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Tuberculosis (TB) is a highly contagious disease that still poses a threat to human health.

Mycobacterium tuberculosis (MTB), the pathogen responsible for TB, uses diverse ways

in order to survive in a variety of host lesions and to subsequently evade immune

surveillance; as a result, fighting TB and its associated multidrug resistance has been an

ongoing challenge. The aim of this review article is to summarize the historical sequence

of drug development and use in the fight against TB, with a particular emphasis on the

decades between World War II and the dawn of the twenty first century (2000).
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INTRODUCTION

Tuberculosis (TB) is a very old infectious disease, caused by Mycobacterium tuberculosis (MTB)
(Dye and Williams, 2010). It’s still the second most frequent cause of death in the world (WHO,
2014), reaching up to 10 million new cases every year (Dye andWilliams, 2010); more interestingly,
latent cases represent one third the world’s population (WHO, 2014), with 10% of latent TB cases to
progress to active infection (Selwyn et al., 1989), especially in diabetic or human immunodeficiency
virus (HIV) positive patients, or those undergoing an immunotherapy (Barry et al., 2009). Active
TB is characterized by chronic cough with bloody sputum, night sweats, fever and weight loss,
while other organs (apart from the lungs) can be infected and cause a wide range of symptoms
(Dolin Gerald et al., 2010).

TB bacilli are spread with the droplets of respiratory secretions that are associated with cough or
sneezing of the infected person. The MTB can then invade and replicate within the endosomes of
the pulmonary alveolar macrophages (Houben et al., 2006; Kumar et al., 2007) leading to clinically
active disease in about 10% of cases (Dye et al., 1999; WHO, 2009), while further growth of the
remaining cases can be arrested by a competent immune response. However, in those with arrested
cases, the bacilli are completely eradicated in about 10% of the individuals, with the remaining
90% entering a dormant or latent state in which there is a containment of the infection. As
pathogens escape from the microbicidal action of the host immune cells (phagosome-lysosome
fusion; MHC class I, class II, and CD1 molecules antigens; nitric oxide and other reactive nitrogen
intermediates), latent TB and the dormant bacilli are reactivated with any serious disruption
(decline) in the host immune state (HIV infection, diabetes mellitus, renal failure, chemotherapy
and immunosuppressive therapy, malnutrition, etc.) that occurs (Dye et al., 1999; Corbett et al.,
2003; Frieden et al., 2003; Wells et al., 2007; Dooley and Chaisson, 2009; WHO, 2009).

The unique clinical manifestations of MTB are attributed to the high lipid content of this
pathogen (Southwick, 2007); the latter has an outer membrane lipid bilayer (Niederweis et al., 2010)
and therefore, hematogenous transmission can also spread infection to more distant sites, such as
peripheral lymph nodes, the kidneys, the brain, and even the bones (Harries, 2005; Herrmann and
Lagrange, 2005; Kumar et al., 2007).
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The public health challenge of TB has been managed by a
number of drugs and treatment strategies over the years, but this
challenge has always been much bigger in certain parts of the
world. The spreading of theHIV infection has been amajor factor
in managing the TB challenge, and so has been the increasing
resistance of MTB strains to the high efficacy first line anti-
TB drugs (Table 1; WHO, 2009) which leads to the growing
incidences of drug resistant strains: multiple drug resistant
(MDR) and extensively drug resistant (XDR). These strains
pose a significant threat, especially for immunocompromised
patients who are significantly less likely to recover without the
assistance of effective drugs. Other factors that may contribute
in disease progression include poverty, population expansion,
active transmission in overcrowded places (hospitals, prisons,
and other public places), migration of individuals from high-
incidence countries due to wars or famine, drug abuse, social
decay, homelessness (Frieden et al., 2003; Hill et al., 2004;
Mathema et al., 2008) and technical problems like poor quality
of detection, in addition to health status (old age, malnutrition,
and medical conditions that compromise the immune system)
(Corbett et al., 2003; Frieden et al., 2003;Wells et al., 2007; Dooley
and Chaisson, 2009).

