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Abstract

Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and
elephantiasis in a subset of infected patients. Dysregulated host inflammatory responses leading to systemic immune
activation are thought to play a central role in filarial disease pathogenesis. We measured the plasma levels of microbial
translocation markers, acute phase proteins, and inflammatory cytokines in individuals with chronic filarial pathology with
(CP Ag+) or without (CP Ag2) active infection; with clinically asymptomatic infections (INF); and in those without infection
(endemic normal [EN]). Comparisons between the two actively infected groups (CP Ag+ compared to INF) and those
without active infection (CP Ag2 compared to EN) were used preliminarily to identify markers of pathogenesis. Thereafter,
we tested for group effects among all the four groups using linear models on the log transformed responses of the markers.
Our data suggest that circulating levels of microbial translocation products (lipopolysaccharide and LPS-binding protein),
acute phase proteins (haptoglobin and serum amyloid protein-A), and inflammatory cytokines (IL-1b, IL-12, and TNF-a) are
associated with pathogenesis of disease in lymphatic filarial infection and implicate an important role for circulating
microbial products and acute phase proteins.
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Introduction

Although two-thirds of the 120 million people infected with

Wuchereria bancrofti—the major causative agent of human lymphatic

filariasis—have subclinical infections, ,40 million have lymph-

edema and/or other pathologic manifestations including hydro-

celes (and other forms of urogenital disease), episodic adenolym-

phangitis, tropical pulmonary eosinophilia, lymphedema, and (in

its most severe form) elephantiasis [1]. It is assumed that repeated

episodes of acute inflammation can lead to development of serious

disfigurement in the face of compromised lymphatics [2], although

many other factors that contribute to the pathology associated

with lymphatic filariasis are largely unknown. Typically in

Wuchereria or Brugia infections, disease manifests years after

exposure, while clinically asymptomatic infection is not only more

common but can occur at a relatively young age [3,4].

Lymphatic filarial disease is felt to be a reflection of both localized

and systemic immunologic and inflammatory responses mediated

by pro-inflammatory cytokines and chemokines [5,6]. Although

some of the pathological changes can likely be initiated by

Wolbachia- or parasite-encoded endotoxin-like substances and/or

secondary bacterial or fungal infections [1,7], chronic parasite-

induced immune activation is a salient feature of filarial disease.

Indeed, increased frequencies of activated T cells [8], increased

parasite antigen-driven Th1 and Th17 cytokine production [6],

increased expression of Toll-like and NOD-like receptors [6], and

enhanced TLR signaling through TLR ligand stimulation [5] have

all been described when comparisons are made between patients

with subclinical infection and those with filarial lymphedema and/

or elephantiasis. Moreover, innate immune responses also play a

prominent role in development of pathology, as evidenced by the

occurrence of lymphatic damage in animal models of filarial

infection lacking an adaptive immune system [9].

Persistent immune activation is associated with elevations of

circulating microbial products, acute phase proteins, and the so-

called microbial translocation molecules [10]. Translocation of

microbial products from the lumen of the intestine into the

periphery is thought to contribute to induction of inflammation by

stimulating immune effector cells directly through their pattern

recognition receptors [11]; however, intra- and peri-lymphatic

damage—an underlying feature of filarial disease [12]—might also

contribute to the presence of microbial translocation products in

the bloodstream. In addition, chronic immune activation that

often accompanies infectious processes [13] is associated with

development of an acute phase response and the presence of

markers of inflammation in plasma. Moreover, increased serum

levels of proinflammatory cytokines and chemokines are com-

monly associated with progressive immune activation.
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In this study, we have delineated the role of many of the known

markers of inflammation and lymphatic damage that reflect the

dysregulated (or unchecked) responses related to development of

disease with the lymphatic-dwelling filariae (Wuchereria bancrofti and

Brugia malayi). Our data suggest that circulating (systemic)

microbial products, acute phase proteins, and pro-inflammatory

cytokines reflect the localized (and ongoing) chronic immune

activation that underlies the pathogenesis of disease in lymphatic

filariasis.

Materials and Methods

Study population
We studied a group of 91 individuals with filarial lymphedema

without active filarial infection (hereafter CP Ag2), 28 individuals

with filarial lymphedema with active filarial infection (hereafter CP

Ag+), 98 asymptomatic or subclinical, infected individuals

(hereafter INF), and 82 uninfected, endemic normal individuals

(hereafter EN) in an area endemic for lymphatic filariasis in Tamil

Nadu, South India (table 1). Diagnosis of active filarial infection

was performed by measuring circulating filarial antigen levels by

both the ICT filarial antigen test (Binax, Portland, ME, USA) and

the TropBio Og4C3 enzyme-linked immunosorbent assay

(ELISA) (Trop Bio Pty. Ltd, Townsville, Queensland, Australia).

