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An interaction network driven 
approach for identifying 
biomarkers for progressing cervical 
intraepithelial neoplasia
Shikha Suman & Ashutosh Mishra

Overlapping genes across high-grade squamous intraepithelial lesions (CIN2 and 3) and cancer may 
serve as potential biomarkers for this progressive disease. Differentially expressed genes (DEGs) 
of dysplastic (CIN2 and CIN3) and cancer cells were identified by microarray data analysis. Gene 
interaction network was constructed using the 98 common DEGs among the dysplastic and cancer cells 
and analysed for the identification of common modules, hubs and significant motifs. Two significant 
modules and 10 hubs of the common gene interaction network, with 125 nodes and 201 edges were 
found. DEGs namely NDC80, ZWINT, CDC7, MCM4, MCM2 and MCM6 were found to be common in both 
the significant modules as well as the hubs. Of these, ZWINT, CDC7, MCM4, MCM2 and MCM6 were 
further identified to be part of most significant motifs. This overlapping relationship provides a list of 
common disease related genes among pre-cancerous and cancer stages which could help in targeting 
the proliferating cancerous cells during onset. Capitalizing upon and targeting Minichromosome 
maintenance protein complex - specifically the MCM2, MCM4 and MCM6 subunits, ZWINT and CDC7 for 
experimental validation, may provide valuable insights in understanding and detection of progressing 
cervical neoplasia to cervical cancer at an early stage.

Cervical cancer has been reported to be the second deadliest cancer in women worldwide1. Most cases of cervical 
cancer are caused due to infection with human papillomavirus (HPV)2. Cervical cancer is preceded by a long 
phase of morphological alteration in cervical cells known as cervical intra-epithelial neoplasia (CIN), which is 
further characterized as mild (CIN1), moderate (CIN2) and severe (CIN3) cervical dysplasia and finally leading 
to cervical cancer. Papanicolaou test, also known as Pap smear test is mostly employed for the screening and diag-
nosing of cervical neoplasia cells3. However, the Pap test is entirely dependent on manual cytological screening 
and visualization of de-shaped, transformed and altered cervical cells, resulting in high false negative and false 
positive rates4.

Most of the techniques utilized for detection of cervical cancer are visual in nature with cervicography being 
fairly common5,6. Early stages of neoplasia have minimal cytological and histological changes and mostly revert 
back to normal state on their own. So, earmarking the overlapping genes that express differentially at late stages 
of neoplasia and cancer may be a better approach. Utilization of biomarkers in cervical histology and cyto-
logical examination has been shown to overcome false positive and false negative issues. Biomarkers such as 
Marker Of Proliferation Ki-67 (Ki-67), p16IN4a, a tumor suppressor protein in humans encoded by CDKN2A gene 
and BDProExC, a recently developed immunocytochemical assay that targets the expression of topoisomerase 
II-alpha and minichromosome maintenance protein-27 have been suggested as biomarkers for improving the 
clinical performance of cervical cancer screening3. Additionally, HPV L1 Capsid protein and Sirtuin, a nico-
tinamide adenine dinucleotide (NAD+)-dependent histone deacetylase has been proposed as biomarkers for 
estimating the progression of CIN8,9.

The progression and development of complex diseases such as cancer may be caused due to the interaction 
of a group of correlated molecules, rather than the malfunctioning of an individual molecule (gene or protein). 
Hence, analysis of interaction network and identification of network biomarkers becomes critical to isolating 
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disease specific biomarkers for monitoring disease development and progression10. Further, network analysis 
eschews probabilistic measures which results in a more direct identification.

Various gene-based bioinformatics approaches including interacting genes, proteins encoded by genes and 
module analysis of networks have been employed, for revealing various disease progression patterns and mech-
anisms11. In this study, a network was constructed based on gene-gene interaction information of the common 
DEGs among the CIN2, CIN3 and cancer and analyzed for the presence of overlapping genes, common func-
tional modules and crucial pathways. This was achieved by identifying hub genes, significant modules, important 
motifs and relationship among various pre-cancerous and cancerous stage gene sets. The objective of the study 
was to find efficacious genes responsible for the progression of CIN which may be utilized as prospective bio-
markers for early detection of cervical cell neoplasia.

