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Abstract

Molecular clock models are commonly used to estimate evolutionary rates and timescales from nucleotide sequences.
The goal of these models is to account for rate variation among lineages, such that they are assumed to be adequate
descriptions of the processes that generated the data. A common approach for selecting a clock model for a data set of
interest is to examine a set of candidates and to select the model that provides the best statistical fit. However, this can
lead to unreliable estimates if all the candidate models are actually inadequate. For this reason, a method of evaluating
absolute model performance is critical. We describe a method that uses posterior predictive simulations to assess the
adequacy of clock models. We test the power of this approach using simulated data and find that the method is sensitive
to bias in the estimates of branch lengths, which tends to occur when using underparameterized clock models. We also
compare the performance of the multinomial test statistic, originally developed to assess the adequacy of substitution
models, but find that it has low power in identifying the adequacy of clock models. We illustrate the performance of our
method using empirical data sets from coronaviruses, simian immunodeficiency virus, killer whales, and marine turtles.
Our results indicate that methods of investigating model adequacy, including the one proposed here, should be routinely
used in combination with traditional model selection in evolutionary studies. This will reveal whether a broader range of
clock models to be considered in phylogenetic analysis.

Key words: model adequacy, posterior predictive simulations, Bayesian phylogenetics, molecular clock, evolutionary rates,
model selection.

Introduction
Analyses of nucleotide sequences can provide a range of valu-
able insights into evolutionary relationships and timescales,
allowing various biological questions to be addressed. The
problem of inferring phylogenies and evolutionary divergence
times is a statistical one, such that inferences are dependent
on reliable models of the evolutionary process (Felsenstein
1983). Bayesian methods provide a powerful framework for
estimating phylogenetic trees and evolutionary rates and
timescales using parameter-rich models (Huelsenbeck et al.
2001; Yang and Rannala 2012). Model-based phylogenetic
inference in a Bayesian framework has several desirable prop-
erties: It is possible to include detailed descriptions of molec-
ular evolution (Dutheil et al. 2012; Heath et al. 2012); many of
the model assumptions are explicit (Sullivan and Joyce 2005);
large parameter spaces can be explored efficiently (Nylander
et al. 2004; Drummond et al. 2006); and uncertainty is natu-
rally incorporated in the estimates. As a consequence, the
number and complexity of evolutionary models for
Bayesian inference has grown rapidly, prompting considerable
interest in methods of model selection (Xie et al. 2011; Baele
et al. 2013).

Evolutionary models can provide useful insight into bio-
logical processes, but they are incomplete representations of
molecular evolution (Goldman 1993). This can be problem-
atic in phylogenetic inference when all the available models
are poor descriptions of the process that generated the data
(Gatesy 2007). Traditional methods of model selection do not
allow the rejection, or falsification, of every model in the set of
candidates being considered. Gelman and Shalizi (2013) re-
cently referred to this as a critical weakness in current practice
of Bayesian statistics. A different approach to model selection
is to evaluate the adequacy, or plausibility (following Brown
2014a), of the model. This involves testing whether the data
could have been generated by the model in question (Gelman
et al. 2014).

Assessment of model adequacy is a critical step in Bayesian
inference in general (Gelman and Shalizi 2013), and phyloge-
netics in particular (Brown 2014a). One method of evaluating
the adequacy of a model is to use posterior predictive checks
(Gelman et al. 2014). Among the first of such methods in
phylogenetics was the use of posterior predictive simulations,
proposed by Bollback (2002). The first step in this approach is
to conduct a Bayesian phylogenetic analysis of the empirical
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data. The second step is to use simulation to generate data
sets with the same size as the empirical data, using the values
of model parameters sampled from the posterior distribution
obtained in the first step. The data generated via these pos-
terior predictive simulations are considered to represent hy-
pothetical alternative or future data sets, but generated by the
model used for inference.

If the process that generated the empirical data can be
described with the model used for inference, the posterior
predictive data sets should resemble the empirical data set
(Gelman et al. 2014). Therefore, the third step in assessing
model adequacy is to perform a comparison between the
posterior predictive data and the empirical data. This com-
parison must be done using a test statistic that quantifies the
discrepancies between the posterior predictive data and the
empirical data (Gelman and Meng 1996). The test statistic is
calculated for each of the posterior predictive data sets to
generate a distribution of values. If the test statistic calculated
from the empirical data falls outside this distribution of the
posterior predictive values, the model in question is consid-
ered to be inadequate.