All the CP Ag2 individuals had undergone treatment with

repeated doses of diethylcarbamazine (DEC). None of the CP Ag+
individuals had received any DEC treatment but were adminis-

tered DEC following the blood draw. All of the CP individuals had

early stage lymphedema (Grades 1 and 2) only and individuals

with concurrent overt and active bacterial infection were excluded

from the study. All individuals were examined as part of a clinical

protocol approved by Institutional Review Boards of both the

National Institute of Allergy and Infectious Diseases and the

Tuberculosis Research Center (NCT00375583 and

NCT00001230), and informed written consent was obtained from

all participants.

Microbial translocation assays
To inactivate plasma proteins, plasma samples were heated to

75uC for 5 min. Lipopolysaccharide (LPS) levels were measured

using a limulus amebocyte lysate assay (Cell Sciences Hycult

Biotech, Canton, MA, USA) according to the manufacturer’s

protocol. Commercially available ELISA kits were used to

measure plasma levels of LPS- binding protein (LBP), endotoxin

core antibodies IgG (EndoCAb) (Cell Sciences Hycult Biotech),

and soluble CD14 (sCD14) (R&D Systems, Minneapolis, MN,

USA).

Acute phase proteins
Plasma levels of C-reactive protein (CRP), haptoglobin, serum

amyloid protein - A (SAA), and a-2 macroglobulin (a-2M) were

measured using the Bioplex (Bio-Rad, Hercules, CA, USA)

multiplex ELISA system according to the manufacturer’s instruc-

tions.

Cytokines
Plasma levels of cytokines, IL-1b, IL-6, IL-12, and TNF-a (Bio-

Rad) were measured using the Bioplex multiplex ELISA system.

Statistical analysis
Data analyses were performed using GraphPad PRISM

(GraphPad Software, Inc., San Diego, CA, USA). Geometric

means (GM) were used for measurements of central tendency.

Preliminary statistical analysis was done using the non-parametric

Mann-Whitney test. We then tested for group effects using linear

models on the log transformed data. We used robust standard

error with a recommended bias adjustment so that we need not

assume that the error variance was the same for each group. We

parameterized the 4 group effects using parameters for CP,

infection, and CP by infection interaction. Since we tested these 3

parameters on 12 markers, we adjusted the p-values for multiple

comparisons using Holm’s adjustment. P-values in Table 2 are

Holm’s adjusted. We then built specific models using only the

significant (when Holm’s adjusted p-value,0.05) effects, and we

present those effects and (unadjusted) 95% confidence intervals as

fold-change (Table 3). We repeated the models after adding an

effect for age (either as a continuous or a categorical variable).

Linear models were done in R 2.14.0 using the sandwich R

package. Correlations were calculated by the Spearman rank

correlation test.

The heat map was constructed in JMP v8.0 (SAS, Carey, NC)

and is based on relative expression for a given analyte as a function

of the geometric mean value found in the endemic normal

population.

Results

CP Ag+ exhibit elevated levels of LPS but lower levels of
LBP compared with INF

To determine the association of microbial translocation and

related markers with filarial lymphedema, we measured the

plasma levels of LPS, LPB, EndoCAb, and sCD14 in CP Ag+,

INF, CP Ag2, and EN. As shown in figure 1, CP Ag+ had

significantly higher levels of LPS (GM of 4.24 EU/ml in CP Ag+
vs. 0.10 in INF; P,0.0001 by Mann-Whitney) but not sCD14 or

EndoCAb in comparison to INF. Conversely, CP Ag+ had

significantly lower levels of LBP (GM of 306.2 ng/ml in CP Ag+
vs. 21658 in INF; P,0.0001) in comparison to INF. However, no

significant differences were observed in the levels of all four

circulating microbial or related products between CP Ag2 and

Author Summary

Lymphatic filariasis afflicts over 120 million people world-
wide. While the infection is mostly clinically asymptomatic,
approximately 40 million people suffer from overt, morbid
clinical pathology, characterized by swelling of the scrotal
area and lower limbs (hydrocele and lymphedema). Host
immunologic factors that influence the pathogenesis of
disease in these individuals are not completely under-
stood. Circulating microbial products such as LPS and
markers associated with microbial translocation have been
shown to play an important role in disease pathogenesis
of certain infections like HIV. Similarly, proteins associated
with the acute phase response and related cytokines also
play an important role in pathogenesis. We have attempt-
ed to elucidate the role of the above mentioned factors in
disease pathogenesis by comparing the plasma levels of
the various markers in four groups of individuals: chronic
pathology individuals with or without active filarial
infection, asymptomatic, filarial infected individuals and
uninfected, endemic normal individuals. We show that
circulating levels of LPS, acute phase proteins and certain
cytokines are significantly elevated in filarial disease with
active infection but not in the other groups indicating that
filarial infection induced increased production of these
factors correlated with the development of filarial lym-
phatic pathology.