Results
Gene expression profiling of chip dataset GSE63514, which included 24 samples for normal, 22 and 40 samples 
for pre-malignant stages, namely CIN2 and CIN3 respectively and 28 cervical cancer samples, was utilized for 
finding the crucial genes involved in the progression of disease. Noise and error emanating from manual faults 
in the dataset were corrected and normalized by RMA algorithm. Processed data was further scrutinized to 
extract DEGs of CIN2, CIN3 and cervical cancer in Affy package of R, considering the cutoff criteria of adjusted 
p-value < 0.05 and fold change >2. A total of 111, 278 and 660 upregulated DEGs were found in CIN2, CIN3 
and cancer respectively in comparison to normal cervical cells. QQ plots and volcano plots for CIN2, CIN3 and 
cancer genes are shown in Fig. 1.

Overlapping DEGs among the three gene sets of CIN2, CIN3 and cancer were identified. 107 differentially 
expressed genes were found to be overlapping among CIN2 and CIN3. 221 DEGs were found to coincide with 
CIN3 and cancer. A total of 98 DEGs were observed to be commonly overexpressed among in CIN2, CIN3 and 
cancer stages as depicted in Fig. 2(a).

A larger fraction of DEGs were found to be located on chromosome number 1, 3, 10, 12 and 15 (Fig. 2(b)), 
present in nucleus and were protein binding in nature. The DEGs were involved in significant process of cell 
cycle, mitotic processes, DNA metabolic process, organelle fission, mitosis and nuclear division. The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of DEGs revealed their association with cell 
cycle, DNA replication, p53 signaling and oocyte meiosis pathways. Disease enrichment analysis revealed that 
substantial proportion of the DEGs were linked to cancer and viral infections.

Gene-gene interaction network for the common DEGs among CIN2, CIN3 and cancer was constructed and 
visualized in Cytoscape. The interaction network had 125 nodes and 201 edges, which was then analyzed for its 
topology, hubs, modules and motifs.

Functionally related significant modules from the common sub-network were mined with MCODE con-
sidering the MCODE score ≥4 and number of nodes ≥6. Two significant modules with MCODE score 5.6  

Figure 1. Raw intensity plot for the CIN2, CIN3 and cancer samples (a[1], b[1] and c[1] respectively). 
Normalized intensity plot for CIN2, CIN3 and cancer samples (a[2], b[2] and c[2] respectively). Quantile-
quantile plot for CIN2, CIN3 and cancer samples (a[3], b[3] and c[3] respectively). Volcano plot for CIN2, 
CIN3 and cancer samples (a[4], b[4] and c[14 respectively).
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(6 nodes, 14 edges) and 4.8 (6 nodes, 12 edges) were found as depicted in Fig. 3, which were verified by 
ClusterOne (Clustering with overlapping Neighborhood Expansion) plug-in of Cytoscape. It has been shown 
that that the average connection degree of disease related genes are considerably higher than the average degree 

Figure 2. (a) Venn diagram representing the overlapping upregulated DEGs among the CIn2, CIN3 and 
cancer. (b) Location of upregulated DEGs on different chromosomes. Disease enrichment, KEGG enrichment, 
molecular function, biological process and cellular component of upregulated DEGs (c–g respectively) 
considering adj p-value < 0.05.

Figure 3. BisoGenet network representing the interaction of genes, their translational product and regulation. 
The hub genes are represented in yellow circles while the genes are represented in blue circles and proteins in 
pink squares.
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of overall human interactome depicting their participation in complex functional processes11. CDK1 was found to 
exhibit maximum degree in the network. Other hub genes were MCM2, MCM6, AURKA, NDC80, MCM4, CDC7, 
CDN2A, ZWINT and RGAP1.

To solve the complicated gene-gene interaction network, network motifs were found out using Motif 
Discovery plug-in of Cytoscape. Network motifs are small connected sub-network patterns, which are expressed 
in higher frequencies in a network than would be expected for a given random network. These motifs are noticea-
bly overrepresented and describe definite crucial functional aspects12. The statistical significance of the extracted 
motifs was calculated using z-score and standard significance profile. The motifs were ranked on the basis of 
Significance profile (SP) score. The motifs with 4, 5, 6 and 7 nodes and highest SP score (Fig. 4) were considered 
for further investigation as shown in Table 1. The common genes among the significant modules, hubs and the 
motifs with highest SP score were, namely MCM2, MCM6, MCM4, CDC7 and ZWINT. These five genes were 
finally proposed as the biomarkers for CIN progression to cervical cancer.

