism were removed and just bacteria
species were kept, and abundance of bacteria was adjusted
for further analysis. A heatmap was created for each anti-
biotic using R with ggplot2 package to demonstrate clus-
tering of samples based on the similarity of compositional
species profiles (log-transformed relative abundance
across all identified species). Hierarchical clustering was
performed and a dendrogram was created using
unweighted pair group mean with arithmetic mean
(UPGMA) algorithm (53, 54, 55). The order of the listed
bacterial species in each heatmap of the Fig. 2 was gener-
ated by clustering the species across samples and was
unique for each antibiotic. These rosters were created to
best depict the clustering (or similarity) of samples. In
subsequent comparisons (the remaining heatmaps), a ros-
ter was created that captured all species identified across
all antibiotics. The order of this roster was standardized to
allow comparisons across antibiotics as well as between
treatments and controls.

Statistical analysis
Analyses were performed in R v.3.6.1 using metagen-
omeSeq [73], edgeR [74], ggplot2 [75] and vegan [76]
packages. Data cleanup was performed by removing low-
abundance features (ARG, MGE and 16S counts) that
were not present in at least two samples and/or con-
tained a count of less than 10 per sample. Samples were
retained for analysis if they contain positive counts for
two or more features. Data normalization to account for
sequencing depth was performed by dividing the abun-
dance counts in each sample by counts-per-million fac-
tor which was obtained by dividing the total number of
sequences in that sample by 1,000,000.
Quasi-likelihood F-test (glmQLFTest function) was per-

formed on the normalized 16S rRNA abundance data
using edgeR [74]. Within each cohort, differentially abun-
dant genera for control vs treatment (24, 48 and 72 h)
groups are considered statistically significant if Benja-
mini–Hochberg false discovery rate is below 0.05. Bar
plots were plotted for each cohort to depict the number of
genera that have a statistically significant fold change
between control and treatment samples in either direction
(Fig. 4). A list of these statistically significant genera is

Fig. 9 a-c Statistically significant change in relative abundance of MGE integrase between control and treatment groups. Relative abundance of
MGE integrase that had statistically significant change after Ampicilin (a), Ciprofloxacin (b), or Fosfomycin (c) treatments. The height of each bar
corresponds to the average relative abundance of integrase for that specific timepoint. The relative abundance was calculated as the percentage
of reads mapped to each MGE within the sample. Statistically significant change of relative abundance was defined as those pairwise
comparisons between control and 24, 48, and 72 h time points with an FDR < =0.05 (* FDR < =0.05, ** FDR < = 0.01, *** FDR < = 0.001, ****
FDR < = 0.0001, ns FDR > 0.05)
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available in Supplementary Information Table 2a-i.
Shannon diversity index was calculated using vegan [76]
package box plots (Fig. 5) depicting the change in Shan-
non diversity were plotted for each of the three cohorts.
The shift in diversity profiles between control and treat-
ment groups were examined using principal coordinates
analysis (PCoA) based on Bray-Curtis dissimilarity values
(Fig. 6).
To test for differentially abundant ARGs and MGEs,

fitZig function in MetagenomeSeq [73] package was
used with all four groups (control, 24, 48 and 72 h) as in-
put to the model. fitZig uses a zero-inflated Gaussian
mixture model and expectation-maximization algorithm
to estimate differential abundance [73]. Contrasts were
made between control and treatment groups (24, 48 and
72 h) to obtain a list of statistically significant (FDR <
0.05) features for each of the three comparisons. For
each cohort, top 5 ARGs based on fold-change across all
three comparison groups were picked and their relative
abundance plotted at different time points of treatment
(Fig. 7). Using ARG abundance data, Bray-Curtis dis-
similarity indices were calculated with vegan [76] pack-
age and principal coordinates analysis (PCoA) was
performed to show the shift in diversity across control
and treatment groups (Fig. 8). Bar plots (Figs. 9 and 10)

depicting changes in relative abundance of statistically
significant (FDR < 0.05) MGEs between control and
treatment groups (24, 48 and 72 h) within each cohort
were plotted.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6665-2.

Additional file 1: Supplementary Figure 1. Principle Coordinate
Analysis (PCoaA) based on Bray–Curtis dissimilarity of ARG abundances
for all sample groups across all three cohorts Ampicillin (A), Ciprofloxacin
(B), and Fosfomycin (C). Supplementary Table 1. Sample read counts.
Supplementary Table 7. Shared species.

Additional file 2: Supplementary Table 2. Statistically significant
genera between control and treatment groups.

Additional file 3: Supplementary Table 3. Statistically significant
ARGs between control and treatment groups.

Additional file 4: Supplementary Table 4. Ampicillin species relative
abundance.

Additional file 5: Supplementary Table 5. Ciprofloxacin species
relative abundance.

Additional file 6: Supplementary Table 6. Fosfomycin relative
abundance.
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Fig. 10 a and b Statistically significant change in relative abundance of MGE transposase between control and treatment groups. Relative abundance of
MGE transposase that had statistically significant change after Ampicilin (a) and Ciprofloxacin (b) treatments. No significant change was detected with
Fosfomycin treatment. The height of each bar corresponds to the average relative abundance of transposase for that specific timepoint. The relative
abundance was calculated as the percentage of reads mapped to each MGE within the sample. Statistically significant change of relative abundance was
defined as those pairwise comparisons between control and 24, 48, and 72 h time points with an FDR <=0.05 (* FDR< =0.05, ** FDR <= 0.01, *** FDR <=
0.001, **** FDR< = 0.0001, ns FDR > 0.05)
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