Inflammatory Markers in Filariasis
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EN. In addition, we consistently observed an inverse association

between LPS and LBP levels in the CP Ag+ group (r2 = 0.862;

P,0.0001). Thus, filarial lymphedema with active infection is

characterized by elevated levels of circulating LPS.

CP Ag+ exhibit elevated levels of CRP, haptoglobin, SAA,
and a-2m compared with INF

To determine the association of acute phase proteins with

filarial disease, we measured the plasma levels of CRP, haptoglo-

bin, SAA, and a-2m in the four groups. As shown in figure 2, CP

Ag+ had significantly higher levels of CRP (GM of 30.9 pg/ml in

CP Ag+ vs. 4.11 in INF; P,0.0001), haptoglobin (GM of

555.9 pg/ml in CP Ag+ vs. 140.1 in INF; P,0.0001), SAA (GM

of 196.7 pg/ml in CP Ag+ vs. 96.9 in INF; P = 0.0037), and a-2m

(GM of 4383 pg/ml in CP Ag+ vs. 1923 pg/m in INF; P = 0.0003)

in comparison to INF. Similarly, among those without evidence of

active filarial infection (Ag2), those with CP had significantly

higher levels of CRP in comparison to EN (GM of 14.5 pg/ml in

CP Ag2 vs.1.9 in EN; P,0.0001), indicating that elevated CRP

levels might be more reflective of the secondary events associated

with pathology than with active infection. Thus, filarial lymph-

edema with active infection is characterized by elevated levels of

several acute phase proteins.

CP Ag+ exhibit elevated levels of IL-1b, IL-12, and TNF-a
compared with INF

To determine the association of inflammatory cytokines with

filarial lymphedema, we measured the plasma levels of IL-1b, IL-

6, IL-12, and TNF-a in the four groups of subjects. As shown in

figure 3, compared with INF, those with CP Ag+ had significantly

higher levels of IL-1b (GM of 410.9 pg/ml in CP Ag+ vs. 210.3 in

INF; P = 0.0305), IL-12 (GM of 989.1 pg/ml in CP Ag+ vs. 61.2

in INF; P,0.0001), and TNF-a (GM of 2455 pg/ml in CP Ag+ vs.

727.2 in INF; P,0.0001) but not IL-6. However, no significant

differences were observed in the levels of all four cytokines

between those without active infection (EN and CP Ag2)

irrespective of clinical status. Thus, filarial lymphedema with

active infection is characterized by elevated plasma levels of

inflammatory cytokines.

Linear models on log transformed markers for all the four
groups

We tested for three effects (CP effect, infection effect, and CP-

by-infection interaction effect) on each of 12 markers using linear

models on the log transformed responses. A significant (CP-by-

infection) interaction effect meant that the geometric mean (GM)

for the marker in the CP Ag+ group is significantly different from

GM expected from the combined effects of CP and infection. As

shown in Table 2, we observed significant effects in the models for

LPS, LBP, CRP, Haptoglobin, SAA, IL-1b, IL-6, IL-12 and TNF-

a. We then examined the details of the significant markers by

rebuilding the linear model using only the significant (by adjusted

p-value) effects. For LPS, Haptoglobin, IL-1b, and IL-12, we

observed that the CP Ag+ group had significantly higher responses

than the other 3 groups, while for LBP we observed that the CP

Ag+ group has significantly lower responses than the other groups

(see Table 3). For the 4 other markers with significant effects

(CRP, SAA, IL-6, and TNF-a), we observed that CRP was

Table 1. Characteristics of the study population.

Endemic Normal Infected Chronic Pathology Chronic Pathology

(EN) (n = 82) (INF) (n = 98) (CP Ag+) (n = 28) (CPAg2) (n = 91)

Age 26 (20–50) 36 (15–73) 44 (18–69) 38 (17–70)

Sex M/F 44/38 52/46 19/9 47/44

CFA* (IU) ,32 3126 (136–32000) 1606 (464–8996) ,32

Pathology Stages 1/2 Nil Nil 12/16 42/49

*CFA values are determined by the Og4C3 ELISA and 32 IU was the threshold of detection in the assay.
doi:10.1371/journal.ppat.1002749.t001

Table 2. Holm’s adjusted p-values from Linear Models, No
Age Effect, n = sample size.