Furthermore, the unusual structure and chemical composition
of the MTB cell wall (which hinders the entry of drugs and
leads to drugs resistance) (Brennan and Nikaido, 1995) as well
as the capability of the MTB cell to lie dormant at a low
metabolic rate, in a deep location in pulmonary cavities or inside
solid material that makes antibiotic penetration difficult. Finally,
expensive, long-term therapy, disturbed therapeutic regimens,
dosage variance and irregularity in follow up, form additional
challenges for an effective TB management (Lawn and Zumla,
2011).

The aim of this review article is to summarize the historical
sequence of drug development and use in the fight against TB,
with a particular emphasis on the decades betweenWorld War II
and the dawn of the twenty first century (2000).

HISTORICAL SEQUENCES IN
MANAGEMENT OF TB: BEFORE WORLD
WAR II

There is evidence of TB being present in humans since antiquity
(Lawn and Zumla, 2011). MTB has been detected in the remnants
of a bison in Wyoming that lived 17,000 years ago (Rothschild
et al., 2001), while researchers have found tubercular decay in
the spines of Egyptian mummies (3000–2400 BC) (Zink et al.,
2003), and genetic studies suggested TB was present in America
since around 100 AD (Konomi et al., 2002). In Europe, TB had
begun to rise between seventeenth and nineteenth century, in
which it reached a peak level and caused about 25% of all deaths
(Bloom, 1994). At that time, several measures had been taken
including the improvement of life style and the encouragement
of the infected people to enter sanatoria (McCarthy, 2001).
However, 50% of those who entered sanatoria died within 5 years
(McCarthy, 2001).

TABLE 1 | Classification of anti-tuberculosis (anti-TB) drugs according to WHO

(2010).

Lines Grouping Drugs

First-line

anti-TB drugs

Group 1 (oral) Isoniazid (H/INH)

Rifampicin/rifampin (R/RIF)

Pyrazinamide (Z/PZA)

Ethambutol (E/EMB)

Rifapentine (P/RPT)

Rifabutin (RFB)

Second-line

anti-TB drugs

Group 2

(injectable)

Aminoglycosides Streptomycin (S/STM)

Kanamycin (KM)

Amikacin (AMK)

Polypeptides Capreomycin (CM)

Viomycin (VIM)

Group 3 (oral and

injectable;

fluoroquinolones)

Ciprofloxacin (cfx)

Levofloxacin (lfx)

Moxifloxacin (mfx)

Ofloxacin (OFX)

Gatifloxacin (GFX)

Group 4 (oral) Para-aminosalicylic acid (PAS)

Cycloserine (DCS)

Terizidone (TRD)

Ethionamide (ETO)

Prothionamide (PTO)

Thioacetazone (THZ)

Linezolid (LZD)

Third-line

anti-TB drugs

Group 5 (oral and

injectable)

Clofazimine (CFZ)

Linezolid (LZD)

Amoxicillin plus clavulanate (AMX/CLV)

Imipenem plus cilastatin (IPM/CLN)

Clarithromycin (CLR)

On 24 March 1882, MTB was identified and described by
Robert Koch; he was later honored with the Nobel Prize (1905)
for this discovery (Nobel Foundation, 2014), the “TB World
Day” was established on that date. Koch didn’t pay attention
for the similarity between bovine and human TB, therefore, the
recognition for TB-infected milk as a way of TB transmission
was delayed until the invention of the pasteurization process, that
reduced it dramatically. Koch announced a glycerin extract of the
TB bacilli as a “remedy” for TB in 1890, calling it “tuberculin.”
Even though, it was not effective, it was later adapted as a
screening test for the presence of latent TB (Waddington,
2004).