Previous studies using posterior predictive checks of nu-
cleotide substitution models have implemented a number of
different test statistics. Some of these provide descriptions of
the sequence alignments, such as the homogeneity of base
composition (Huelsenbeck et al. 2001; Foster 2004), site fre-
quency patterns (Bollback 2002; Lewis et al. 2014), and un-
equal synonymous versus nonsynonymous substitution rates
(Nielsen 2002; Rodrigue et al. 2009). Brown (2014b) and Reid
et al. (2014) introduced test statistics based on phylogenetic
inferences from posterior predictive data sets. Some of the
characteristics of inferred phylogenies that can be used as test
statistics include the mean tree length and the median
Robinson–Foulds distance between the sampled topologies
in the analysis (Brown 2014b). Although several test statistics
are available for assessing models of nucleotide substitution
(Brown and ElDabaje 2009; Brown 2014a; Lewis et al. 2014),
there are no methods available to assess the adequacy of
molecular clock models.

Molecular clocks have become an established tool in evo-
lutionary biology, allowing the study of molecular evolution-
ary rates and divergence times between organisms (Kumar
2005; Ho 2014). Molecular clock models describe the pattern
of evolutionary rates among lineages, relying on external tem-
poral information (e.g., fossil data) to calibrate estimates of
absolute rates and times. The primary differences among the
various clock models include the number of distinct substi-
tution rates across the tree and the degree to which rates are
treated as a heritable trait (Thorne et al. 1998; Drummond
et al. 2006; Drummond and Suchard 2010; for a review see Ho
and Duchêne 2014). For example, the strict clock assumes
that the rate is the same for all branches, whereas some re-
laxed clock models allow each branch to have a different rate.
We refer to models that assume a large number of rates as
being more parameter rich than models with a small number
of rates (Ho and Duchêne 2014). Although molecular clock
models are used routinely, the methods of assessing their
efficacy are restricted to estimating and comparing their

statistical fit. For example, a common means of model selec-
tion is to compare marginal likelihoods in a Bayesian frame-
work (Baele et al. 2013). However, model selection can only
evaluate the relative statistical fit of the models, such that it
can lead to false confidence in the estimates if all the candi-
date models are actually inadequate.

In this study, we introduce a method for assessing the
adequacy of molecular clock models. Using simulated and
empirical data, we show that our approach is sensitive to
underparameterization of the clock model, and that it can
be used to identify the branches of the tree that are in conflict
with the assumed clock model. In practice, our method is also
sensitive to other aspects of the hierarchical model, such as
misspecification of the node-age priors. We highlight the im-
portance of methods of evaluating the adequacy of substitu-
tion models in molecular clock analyses.

New Approaches

A Method of Assessing Clock Model Adequacy

To evaluate the adequacy of molecular clock models, we
propose a method of generating and analyzing posterior pre-
dictive data. In this method, the posterior predictive data sets
are generated using phylogenetic trees inferred from branch-
specific rates and times from the posterior samples (fig. 1).
Because this method uses branch-specific estimates, it re-
quires a fixed tree topology.

The first step in our method is to conduct a Bayesian mo-
lecular clock analysis of empirical data. We assume that this
analysis obtains samples from the posterior distribution of
branch-specific rates and times. These estimates are given in
relative time, or in absolute time if calibration priors are used.
In the second step, we take a random subset of these samples.
For each of these samples, we multiply the branch-specific
rates and times to produce phylogenetic trees in which the
branch lengths are measured in substitutions per site (subs/
site), known as phylograms. To assess model adequacy, we
randomly select 100 samples from the posterior, excluding
the burn-in. From these samples, posterior predictive data
sets are generated by simulation along the phylograms and
using the estimates of the parameters in the nucleotide sub-
stitution model. The third step in our approach is to use a
clock-free method to estimate a phylogram from each of the
posterior predictive data sets and from the empirical data set.
For this step, we find that the maximum likelihood approach
implemented in phangorn (Schliep 2011) is effective.