CP Effect Infection Effect Interaction Effect n

LPS 0.6582 1.0000 ,.0001 241

LBP 1.0000 1.0000 ,.0001 232

EndoCAb 1.0000 1.0000 1.0000 249

sCD14 1.0000 1.0000 1.0000 289

CRP ,.0001 0.5797 1.0000 254

Haptoglobin 1.0000 1.0000 0.0001 210

SAA 1.0000 0.0357 0.8703 254

a-2-Macroglobulin 1.0000 0.6683 0.2362 251

IL-1b 1.0000 0.8534 0.0279 279

IL-6 0.0418 ,.0001 0.5155 232

IL-12 1.0000 1.0000 ,.0001 289

TNF-a 1.0000 0.0088 0.1485 278

doi:10.1371/journal.ppat.1002749.t002

Table 3. Fold-change for geometric mean of CP Ag+ group
compared to others, with (unadjusted) 95% confidence
intervals (CI).

Fold change Lower CI Upper CI

LPS 54.27 19.11 154.14

LBP 0.012 0.004 0.043

Haptoglobin 3.14 1.96 5.01

IL-1b 3.15 1.60 6.19

IL-12 14.89 9.10 24.38

doi:10.1371/journal.ppat.1002749.t003
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significantly associated with chronic pathology (both CP Ag+ and

CP Ag2); SAA and TNF- a were significantly associated with

infection status (both CP Ag+ and INF); and IL-6 was associated

with both pathology and the infection status (data not shown). Thus,

by using robust statistical calculations, we have confirmed the

association of LPS, acute phase proteins and inflammatory

cytokines with filarial lymphedema with active infection. A more

detailed examination of the associations is presented in the Text S1.

Relationships between LPS/LBP levels and inflammatory
cytokines in infected individuals

The relationships between the levels of LPS and/or LBP levels

and plasma cytokines were next assessed (figure 4). As shown in

figure 4A, levels of LPS exhibited a highly significant positive

correlation with the plasma levels of IL-1b (r = 0.4942; P,0.001),

IL-12 (r = 0.4802; P,0.0001), and TNF-a (r = 0.4494; P,0.0001)

in all actively infected individuals. Conversely, LBP levels were

significantly negatively correlated with the plasma levels of IL-12

(r = 20.3255; P = 0.0005) (figure 4B). Thus, the process by which

microbial translocation occurs appears to be significantly associ-

ated with the pro-inflammatory cytokine levels in filarial infection.

We also compiled the comparative analysis of all the 12

parameters in the 4 groups of individuals as a heat map, depicting

the log transformed data on a scale relative to EN. As shown in

figure 5, CP Ag+ individuals exhibit a distinct biomarker signature

characterized by elevated levels of LPS, acute phase proteins, and

certain inflammatory cytokines compared with the other 3 groups

(EN, INF, and CP Ag2), again reiterating the important

association of these factors with pathogenesis of filarial pathology.

Discussion

Studies in experimental animal models suggest that intestinal

injury and systemic endotoxemia are two major factors leading to

morbidity in helminth infections [14,15]. Disruption of the

integrity of the intestinal epithelium and translocation of microbial

products into the circulation is thought to occur in intestinal

helminth infections [16]. Thus, infection with intestinal helminths

is characterized by enhanced leakiness of the intestinal epithelium,

mediated by activated mast cells, which can lead to the movement

of bacterial LPS into the portal circulation [17,18]. Even in non-

intestinal helminth infections, such as schistosomes that reside in

the mesenteric veins, damage caused by worm eggs traversing the

gastrointestinal epithelium can result in systemic translocation of

bacteria [14,19]; however, the role of microbial translocation in

the pathogenesis of disease in systemic helminth infections is not

clear.