In 1906, Albert Calmette and Camille Guérin achieved the first
genuine success in immunization against TB by using attenuated
bovine-strain TB. It was called the “bacille Calmette-Guérin”
(BCG). This vaccine was first used on humans in 1921 in France
(Bonah, 2005), but the vaccine got widespread acceptance in
the US, Great Britain, and Germany only after World War II
(Comstock, 1994).
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The discovery of penicillin initiated the war against various
infectious microorganisms, and has set the basis for a greater
motivation to discover other antibacterial and antimicrobial
compounds for overcoming diseases like TB. The success of
penicillin duringWorldWar II pushed researchers to study other
molds (Aminov, 2010), one of them being Streptomyces griseus,
found in chickens; as a result, streptomycin was successfully
purified in 1943 and used as an anti-TB therapy in 1945
(Schatz et al., 1944; Kerantzas and Jacobs, 2017). Unfortunately,
the overuse of streptomycin led to the development of drug-
resistance (Kerantzas and Jacobs, 2017), but the end of
World War II saw major developments in pharmacology been
established, and a number of drugs being developed and
used against TB (Figure 1; Schatz et al., 1944; Wassersug,
1946).

HISTORICAL SEQUENCES IN
MANAGEMENT OF TB: AFTER WORLD
WAR II

In 1946, the Medical Research Council (MRC) TB Unit in the
UK was established, and a clinical study designed for comparing
streptomycin with bed rest vs. bed rest alone (Marshall, 1949)
was launched. As expected, high clinical improvement was
seen in streptomycin with bed rest in comparison to bed rest
alone, however, a greater improvement was seen in the first
3 months, and many patients deteriorated later on due to the
emergence of streptomycin resistance (Kerantzas and Jacobs,
2017).

Better results followed with the development of para-
aminosalicyclic acid (PAS), which was an oral agent (unlike
streptomycin) and could be used in combination with
streptomycin (Lehmann, 1946; British Medical Journal,
1950; Fox et al., 1999; Williams, 2009). In 1950s, several anti-TB
drugs with different mechanisms of action were discovered and
developed, including PAS, isoniazid, pyrazinamide, cycloserine

and kanamycin (Figure 1, Table 2). In 1951, streptomycin plus
isoniazid were introduced as a TB therapy (Fox et al., 1999),
while rifampicin (in 1960) allowed the shortening of TB therapy
to 9 months when given with isoniazid, and to 6 months when
given with pyrazinamide (American Thoracic Society, 2003). By
the 1970s, five antibiotics were available against TB (Figure 1).
Afterwards, the MRC TB Unit developed the current short-
course therapeutic regimen (isoniazid, rifampicin, pyrazinamide
and ethambutol) in collaboration with the United States Public
Health Service.

Latent TB has been treated usually with a single antibiotic
to prevent progressing to active TB disease (Menzies et al.,
2011), while active TB is now treated with combinations of
antibiotics in order to reduce the growing risk of antibiotic
resistance (Lawn and Zumla, 2011). Directly observed therapy-
short course (DOTS) is currently recommended by the WHO
as an effort to reduce the number of people not appropriately
taking antibiotics (Volmink and Garner, 2007; Liu et al., 2008;
Mainous and Pomeroy, 2010). When MDR-TB is detected,
treatment with at least four effective antibiotics for 18–24months
is recommended (Lawn and Zumla, 2011). A person with fully-
susceptible MTB may develop secondary resistance because of
inadequate therapy, or using low-quality medication (O’Brien,
1994).

DRUG RESISTANCE FOR TB

More than 50% of the world’s MDR-TB cases are found
in India and China, where about 5.4% of MDR-TB cases
progress to XDR-TB (WHO, 2010). The MDR-TB treatment
is a combination of 8–10 drugs for 18–24 months (Gandhi
et al., 2010). Resistance to the two most effective first-line
anti-TB drugs, rifampicin and isoniazid, is known as MDR-
TB, while resistance to three or more of the six classes of
second-line drugs is known as XDR-TB (Table 1; CDC, 2006);
the latter has been identified in more than 90% of the world’s

FIGURE 1 | Timeline of the discovery of major compounds used for the treatment of tuberculosis (TB) from the Second World War until 2000.
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countries (Akachi et al., 2012). Total drug-resistant to all
currently used drugs (McKenna, 2012) was first observed in
Italy (2003) (Migliori et al., 2007), and had also been reported
in Iran and India (Velayati et al., 2009; Akachi et al., 2012),
but not widely reported until 2012 (WHO, 2006; Migliori et al.,
2007).