The regulatory elements of the proposed biomarkers MCM2, MCM6, MCM4, CDC7 and ZWINT were 
extracted using DiRE (distant regulatory elements of co-regulated genes). 6 potential regulatory elements includ-
ing 3 intergenic, 2 introns and 1 promoter were found regulating the proposed biomarkers on chromosome 1, 2, 
8 and 10. Additionally, 51 transcription factors (TFs) were found to be regulating the proposed biomarkers. Most 
significant TFs being the RSRFC2, AMEF2, TBP, CEBPGAMMA and PXR. A list of regulatory elements for the 
proposed biomarkers is presented in Table 2.

The interacting proteins of the proposed biomarkers were found using Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING). The 5 proposed biomarkers were found to be interacting with each other 
except the interaction of MCM2 with ZWINT. CDC7 has the largest number of transcription factor regulating 
the gene as depicted in Fig. 5.

Heatmap for the finalized biomarkers namely MCM2, MCM4, MCM6, CDC7 and ZWINT in normal samples, 
CIN2, CIN3 and cancer samples is depicted in Fig. 6. The expression intensities of these genes were observed to 
be increasing gradually for CIN2, CIN3 and cancer when compared to normal healthy cervical cells.

Additionally, for cross validating the proposed biomarkers, another GEO microarray dataset GSE64217 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64217) was used. The validation dataset included 2 
samples for normal cervical cells, 2 samples for CIN (grade 2–3) cell samples and 2 samples for cervical cancer. 
The DEGs were extracted considering the cutoff criteria of adj p-value < 0.05 and FC >2. 2676 DEGs for CIN 
(grade 2–3) and 2075 DEGs for cervical cancer were extracted. 1105 DEGs were found to be overlapping between 
CIN (grade 2–3) and cancer. The adj P-value (FDR) and logFC of the proposed biomarkers in the validation set 
in depicted in Table 3.

The overlapping DEGs were further mapped in gene-gene interaction network using BisoGenet in Cytoscape 
to analyze for significant hubs and modules. The BisoGenet network comprised of 1105 nodes and 4426 edges. 
The proposed biomarkers were found to be the significant hubs with larger degrees in the network with MCM2 
exhibiting the degree of 86, MCM4 exhibiting the degree of 22, MCM6 exhibiting the degree of 23, CDC7 exhib-
iting the degree of 15 and ZWINT exhibiting the degree of 20. The biomarkers were also the part of significant 
modules with score 5.455, 5.2 and 3.143 as depicted in Table 4.

In order to rank and screen the significant genes for diagnosis of cancer, random forest approach can be 
used13. After processing the data and extracting common genes among CIN2, CIN3 and cancer, 116 probe ids 

Figure 4. (a) Hub genes of the interaction network with their connectivity degrees. Two significant modules of 
the interaction network with score 5.6 and 4.8 (b,c respectively). Most significant motifs with node 4, 5, 6 and 7 
with highest SP scores (d–g respectively).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64217
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Motif pattern Motif z-score
Significance 
profile

0111101111011110 6.27 1

0111110111110101110011000 2.922 1

011111101110110110111000111000100000 2.790 0.029407115

011111101110110110111001111000100100 15.00 0.158102767

011110101110110110111001111000110000 4.47 0.063399209

011111101111110110111000111000110000 5.750 0.047114625

0111100101110011011001110010111000000010010000010 75.75 0.700390184

0111110101110011011001110000111000010000010000010 12.85 0.118812064

0111110101110111011001110000111000010000000100000 5.3 0.049004198

0111111101110011011001110000111000010000001000000 5.50 0.050853413

0111100101110011010101110000110001000101010000010 3.05 0.028200529

0111100101110011011001110010111000100010000000100 39.5 0.365219964

0111111101111011011001110000111000011000001000000 8.833 0.081670581

0111100101110011011001110011111000000010000001000 56.00 0.517780202

0111110101110111011001110010111000010010000100000 2.985 0.027077131

0111110101111011011001110001111000111100000001000 26.00 0.240397951

0111111101110011011001110010111000010010001000000 3.5 0.032361263

0111110101110011011001110011111000010010000001000 9.3 0.085988498

0111110101110011011001110010111000010010010000010 2.22 0.020526287

0111110101110011011001110001111000010000010001010 11.00 0.101706825

Continued
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Motif pattern Motif z-score
Significance 
profile