To compute our adequacy index, we consider the branch
lengths estimated from the posterior predictive data sets
under a clock-free method, such that there is a distribution
of length estimates for each branch. We calculate a posterior
predictive P value for each branch using the corresponding
distribution obtained with the posterior predictive data sets.
This value is important for identifying the length estimates for
individual branches that are in conflict with the clock model.
Our index for overall assessment is the proportion of branches
in the phylogram from the empirical data that have lengths
falling outside the 95% quantile range of those estimated from
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the posterior predictive data sets. We refer to our index as A,
or overall plausibility of branch length estimates.

We also provide a measure of the extent to which the
branch length estimates from the clock-free method differ
from those obtained using the posterior predictive simula-
tions. To do this, we calculate for each branch the absolute
difference between the empirical branch length estimated
using a clock-free method and the mean branch length esti-
mated from the posterior predictive data. We then divide this
value by the empirical branch length estimated using a clock-
free method. This measure corresponds to the deviation of
posterior predictive branch lengths from the branch length
estimated from the empirical data. For simulations and anal-
yses of empirical data, we present the median value across
branches to avoid the effect of extreme values. We refer to
this measure as “branch length deviation,” of which low
values represent high performance.

We also investigated the uncertainty in the estimates of
posterior predictive branch lengths. This is useful because it
provides insight into the combined uncertainty in estimates
of rates and times. The method we used was to take the width
of the 95% quantile range from the posterior predictive data
sets, divided by the mean length estimated for each branch.
This value, along with the width of the 95% credible interval of
the rate estimate from the original analysis, can then be com-
pared among clock models to investigate the increase in un-
certainty that can occur when using complex models.

Results

Assessment of Clock Model Adequacy
in Simulated Data

We first evaluated the accuracy and uncertainty of substitu-
tion rate estimates from simulated data. To do this, we

compared the values used to generate the data with those
estimated using each of three clock models: Strict clock,
random local clocks (Drummond and Suchard 2010), and
the uncorrelated lognormal relaxed clock (Drummond et al.
2006). We regarded the branch-specific rates as accurate
when the rate used for the simulation was contained
within the 95% credible interval. We found that rate estimates
were frequently inaccurate under five circumstances: Clock
model underparameterization; rate autocorrelation among
branches (Kishino et al. 2001); uncorrelated beta-distributed
rate variation among lineages; misleading node-age priors (i.e.,
node calibrations that differ considerably from the true node
ages); and when data were generated under a strict clock but
analyzed with an underparameterized substitution model
(fig. 2a). When analyses were performed using the correct
or an overparameterized clock model, more than 75% of
branch rates were accurately estimated, such that the true
value was contained within the 95% credible interval (fig. 2a).
In most simulation schemes, the uncorrelated lognormal re-
laxed clock had high accuracy, at the expense of a small in-
crease in the uncertainty compared with the other models
(fig. 2b). These results are broadly similar to those of
Drummond et al. (2006), who also found that underparam-
eterization of the clock model resulted in low accuracy in rate
estimates, whereas overparameterization had a negligible
effect on accuracy.

We analyzed data generated by simulation to test our
method of assessing the adequacy of molecular clock
models. The A index was approximately proportional to the
branch length deviation (fig. 3a). We found A to be �0.95
(indicating high performance) when the model used in the
analyses matched that used to generate the data, or when it
was overparameterized. When the assumed model was

FIG. 1. Procedure for assessing the adequacy of molecular clock models. The top left box shows the components of a Bayesian clock analysis of empirical
data, including samples from the posterior of the mean estimates and standard deviation of the substitution rates. The top right box shows the first step
in assessing model adequacy using PPS. In our analyses, this step is performed using branch-specific rates and times. The bottom box shows our
procedure for testing the clock model, which is based on the clock-free posterior predictive distribution of the length of each branch. The thin arrows
indicate that the test statistic is the posterior predictive P value for each branch. PPS, posterior predictive simulations.
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underparameterized, A was �0.92. The uncertainty obtained
using posterior predictive branch lengths was sensitive to the
rate variance in the simulations. For this reason, estimates
from data generated according to a strict clock or an uncor-
related lognormal relaxed clock had lower uncertainty than
estimates from data generated under local clocks, regardless
of the model used for analysis (fig. 3b). Estimates made using
the uncorrelated lognormal relaxed clock had a larger vari-
ance in three analysis schemes: When data were generated
with autocorrelated rates across branches; when data were
generated with beta-distributed rates across branches; and
when there was a misleading prior for the node ages. For
analyses with substitution model underparameterization,
our method incorrectly provided greater support for the
more complex clock model, indicating that rate variation
among lineages was overestimated (fig. 3).