MTB strains undergo spontaneous mutations that lead to
resistance of one or more anti-TB drug (David, 1970). Thus,
the exposure of MTB population to a single anti-TB drug could
inhibit its growth but not completely eradicate it, therefore,
regrowth and mutations leading to progressive drug resistance,
these mutated genes are eventually triggering continuous
proliferation of the bacilli and recurrence of symptoms, which
is called “the fall and rise phenomenon” (Espinal, 2004).
Hence, low drug levels due to insufficient drug bioavailability
or from malabsorption (e.g., in HIV patients) have emerged
in the etiology and mechanism of anti-TB drug resistance.
Furthermore, continuous use of old anti-TB regimens may not
target specific populations of MTB under certain circumstances
that hardly act in acidic, or hypoxic conditions within caseous
foci or inside macrophages (Mitchison, 1998). The resistance
also developed independently for each drug in combined anti-TB
regimens at a specific time through mutation processes.

We now know that MDR and XDR-TB infections’ danger can
be overcome by preventing resistance of already sensitive anti-
TB drug within the combination regimen (Morris et al., 1995).
As some studies reported, the resistance arises from replicating
bacilli, while non-replicating bacilli do not undergo mutation
and no resistance can be developed. Thus, minimizing the
drug resistance can be performed by extending the therapeutic
duration and subjecting MTB to drugs with longer half-lifes
(Gumbo et al., 2009). Some newest agents that are used for MDR-
TB, such as bedaquiline, are tentatively recommended (Chahine
et al., 2014). Ineffective and inadequate anti-TB treatment could
fail to achieve goals in about 30% of MDR-TB patients (Mitnick
et al., 2003). The treatment of XDR-TB is very difficult, because
XDR-TB bacilli are resistant for more drugs other than isoniazid
and rifampicin, including fluoroquinolones and aminoglycosides
(Ma et al., 2010).

The drug-resistant TB can be predicted in TB patients with
unsuccessful therapy (relapse) or those who are in close contacts
with MDR-TB patients (Becerra et al., 2011). Therefore, a 5
month treatment with positive sputum smear or culture is closely
attributed to MDR-TB strains (Lew et al., 2008), and in such
cases, several molecular methods for diagnosis of MDR-TB
are enrolled, including the Xpert MTB/RIF, which is currently
available for the detection of rifampicin resistance (Menzies et al.,
2009; Sharma et al., 2015).

The last two decades have witnessed an ongoing effort to
understand the molecular bases for anti-TB resistance and
to further investigate the genetic traits in MDR- and XDR-
TB strains (Nachega and Chaisson, 2003). Mutated genes that
associated with MDR- and XDR-TB are described in Table 2,
which are classified as first line anti-TB drugs resistance,
that starts with isoniazid resistance; the latter is connected
to alterations in the catalase-peroxidase gene (katG), the
inhA gene, which encodes in an enzyme involved in mycolic