0111110101111011011011110000111000011000000010000 4.25 0.039295819

0111111101110111011001110010111000010010001100000 5.00 0.046230375

Table 1. Significant motifs with their z-score and significance profiles.

Regulatory element Type Score Locus Gene
Candidate transcription factor binding 
sites

chr1:91771706–91772840 Intergenic 4.135 chr1:91643029–91920542 CDC7

HNF3ALPHA, HNF4_DR1, 
HNF4ALPHA,
AMEF2, RSRFC4, HMEF2, AML, PEBP, 
AML1, STAT6, FREAC2, FOXO3, 
CREBATF, CHOP,
PXR, E2F1DP1RB, E2F1DP1, E2F4DP1, 
TBX5, RFX1, PAX3, RFX1, STAT3, 
RBPJK, LXR_DR4, MYOGNF1, 
IK1, STAT6, XPF1, RFX1, BACH2, 
CDPCR3HD, ACAAT

chr1:91919420–91920093 Intergenic 1.633 chr1:91643029–91920542 CDC7
STAT4, TBP, LHX3, HMEF2, 
AMEF2, TBP, CHX10, FOXD3, TBP, 
CEBPGAMMA, POU1F1, TBP, RSRFC4, 
CMYB, PXR

chr10:57027586–57028282 Intergenic 0.26 chr10:56789214–58787407 ZWINT
GC, TBP, PAX3, PITX2, TCF4, MTATA, 
CLOX, TAL1BETAE47, TAL1BETAITF2, 
GZF1, MTATA, DBP

chr2:136325765–136325950 Intron 0.016 chr2:136311296–136380628 MCM6 ATF4

chr2:136350550–136350647 Promoter 1.318 chr2:136311296–136380628 MCM6
E2F1DP1RB, E2F1DP1, E2F1DP2, 
E2F4DP1, E2F4DP2, E2F1DP1RB, 
E2F1DP1, E2F1DP2, E2F4DP1, E2F4DP2

chr8:49050687–49050827 Intron 1.251 chr8:49034582–49083547 MCM4 SOX9_B1, CEBPGAMMA,

Table 2. List of regulatory elements for the proposed markers.

Figure 5. Regulatory network constructed using the proposed biomarkers, their regulating transcription 
factors and the interacting proteins. The proposed biomarkers are represented in pink color. Interacting protein 
are depicted in yellow squares and the regulating transcription factors are depicted in blue triangles.
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corresponding to 98 common genes dataset were trained by Random Forest (RF) method to validate the proposed 
biomarkers. The importance of each gene was calculated, ranked and the smallest set of genes was extracted. 
Importance variables index was used as indicator to rank the variables based on their significance in influencing 
the response.

The importance of individual variable to the model is evaluated to find the subset of variables that are more 
important than the rest. This method measures the amount each variable improves the split criterion. Decision 
tree tries to maximize this quantity when they select variables to put as nodes in the tress. Three out of five, i.e. 
MCM2, MCM4 and CDC7 was found to be the smaller subset with variable rank less than 30. Importance of 
individual variable and confidence in class prediction plots are represented in Supplementary Figs S1 and S2 
respectively.

Additionally, the differential probes for CIN2 with normal cells, CIN3 with normal cells and cervical cancer 
with normal cells were implemented in bagged decision tree and validated. Four out of five genes viz. MCM4, 
MCM6, CDC7 and ZWINT were validated for CIN2. 3 out of 5 viz. MCM2, CDC7 and ZWINT for CIN3 and 2 
out of 5 viz. MCM2 and MCM6 for cancer were validated.