We used our simulated data and posterior predictive sim-
ulations to investigate the performance of the multinomial
test statistic for evaluating the adequacy of molecular clock

models. This test statistic was originally designed to assess
models of nucleotide substitution (Goldman 1993; Bollback
2002) and can perform well compared with some of the other
existing test statistics (Brown 2014b). The multinomial test
statistic for the empirical alignment can be compared with
the distribution of test statistics from posterior predictive
data sets to produce a posterior predictive P value. We find
that the multinomial test statistic correctly identified when
the substitution model was matched or underparameterized
(fig. 4). The multinomial likelihood did not have the power to
detect clock model adequacy, but it was sensitive to rate
variation among lineages, primarily from the simulation in-
volving autocorrelated rates and when the node-age prior was
misleading (fig. 4).

Assessment of Clock Model Adequacy
for Empirical Data

We used three clock models, as in our analyses of simulated
data, to analyze a broad range of nucleotide sequence data

FIG. 2. Mean values of (a) accuracy and (b) uncertainty of branch rate estimates from molecular clock analyses of simulated data. Each cell shows the
results of 100 replicate analyses. Accuracy is measured as the proportion of data sets for which the rate used for simulation was contained in the 95%
credible interval of the estimate. Darker shades in (a) represent high accuracy. Uncertainty is measured as the width of the 95% credible interval as a
proportion of the mean rate. Dark shades in (b) represent small ranges in branch length estimates, and therefore low uncertainty. The initials stand for
each of the schemes for estimation or simulation. SC, strict clock; LOC, local clock; UCL, uncorrelated lognormal relaxed clock; RLC, random local clock;
ACL, autocorrelated relaxed clock; BIM, beta-distributed bimodal clock; PRI, misleading node-age prior; GTRG, data simulated under the parameter-rich
general time-reversible substitution model with among-site rate heterogeneity.

FIG. 3. Mean values of (a) plausibility, A, and (b) uncertainty as described by the posterior predictive simulations from clock analyses of simulated data.
Each cell shows the results of 100 replicate analyses. Values in parentheses are the branch length deviations, of which lower values indicate good
performance. The darker shades represent higher values of A and less uncertainty. High values of A represent good performance. In the case of
uncertainty, small values indicate small ranges in posterior predictive branch lengths, and therefore low uncertainty. The initials stand for each of the
schemes for estimation or simulation. SC, strict clock; LOC, local clock; UCL, uncorrelated lognormal relaxed clock; RLC, random local clock; ACL,
autocorrelated relaxed clock; BIM, beta-distributed bimodal clock; PRI, misleading node-age prior; GTRG, data simulated under the parameter-rich
general time-reversible substitution model with among-site rate heterogeneity.
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sets: The M (matrix) gene of a set of coronaviruses; the gag
gene of simian immunodeficiency virus (SIV; Wertheim and
Worobey 2009); complete mitochondrial genomes of killer
whales Orcinus orca (Morin et al. 2010); and 13 mitochondrial
protein-coding genes of marine turtles (Duchene et al. 2012).

The uncorrelated lognormal relaxed clock was the best-
fitting clock model according to the marginal likelihood for
the coronaviruses, SIV, and the killer whales (table 1). For the
marine turtles, the random local clock provided the best fit. In
all the analyses of empirical data sets, the uncorrelated log-
normal relaxed clock had the best performance according to
our A index. The highest A index was 0.78 for the SIV and the
killer whales, and the lowest uncertainty in posterior predic-
tive branch lengths was 0.7 for the killer whales. The uncer-
tainty for all other data sets was above 1, indicating that it was
larger than the mean of the posterior predictive branch
lengths.