acid biosynthesis (Vilche‘ze and Jacobs, 2007; Riccardi et al.,
2009). Rifampin resistance, including its derivatives (rifapentine,
rifabutin and rifalazil) resistance, is associated with genetic
mutations in rpoB, which encodes the RNA polymerase β-
subunit (Sensi, 1983; Telenti et al., 1993; Saribaş et al.,
2003; Chan et al., 2014; Yan et al., 2015). Pyrazinamide
resistance is linked to mutations in pncA, that eliminates
the pyrazinamidase/nicotinamidase activity (Zhang et al., 2003;
Shi et al., 2011). Ethambutol resistance is conferred to
genetic mutations with the embCAB operon, which facilitates
production of arabinosyl transferase (Telenti et al., 1997;
Wolucka, 2008). In spite of the role of the second line drugs
to overcome the MDR that linked with the first line drugs,
second line drugs are also linked with genetic mutations like
the first line agents: streptomycin resistance which is associated
with mutations in the rpsL, ribosomal S12 protein, and rrs, 16S
rRNA gene (Honort and Cole, 1994); kanamycin and amikacin
resistance are closely linked to genetic mutations of streptomycin
(Sowajassatakul et al., 2014); while capreomycin resistance is
attributed to mutagenesis of the tlyA gene, which has homology
to rRNA methyltransferases (Chen et al., 2003). Quinolones
resistance (like levofloxacin and moxifloxacin) is associated with
mutation of gyrA gene encoding DNA gyrase (Pranger et al.,
2011). Ethionamide resistance is linked to inhA mutations, in
addition to cross-resistance between isoniazid and ethionamide
in mutations of the etaA (ethA) gene, which is responsible for
ethionamide activation (Wolff and Nguyen, 2012). The resistance
to PAS is linked to mutations within the thyA gene, which
produces thymidylate synthase A (Patel et al., 2012), while
cycloserine resistance is conferred with activation of the alrA
gene as D-alanine racemase encoding, which causes increased
over expression of alrA (Chacon et al., 2002).

Advances in MTB targeting have emerged through the
exploration of the genome sequence of MTB (Cole et al., 1998),
but unfortunately this approach gave little success (Payne et al.,
2007) as it is not predicting the drug ability of the discovered
new agent (Working Group on New TB Drugs, 2010). Genome
sequencing of MTB, identification of the essential signaling and
metabolic pathways, assessment of physicochemical properties
of the MTB and other methods are still employed in order to
discover newer agents with high specificity and less toxicity with
good efficacy. In parallel, reengineering and repositioning of the
old known drugs have been adapted to achieve better results in
therapy, but the challenges of the resistance still threaten this goal
and the discovering of the new agents remain the main approach
to counteract the deterioration in situation over the world (Koul
et al., 2011).

IMMUNOMODULATORY AND
REPURPOSING DRUGS AGAINST TB

An efficient and competent host immune system is crucial for the
eradication of an MTB infection and/or containment of latent
TB infection (Migliori and Huggett, 2009; Zumla et al., 2012;
Wallis et al., 2013). The stability of latent TB state is achieved
by MTB ability to attenuate and evade host mycobactericidal
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responses. Inadequate immunity leads to MTB multiplication
and clinical symptoms’ development. Acceleration of the host
inflammatory response may lead to tissue destruction; therefore,
several agents are being used in order to manipulate and reduce
the destructive inflammatory responses, or augment protective
immunity to enhance recovery and minimize the duration of
therapy (Subbian et al., 2011; Tobin et al., 2012).

In experimental animals, the role of pro-inflammatory and
anti-inflammatory eicosanoids in the process of regulating tumor
necrosis factor-α levels (Tobin et al., 2012) and in tailoring TB
treatment, depends on the host genotype (Skerry et al., 2012).
Administered prophylactically or therapeutically, the ABL family
tyrosine kinase inhibitor, such as imatinib, reduced the MTB
load and the granulomatous lesions in MTB-infected organs
and was also effective against a rifampicin-resistant strain of
MTB when co-administered with current first-line TB drugs
(Napier et al., 2012). Furthermore, using generic, non-steroidal
anti-inflammatory (NSAIDs) and analgesic drugs as an adjunct
therapy in experimental animal models, has a wide clinical
distributed (Ivanyi and Zumla, 2013). NSAIDs can reduce MTB
load and alleviate lung damage in mice (Vilaplana et al., 2013),
and they show anti-TB activity in phenotypical assays (Guzman
et al., 2013).