Discussion
Understanding the progression of disease is a complex process. An integrative approach is required for the identi-
fication of biomarkers for this progressive disease. In this study, we constructed a gene-gene interaction network 
of the DEGs common among HSIL and cancer cells and analyzed the network for significant modules, hubs and 
motifs. The proposed biomarkers responsible for the progression of CIN to cancer were further analyzed for their 
interacting proteins and their regulatory genes. All of the five proposed biomarkers, namely MCM2, MCM4, 
MCM6, CDC7 and ZWINT were found to interact with each other except the interaction of MCM2 with ZWINT. 
Additionally, the expression of the proposed biomarkers were found to be regulated by number of transcription 
factors. Nine of the most important transcription factors were found to be regulating CDC7. Moreover, a gradual 
increase in the expression of five proposed biomarkers in CIN2, CIN3 and cancer was also observed.

Six related Minichromosomal maintenance Complex (MCM) proteins (2–7) for hetro-hexamer form the 
pre-replication complex. The overabundance of the most significant proteins in MCM complex is called MCM 
paradox. The elevation or depletion of MCM level causes genomic instability and consequently causes cancer14.

Figure 6. Heatmap representing the expression intensities of the five genes MCM2, MCM6, MCM4, CDC7 and 
ZWINT.

Biomarkers

CIN (grade 2–3) Cervical Cancer

FDR logFC FDR logFC

MCM2 0.00892 4.795 0.0143 3.14

MCM4 0.0089 3.175 0.0143 3.7

MCM6 0.0119 1.857 0.0176 1.56

CDC7 0.00952 2.494 0.0147 2.03

ZWINT 0.016 2.214 0.0148 3.16

Table 3. Adj p-values (FDR) and logFC of proposed biomarkers in validating dataset.

Module Nodes Egdes Score Genes

1 23 60 5.455
CHTF18, CENPK, RPA1, CENPU, CDK2, RFC3, MCM5, GMNN, MCM4, 
MCM6, RFC5, MCM7, PRC1, CCNA2, RFC4, PLK1, ORC1, CDC6, 
CENPN, TIPIN, EZH2, CENPQ, DDX3X

2 16 39 5.2 PCNA, SPC24, ORC6, NDC80, MCM3, CDC20, DSN1, CDC7, CDC45, 
CDT1, NUF2, POLA1, SPC25, ZWINT, SKP2, BUB1

3 15 22 3.143 LIN9, MCM2, TFDP2, FOXM1, PRKDC, MKI67, BRCA1, RBL1, RPS7, 
CBX5, HMMR, TPX2, FANCD2, WEE1, UBE2T

Table 4. List of significant modules exhibiting the proposed biomarkers.
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MCM2 (Minichromosomal maintenance Complex Component 2), is crucial for DNA replication and limit-
ing replication in per cell cycle in eukaryotic cells15. Previous studies have shown that overexpression of MCM2 
can be utilized to increase the diagnosis of CIN and squamous cell carcinoma (SCC)16,17. Moreover, a cocktail of 
MCM2 and TOP2A, p16INK4 and Ki-67 has been suggested as biomarkers for better diagnosis of CIN lesion18.

MCM4 along with MCM3 has been reported to be highly expressed in cervical squamous cell carcinoma by 
immunochemistry. MCM4 is the essential gene for DNA replication in eukaryotes. The expression of MCM2, 
MCM4 and MCM6 was found to be increased in breast cancer19. Additionally, the overexpression of MCM6 is 
found in mantle cell lymphoma, prostate cancer, oral squamous cell carcinoma, esophageal neoplasm, renal can-
cer, thyroid cancer, breast cancer, endometrial cancer and prostate cancer20.

CDC7 (Cell Division Cycle 7), is an important gene, found highly expressed in a number of cancers including 
colorectal cancer. CDC7 is a widely expressed serine/threonine kinase which is implicated in cell division, cell 
cycle, checkpoint and cancer progression mechanism21. Studies have shown the knockdown of CDC7 in Hela 
cervical cancer cell line22. Additionally, the overexpression of CDC7 has been verified in various types of cancers 
including central nervous system cancer, colon cancer, lung cancer, leukemia, kidney cancer, ovary cancer, pros-
tate cancer and breast cancer23.