Figure 1. Filarial lymphedema is associated with elevated levels of LPS. Plasma levels of LPS, LBP, EndoCAb and sCD14 from asymptomatic
infected [INF] individuals; filarial lymphedema individuals with active infection [CP Ag+]; filarial lymphedema individuals without active infection [CP
Ag2] and endemic normal [EN] individuals were measured by ELISA and immunoassays. Data are shown as scatter plots with the bar representing
the geometric mean.
doi:10.1371/journal.ppat.1002749.g001
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Lymphatic filariasis is a disease characterized by the dysfunction

of lymphatics leading to severe (and often) irreversible lymphede-

ma and elephantiasis. It has been shown that residence of adult

parasites in the lymphatics leads to a cascade of events that

ultimately results in tissue scarring and fibrosis [20]. Studies

addressing the mechanisms underlying parasite-induced lymphatic

dilatation suggest that parasite-mediated lymphatic dilatation and

lymphangiogenesis might be important features in the develop-

ment of pathology [7,12]. In addition, the more severe forms of

lymphedema are often associated with secondary bacterial and/or

fungal infections leading to dermatolymphangioadenitis, which

also contribute to the pathogenesis of disease [2]. Finally, filarial

lymphedema has been shown to be associated with increased

bacterial loads in the lymphatics [21,22,23,24]; these damaged

lymphatics could then serve as a potential nidus for bacterial

translocation through the lymphatic endothelium. Thus, the

predominant feature of lymphatic filarial disease is the establish-

ment of a systemic inflammatory milieu due to both parasite-

derived and host-induced inflammation.

We examined four important circulating microbial or related

products in our study. LPS (a key indicator of microbial

translocation) was found to be significantly elevated in CP Ag+
compared with INF but not in CP Ag2 compared with EN. In

addition, LPS levels were also found to be significantly elevated in

the CP Ag+ compared to all the other 3 groups combined or

individually. Strikingly, we observed the exactly opposite profile

with LBP, the LPS binding protein commonly produced by

gastrointestinal and hepatic epithelial cells in response to LPS

stimulation [25]. LBP is also known to bind and transfer LPS to

high-density lipoproteins to decrease the bioactivity of LPS [25]

and therefore, the lower levels of LBP in CP Ag+ individuals might

reflect an inability to clear LPS in circulation. Although we

examined the levels of sCD14, which binds LPS and is produced

by monocytes/macrophages [25], and the naturally occurring IgG

antibody to the LPS core oligosaccharide (EndoCAb) [26] in all

groups of subjects, we found no differences in these particular

molecules. Our study therefore suggests that circulating LPS and

LBP (but not sCD14 or EndoCAb) are potentially associated either

with the development of pathology or function as markers for

pathogenesis. While elevated levels of LPS in CP Ag+ compared

with INF could potentially be attributed to presence of secondary

bacterial infection, the elevated immune activation observed in

chronic pathology patients with active infection suggests that the

interaction between filarial infection and pathology is a major

contributor to microbial translocation, fueling systemic immune

activation. Interestingly, our findings are similar to findings

Figure 2. Filarial lymphedema is associated with elevated levels of acute phase proteins. Plasma levels of CRP, Haptoglobin, SAA and a-2
macroglobulin from asymptomatic infected [INF] individuals; filarial lymphedema individuals with active infection [CP Ag+]; filarial lymphedema
individuals without active infection [CP Ag2] and endemic normal [EN] individuals were measured by ELISA. Data are shown as scatter plots with the
bar representing the geometric mean.
doi:10.1371/journal.ppat.1002749.g002
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reported in other infectious diseases also characterized by systemic

immune activation, including HIV [27,28], hepatitis B and C [29],

and schistosomiasis [19,30].

Acute phase proteins derive primarily from the liver, and

plasma concentrations are felt to be a reflection of the response to

pro-inflammatory cytokines [31]. Measurement of acute phase

proteins is of clinical importance in determining the presence and

extent of inflammatory tissue damage as well as in providing

diagnostic and prognostic information [32,33]. Moreover, circu-

lating microbial products are well known inducers of acute phase

proteins, with SAA and haptoglobin known to be markedly

elevated following challenge with LPS [34]. Elevated levels of CRP

have been reported in lymphatic filarial disease [35], but other

acute phase proteins have not been examined. In the present

study, we confirmed that CRP levels are indeed elevated in

actively infected patients with chronic lymphedema compared

with the asymptomatic group, but we also found that haptoglobin,

SAA, and a-2m are also elevated. Upon, further analysis, only

haptoglobin was observed to be significantly associated with

filarial-infection with pathology, while SAA was significantly

associated with filarial infection per se (both CP Ag+ and INF).

Interestingly, CRP levels were significantly elevated even in those

patients with chronic lymphedema without active infection,

indicating that CRP is probably a nonspecific marker of

inflammation in filarial disease, whereas haptoglobin might serve

as a more accurate biomarker of filarial infection-driven pathol-

ogy.