Both verapamil (a calcium-channel blocker) and reserpine
(an adrenergic neuron blocking agent) have efflux pump
inhibitory properties that could decrease macrophage-induced
drug tolerance (Amaral et al., 2007; Adams et al., 2011); as a
result, both could be added to anti-TB regimen to decrease the
duration of curative therapy. Ivermectin is an anti-nematode
agent that also has bactericidal activity against MTB (Lim
et al., 2013). Cilostazol and sildenafil—as phosphodiesterase
inhibitors—could be added to the anti-TB regimen, as they
improve the resolution of tissue pathology, accelerating MTB
clearance and diminishing therapeutic period (Maiga et al., 2012).
Lansoprazole, a well-known proton-pump inhibitor, was also
found to be effective against intracellular MTB by targeting
its cytochrome bc1 complex through intracellular sulfoxide
reduction (metabolite enzyme) to lansoprazole sulfide; this
metabolite enzyme is crucial for the bacterium to produce energy,
thereby killing it off (Rybniker et al., 2015). Metformin, which is
a drug used for the treatment of type 2 diabetes, acts as inhibitor
to a mitochondrial complex which is similar to bacterial NDH
complex, thus enhancing the targeting of an anti-TB drug toward
intracellular MTB (Cole et al., 1998; Vashisht and Brahmachari,
2015). Finally, chemical and biological immunomodulatory
agents have also been evaluated to accelerate host immune
responses in anti-TB therapy (Uhlin et al., 2012), with MDR-TB
cure rate enhancement, prevention of recurrence and shortening
therapy duration occurring as a result.

TB/HIV CO-INFECTION

It is known that the concomitant use of anti-retroviral therapy
(ART) with the treatment of drug-susceptible pulmonary TB
improves survival rates in HIV-infected individuals. However,
treatment of TB in such patients is complicated, due to

potential drug interactions and the risk of developing “immune
reconstitution inflammatory syndrome” (Gengiah et al., 2011).
The important drug interactions occur between the rifamycins
and the protease inhibitors as well as non-nucleoside reverse
transcriptase inhibitor drugs. Rifamycin derivatives (rifampicin,
rifabutin and rifapentine) induce liver enzymes and reduce
serum concentrations of protease inhibitors, such as indinavir,
nelfinavir, saquinavir, ritonavir, amprenavir, atzanavir, and
fosamprenavir. Rifabutin is the least potent inducer of CYP3A
(Weber et al., 2001) and rifapentine falls in between rifampicin
and rifabutin in its capacity to induce CYP3A. Rifapentine is
not recommended for the treatment of TB in HIV-infected
individuals because of the increased rate of acquired rifamycin
resistance (Dheda et al., 2010). Rifabutin is used as a substitute
for rifampicin in the treatment of active TB in patients receiving
ART. On the other hand, delaying initiation of ART until TB
treatment is completed in HIV-infected individuals significantly
increases mortality across the spectrum of immunodeficiency.
Clinical trials have reported that early ART in TB patients co-
infected with HIV decreases mortality (Havlir et al., 2011). The
World Health Organization recommends that ART should be
started within the first 8 weeks of initiating TB treatment (Blanc
et al., 2011; De Cock and El-Sadr, 2013), while the optimal timing
of initiating ART in patients with TB-HIV co-infection in Sub-
Saharan Africa remains an urgent research priority (De Cock and
El-Sadr, 2013).

PREVENTION

The prevention and control of TB depend primarily on
vaccination of infants and appropriate diagnosis and treatment
of active cases (Lawn and Zumla, 2011). The US Preventive
Services Task Force (USPSTF) recommends screening high
risk people for latent TB with either tuberculin skin tests or
interferon-gamma release assays (Bibbins-Domingo et al., 2016).
The only available vaccine since 1921 is BCG (McShane, 2011).
In children, BCG decreases the risk of getting the infection
by 20% and the risk of infection turning into disease by
nearly 60% (Roy et al., 2014). It is the most widely used
vaccine worldwide, with more than 90% of all children being
vaccinated (Lawn and Zumla, 2011). However, it should be
noted that the immunity induced by the vaccine decreases
after about 10 years (Lawn and Zumla, 2011). Moreover, as
TB is uncommon in most of Canada, the UK, and the USA;
BCG is administered only to those at high risk (CDC, 2006;
Teo and Shingadia, 2006; Public Health Agency of Canada,
2010). Finally, the drawback of the BCG vaccine is making the
tuberculin skin test result false positive; therefore, this test not
widely used in screening for TB anymore (Teo and Shingadia,
2006).
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