ZW10 Interacting Kinetochore (ZWINT) Protein, is a protein coding gene that is found to be involved into 
kinetochore function. This Protein is indispensable for the homologous chromosome segregation during meiosis. 
It has been shown that the knockdown of ZWINT accelerates the meiosis, thus leading to the misalignment of 
chromosome and causing aneuploidy24. The overexpression of ZWINT was visible in castration-resistant prostate 
cancer25.

These proposed biomarkers are regulated by large number of transcription factors. These transcription factors 
are found to be involved in apoptosis, cell differentiation and oncogenesis. RSRFC4 is the allele of MEF2 (Myocyte 
Enhancer Factor 2A) gene. RSRFC4/MEF2 transcription factor has a major role in cell apoptosis, differentiation, 
proliferation, shape, migration and metabolism. Altered MEF2 activity plays a noteworthy role in numerous 
cancer types specifically ovarian cancer, lung cancer, uterine cancer and stomach cancer26. TBP, TATA-box bind-
ing protein associated factors compose the RNA polymerase II initiation factor. It contributes the regulation 
of dedifferentiation states in ovarian cancer27. Additionally, it has been proven that the TATA binding proteins 
contribute to a variety of human cancers including colorectal cancers28. Literatures propose the CEBP GAMMA, 
CCAAT/Enhancer Binding Protein Gamma as an antioxidant regulator that controls redox homeostasis in normal 
and cancerous cells29.

Pregnane X receptor (PXR) regulates carcinogenesis and cell proliferation in female reproductive tissues30. 
Anti-apoptotic role of PXR is well recognized in human colon cancer31. PXR is found to be significant in drug 
resistance of cancer cells and its role is very well identified in several cancers - especially colon cancer, esophageal 
cancer, liver cancer and gynecological oncology including endometrial, ovarian and breast cancers32.

Conclusion
Pre-cancerous and cancerous stage gene expression data were utilized for finding differentially expressed gene. 
Common DEGs among pre-cancer and cancer stage were further utilized for the construction of an interactive 
network. Analyzing the interaction network for modules, hubs and motifs revealed the dependence of entire 
system and disease progression on a few genes. The common interaction network analysis revealed the common 
mechanisms involved in cervical cancer progression. Five genes namely ZWINT, CDC7, MCM4, MCM2 and 
MCM6 are proposed from the comprehensive computational analysis which gets affected in neoplasia stage and 
are responsible for the disease progression. These genes may also serve as prospective biomarkers for prognosis of 
the disease in early stages. Proposed genes for the early detection of cervical cancer may be further experimentally 
validated to gain insights into the mechanism of disease progression.

Methods
This study aimed at identifying potential genes that play a significant role in the progression of cervical cells from 
pre-cancerous stage to cancerous stage.

Dataset. The raw microarray data was retrieved from Gene Expression Omnibus (GEO)33 (https://www.ncbi.
nlm.nih.gov/geo/) for identification of differentially expressed genes. The chip dataset GSE6351434 included 24 
samples for normal, 22 and 40 samples for pre-malignant stages, namely CIN2 and CIN3 respectively and 28 
cervical cancer samples. Gene expression profiling of pre-malignant and cancer samples was implemented using 
Affymetrix Human Genome U133 plus 2.0 Array chips.

Screening differentially expressed genes of CIN2, CIN3 and cancer. Preprocessing and normal-
ization of raw microarray data were performed to remove noise from the biological data. Robust Multiarray 
Averaging (RMA)35 was employed to normalize and summarize the expression dataset. Further, exploration 
of the normalized dataset was carried out by utilizing linear modeling capabilities of the Affy package of R36. 
Benjamini-Hochberg37 method was used to correct multiple hypotheses testing to obtain the adjusted p-values. 
Adjusted p-value < 0.05 and fold change >2 were used as delineating parameters for the identification of differ-
entially expressed genes. To visualize the considerable discrepancy between normal versus pre-cancerous and 
cancerous genes, QQ plots and volcano plots were generated.