Although persistent and progressive inflammation is postulated

to be a hallmark of lymphatic filarial disease, very few studies have

actually examined the levels of inflammatory cytokines or

chemokines in the circulation of infected or diseased individuals.

Previous reports have suggested that IL-6 and IL-8 are morbidity

markers in acute and chronic disease [36], while IL-6 and TNF-a
are involved in the pathogenesis of adverse reactions following

treatment [37]. Our examination of cytokine expression levels in

the four groups of individuals reveals that IL-1b and IL-12 are

significantly associated with overt pathology in actively infected

individuals. Conversely, TNF-a was associated significantly with

groups having active infection (CP Ag+ and INF) indicating a

possible association with filarial infection rather than pathology

alone. Because inflammatory cytokines are intricately linked to

induction of both circulating microbial products and acute phase

proteins, we also examined their interrelationship in the CP Ag+
population. Detection of microbial invasion by cells of the innate

immune system usually results in increased production of pro-

inflammatory cytokines such as IL-1b, IL-6, IL-12, and TNF-a

Figure 3. Filarial lymphedema is associated with elevated levels of inflammatory cytokines. Plasma levels of IL-1b, IL-6, IL-12 and TNF-a
from asymptomatic infected [INF] individuals; filarial lymphedema individuals with active infection [CP Ag+]; filarial lymphedema individuals without
active infection [CP Ag2] and endemic normal [EN] individuals were measured by ELISA. Data are shown as scatter plots with the bar representing
the geometric mean.
doi:10.1371/journal.ppat.1002749.g003
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[11]. Studies in HIV infection reveal a direct association between

levels of microbial translocation markers such as LPS and the

inflammatory cytokines [27,28]. In agreement with such studies,

our examination of filaria-infected individuals also reveals a

significantly positive association between LPS and pro-inflamma-

tory cytokines in filaria-infected-individuals. Our study clearly

implicates an association for LPS, the acute phase proteins, and

several of the pro-inflammatory cytokines with filaria-induced

lymphatic pathology.

Investigations into filarial disease pathogenesis have implicated

host pathways in disease progression. In particular, dysregulated

inflammatory responses and lymphatic dysfunction are thought to

be central processes in severe filarial pathology [7,12]. Our study

reveals novel insights into the pathogenesis of lymphatic filarial

dysfunction, despite some minor limitations. Since DEC had been

administered only to the CP Ag2 group and the presence of other

parasitic infections not examined, the effect of treatment with

DEC as well as the influence of other parasitic infections could not

be ascertained in this study.

Another minor limitation of the study was that plasma levels of

inflammatory markers—such as circulating microbial products,

acute phase proteins, and cytokines—are relatively nonspecific

and may be influenced by short half-life, nonspecific induction,

and plasma levels not reflecting biologic activity. Notwithstanding

these limitations, plasma levels of some of these same biomarkers

have yielded important insights in the diagnosis and/or prognosis

of various infectious diseases and cancers [10,38,39].

Our study clearly identifies a signature set of biomarkers that

serves to indicate filarial infection-driven morbidity associated with

a persistent and progressive inflammatory milieu. While requiring

validation in future studies, these results point to potential

prognostic indicators of severe filarial disease.

Figure 4. Correlation between circulating microbial products and inflammatory cytokines in filarial infected individuals. (A) Plasma
levels of LPS were correlated with the levels of IL-1b, IL-6, IL-12 and TNF-a from individuals with active infection [CP Ag+ and INF (n = 108–112)]. (B)
Plasma levels of LBP were correlated with the levels of IL-1b, IL-6, IL-12 and TNF-a from individuals with active infection [CP Ag+ and INF (n = 108–
112)]. P and r values were calculated using the Spearman Rank correlation test. Data are shown as scatter plots with the circles representing INF and
the triangles representing CP Ag+ individuals.
doi:10.1371/journal.ppat.1002749.g004

Figure 5. Heatmap depicting circulating microbial products, acute phase proteins and inflammatory cytokines in CP Ag+
individuals compared to EN, INF and CP Ag2 individuals. Data (and scale) are log10 geometric mean fold change from EN for each of the
analytes measured for each of the groups.
doi:10.1371/journal.ppat.1002749.g005
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Text S1 Linear models on log transformed data on all the

markers in all four groups (CP Ag+, INF, CP Ag2 and EN).

(DOC)

Acknowledgments

We thank the staff of the Filariasis Clinic, Government General Hospital,

Chennai, India, especially Drs. Sathiswaran and Yegneshwaran, as well as

the TRC Epidemiology Unit for their assistance with patient recruitment.

We also thank NIAID intramural editor Brenda Rae Marshall for editorial

assistance.

Author Contributions

Conceived and designed the experiments: TBN SB. Performed the

experiments: RA PJG NPK. Analyzed the data: RA MPF SB. Contributed

reagents/materials/analysis tools: VK. Wrote the paper: TBN MPF SB.

References

1. Nutman TB, Kumaraswami V (2001) Regulation of the immune response in
lymphatic filariasis: perspectives on acute and chronic infection with Wuchereria

bancrofti in South India. Parasite Immunol 23: 389–399.
2. Dreyer G, Noroes J, Figueredo-Silva J, Piessens WF (2000) Pathogenesis of

lymphatic disease in bancroftian filariasis: a clinical perspective. Parasitol Today

16: 544–548.
3. de Almeida AB, Freedman DO (1999) Epidemiology and immunopathology of

bancroftian filariasis. Microbes Infect 1: 1015–1022.
4. Steel C, Ottesen EA, Weller PF, Nutman TB (2001) Worm burden and host

responsiveness in Wuchereria bancrofti infection: use of antigen detection to refine
earlier assessments from the South Pacific. Am J Trop Med Hyg 65: 498–503.

5. Babu S, Anuradha R, Pavan Kumar N, George PJ, Kumaraswami V, et al.

(2011) Filarial Lymphatic Pathology Reflects Augmented TLR-mediated,
MAPK-mediated Pro-inflammatory Cytokine Production. Infect Immun 79:

4600–4608.
6. Babu S, Bhat SQ, Pavan Kumar N, Lipira AB, Kumar S, et al. (2009) Filarial

lymphedema is characterized by antigen-specific Th1 and th17 proinflammatory

responses and a lack of regulatory T cells. PLoS Negl Trop Dis 3: e420.
7. Pfarr KM, Debrah AY, Specht S, Hoerauf A (2009) Filariasis and

lymphoedema. Parasite Immunol 31: 664–672.
8. Freedman DO, Plier DA, de Almeida A, Miranda J, Braga C, et al. (1999)

Biased TCR repertoire in infiltrating lesional T cells in human Bancroftian
filariasis. J Immunol 162: 1756–1764.

9. Lawrence RA, Devaney E (2001) Lymphatic filariasis: parallels between the

immunology of infection in humans and mice. Parasite Immunol 23: 353–361.
10. Nixon DE, Landay AL (2010) Biomarkers of immune dysfunction in HIV. Curr

Opin HIV AIDS 5: 498–503.
11. Medzhitov R (2007) Recognition of microorganisms and activation of the

immune response. Nature 449: 819–826.

12. Bennuru S, Nutman TB (2009) Lymphatics in human lymphatic filariasis: in
vitro models of parasite-induced lymphatic remodeling. Lymphat Res Biol 7:

215–219.
13. Chakera A, Lucas A, Lucas M (2011) Surrogate markers of infection:

interrogation of the immune system. Biomark Med 5: 131–148.
14. Herbert DR, Holscher C, Mohrs M, Arendse B, Schwegmann A, et al. (2004)

Alternative macrophage activation is essential for survival during schistosomiasis

and downmodulates T helper 1 responses and immunopathology. Immunity 20:
623–635.

15. Leeto M, Herbert DR, Marillier R, Schwegmann A, Fick L, et al. (2006) TH1-
dominant granulomatous pathology does not inhibit fibrosis or cause lethality

during murine schistosomiasis. Am J Pathol 169: 1701–1712.

16. Robinson MW, Donnelly S, Hutchinson AT, To J, Taylor NL, et al. (2011) A
family of helminth molecules that modulate innate cell responses via molecular

mimicry of host antimicrobial peptides. PLoS Pathog 7: e1002042.
17. Farid AS, Jimi F, Inagaki-Ohara K, Horii Y (2008) Increased intestinal

endotoxin absorption during enteric nematode but not protozoal infections

through a mast cell-mediated mechanism. Shock 29: 709–716.
18. McDermott JR, Bartram RE, Knight PA, Miller HR, Garrod DR, et al. (2003)

Mast cells disrupt epithelial barrier function during enteric nematode infection.
Proc Natl Acad Sci U S A 100: 7761–7766.

19. Ferraz AA, Campos JM, Junior JG, De Albuquerque AC, Ferraz EM (2005) Gut
bacterial translocation and postoperative infections: a prospective study in

schistosomotic patients. Surg Infect (Larchmt) 6: 197–201.