Enrichment analysis of DEGs. Gene Ontology (GO), pathway enrichment and disease enrichment anal-
ysis of common DEGs among CIN2, CIN3 and cancer cells were performed to discern their implications using 
WebGestalt38 tool. This tool clusters information from numerous public resources to contribute in recognition of 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


www.nature.com/scientificreports/

9Scientific RepoRtS |  (2018) 8:12927  | DOI:10.1038/s41598-018-31187-x

biological processes, related cellular components, molecular functions and biological pathways. The cutoff criteria 
of adjusted p-value < 0.05 and number of genes >2 was utilized for the enrichment analysis.

Network construction. Common DEGs among the mined upregulated DEGs of CIN2, CIN3 and cancer 
were mapped to gene-gene interaction network in BisoGenet39. BisoGenet is a cytoscape plugin that searches the 
molecular interactions from well-known interaction databases including Database of Interacting Proteins (DIP), 
Biological General Repository for Interaction Datasets (BIOGRID), Human Protein Reference Database (HPRD), 
Biomolecular Interaction Network (BIND), Molecular Interaction Database (MINT) and INTACT.

Hubs and common modules identification. Top 10 hub genes of the Gene-gene interaction network 
were extracted by analyzing the networks in Network Analyzer plug-in of Cytoscape40. Additionally, Molecular 
Complex Detection (MCODE) tool41 was used to find the high modularity clusters from the network with node 
score cutoff = 0.2, degree cutoff = 2, maximum depth = 100 and k-score = 2. Functional modules with MCODE 
score ≥4 with nodes ≥6 were considered significant. Also, the clustering analyses of genes were performed using 
ClusterOne42, a Cytoscape plugin, considering the default parameters of minimum size of 3 nodes, unweighted, 
node penalty of 2, single pass as merging method and overlap threshold of 0.8 and the mined functional modules 
from MCODE were verified. P-value cutoff of 0.05 was considered for the significant module extraction.

Key pattern outcome in gene-gene interaction network and significance profile calculation.  
The network motifs represent the functional entities that are evolutionarily conserved. Hence, motifs with Z-score 
>2 were extracted from the gene-gene interaction network using motif discovery plugin of Cytoscape. Motif 
discovery uses the G-tries algorithm43 and allows to find the network motif in fast and friendly manner. The 
extracted 4, 5, 6 and 7 nodes sub-graphs were carefully examined for the intricate genes. The statistical inference 
of the extracted motifs was calculated using z-score and significance profile (SP). Significance profile provides 
the normalized z-score for each network motif. The motif with z-score >2 and p-value < 0.05 were considered 
significant and incorporated for significance profile calculation. Significance profile (SP) is given by:

SP m Z m

Z m
( ) ( )

( )
i

i

i
n

i1
2

=
∑ =

where, SP is the significance profile of each motif, m is the network motif, z(mi) is z-score value of each network 
motif12.

The motifs for subgraphs with nodes 4, 5, 6 and 7 were sorted according to their significance profile for iden-
tifying the motif with maximum significance profile.

Regulatory network construction and analysis. Regulatory elements of the screened DEGs common 
to significant module, hubs and significant motifs were found using Distant Regulatory Elements of co-regulated 
genes (DiRE)44 tool. This yields the regulatory elements such as enhancers, repressors and silencers for the genes. 
DiRE is based on enhancer identification method. Additionally, the interacting proteins of the screened DEGs 
were found using Search Tool for the Retrieval of Interacting Proteins (STRING)45 database. STRING is a data-
base for known and predicted protein-protein interactions which may be physical or functional. These interac-
tions are derived from high-throughput lab experiments, genomic context prediction, co-expression, automated 
text-mining and previous knowledge in databases. Hence a regulatory network was constructed and analyzed 
using the interacting proteins and the regulatory elements in Cytoscape.

Furthermore, differential gene analysis of another GEO dataset and Random Forest (RF) method were used 
to validate the proposed biomarkers. Random forest can be used to rank and select the genes for the diagnosis 
of cancer13. Quantitative indicators are used to summarize the information and rank the variables. To obtain the 
smallest set of genes, iterative bagged decision tree was computed at each iteration step for building a new forest 
by discarding the lowest importance variable. The selected set of genes is the set that yields the smallest OOB i.e. 
out of bag error rate. Then, all remaining forests that are the least important genes are iteratively tested. The course 
to eliminate the least significant genes and fit again, continues until the minimum standard deviation (SD) of all 
forest error rates are zero13.
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