20. Figueredo-Silva J, Noroes J, Cedenho A, Dreyer G (2002) The histopathology of
bancroftian filariasis revisited: the role of the adult worm in the lymphatic-vessel

disease. Ann Trop Med Parasitol 96: 531–541.

21. Olszewski W, Jamal S (1994) Skin bacterial factor in progression of filarial

lymphedema. Lymphology 27: 148–149.

22. Olszewski WL, Jamal S, Manokaran G, Pani S, Kumaraswami V, et al. (1997)

Bacteriologic studies of skin, tissue fluid, lymph, and lymph nodes in patients

with filarial lymphedema. Am J Trop Med Hyg 57: 7–15.

23. Olszewski WL, Jamal S, Manokaran G, Pani S, Kumaraswami V, et al. (1999)

Bacteriological studies of blood, tissue fluid, lymph and lymph nodes in patients

with acute dermatolymphangioadenitis (DLA) in course of ‘filarial’ lymphedema.

Acta Trop 73: 217–224.

24. Swoboda-Kopec E, Luczak M, Lukomska B, Olszewski WL, Jamal S, et al.

(1999) [Bacterial infections of skin and soft tissues in filariasis]. Med Dosw

Mikrobiol 51: 347–355.

25. Kitchens RL, Thompson PA (2005) Modulatory effects of sCD14 and LBP on

LPS-host cell interactions. J Endotoxin Res 11: 225–229.

26. Cohen IR, Norins LC (1966) Natural human antibodies to gram-negative

bacteria: immunoglobulins G, A, and M. Science 152: 1257–1259.

27. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, et al. (2006)

Microbial translocation is a cause of systemic immune activation in chronic HIV

infection. Nat Med 12: 1365–1371.

28. Nowroozalizadeh S, Mansson F, da Silva Z, Repits J, Dabo B, et al. (2010)

Microbial translocation correlates with the severity of both HIV-1 and HIV-2

infections. J Infect Dis 201: 1150–1154.

29. Sandler NG, Koh C, Roque A, Eccleston JL, Siegel RB, et al. (2011) Host

Response to Translocated Microbial Products Predicts Outcomes of Patients

With HBV or HCV Infection. Gastroenterology 141: 1220–30.

30. Onguru D, Liang Y, Griffith Q, Nikolajczyk B, Mwinzi P, et al. (2011) Human

schistosomiasis is associated with endotoxemia and Toll-like receptor 2- and 4-

bearing B cells. Am J Trop Med Hyg 84: 321–324.

31. Baumann H, Gauldie J (1990) Regulation of hepatic acute phase plasma protein

genes by hepatocyte stimulating factors and other mediators of inflammation.

Mol Biol Med 7: 147–159.

32. Johnson HL, Chiou CC, Cho CT (1999) Applications of acute phase reactants in

infectious diseases. J Microbiol Immunol Infect 32: 73–82.

33. Peracaula R, Sarrats A, Rudd PM (2010) Liver proteins as sensor of human

malignancies and inflammation. Proteomics Clin Appl 4: 426–431.

34. Levels JH, Geurts P, Karlsson H, Maree R, Ljunggren S, et al. (2011) High-

density lipoprotein proteome dynamics in human endotoxemia. Proteome Sci 9:

34.

35. Lal RB, Dhawan RR, Ramzy RM, Farris RM, Gad AA (1991) C-reactive

protein in patients with lymphatic filariasis: increased expression on lymphocytes

in chronic lymphatic obstruction. J Clin Immunol 11: 46–53.

36. Satapathy AK, Sartono E, Sahoo PK, Dentener MA, Michael E, et al. (2006)

Human bancroftian filariasis: immunological markers of morbidity and

infection. Microbes Infect 8: 2414–2423.

37. Turner PF, Rockett KA, Ottesen EA, Francis H, Awadzi K, et al. (1994)

Interleukin-6 and tumor necrosis factor in the pathogenesis of adverse reactions

after treatment of lymphatic filariasis and onchocerciasis. J Infect Dis 169:

1071–1075.

38. Pang WW, Abdul-Rahman PS, Wan-Ibrahim WI, Hashim OH (2010) Can the

acute phase reactant proteins be used as cancer biomarkers? Int J Biol Markers

25: 1–11.

39. Walzl G, Ronacher K, Hanekom W, Scriba TJ, Zumla A (2011) Immunological

biomarkers of tuberculosis. Nat Rev Immunol 11: 343–354.

Inflammatory Markers in Filariasis

PLoS Pathogens | www.plospathogens.org 9 June 2012 | Volume 8 | Issue 6 | e1002749