We calculated the multinomial test statistic for the empir-
ical data sets using the posterior predictive data from a clock
model analysis, as well as under a clock-free method. The
multinomial test statistic from both methods suggested
that the substitution model was inadequate for the SIV and
the marine turtles, with posterior predictive P values below
0.05. The substitution model was identified as inadequate for
the coronavirus data set by the multinomial test statistic es-
timated using posterior predictive data sets from a clock
analysis (P< 0.05); however, it was identified as adequate
when using a clock-free method (P = 0.20). The mitochondrial
data set from killer whales represented the only case in which
the substitution model was adequate according to both mul-
tinomial likelihood estimates. For the data sets from corona-
viruses and killer whales, the clock models with the highest
performance had A indices of 0.53 and 0.78, respectively
(table 1). These indices are substantially lower than those
obtained in analyses of simulated data when the clock
model used for simulation and estimation was matched.
However, we evaluated the posterior predictive P values for
all branches in these empirical data sets and found that at
least two-thirds of the incorrect estimates correspond to rel-
atively short terminal branches (supplementary information,
Supplementary Material online).

The branch length deviation in the empirical data ranged
between 0.09 for the uncorrelated lognormal relaxed clock in
the turtle data and 0.48 for the killer whale data analyzed with
a strict clock (table 1). Low values for this metric indicate
small differences between the posterior predictive and the
empirical branch lengths. Although scores for this metric
varied considerably between data sets, they were closely as-
sociated with the A indices for the different models for each
data set individually. For example, in every empirical data set,
the lowest branch length deviation was achieved by the
model with the highest A index (indicative of higher perfor-
mance). Importantly, the branch length deviation was not
directly comparable with the A index between data sets.

Table 1. Statistical Fit and Performance of Three Molecular Clock Models in Analyses of Four Empirical Data Sets.

Data Set Clock
Model

Mean Number
of Rate Changes

(95% credible interval)

Mean Rate
Estimate (95%

credible interval)

Marginal
Likelihood
Estimate

Multinomial
Test Statistic

A Index (mean
branch-wise

test statistic)

Uncertainty

Clock Clock-Free

Coronaviruses SC — 2.04� 10�5 (5.20� 10�7 to 7.27� 10�5) �14,445.78 0.01 0.20 0.49 (0.24) 1.09
RLC 0.80 (0–3) 2.48� 10�5 (7.11� 10�7 to 9.48� 10�5) �14,771.90 0.01 0.20 0.52 (0.24) 1.14
UCL — 2.18� 10�5 (5.90� 10�7 to 7.98� 10�5) �14,329.07 <0.01 0.20 0.53 (0.16) 1.11

SIV SC — 1.10� 10�3 (8.22� 10�4 to 1.45� 10�3) �3,275.23 0.01 <0.01 0.65 (0.46) 2.02
RLC 2.43 (1–5) 1.10� 10�3 (7.90� 10�4 to 1.44� 10�3) �3,272.53 0.03 <0.01 0.65 (0.44) 2.03
UCL — 1.10� 10�3 (7.90� 10�4 to 1.56� 10�3) �3,256.00 0.04 <0.01 0.78 (0.23) 2.36

Killer whales SC — 3.78� 10�3 (3.02� 10�3 to 4.67� 10�3) �24,240.82 0.56 0.45 0.68 (0.48) 1.96
RLC 0.79 (0–3) 3.77� 10�3 (3.01� 10�3 to 4.66� 10�3) �22,211.21 0.54 0.45 0.25 (0.48) 1.05
UCL — 3.90� 10�3 (2.97� 10�3 to 5.13� 10�3) �22,167.75 0.47 0.45 0.78 (0.47) 0.70

Marine turtles SC — 1.43� 10�3 (1.34� 10�3 to 1.52� 10�3) �37,505.44 <0.01 <0.01 0.66 (0.23) 4.14
RLC 3.11 (1–6) 1.37� 10�3 (1.15� 10�3 to 1.56� 10�3) �37,454.97 <0.01 <0.01 0.68 (0.21) 3.96
UCL — 1.66� 10�3 (1.39� 10�3 to 1.90� 10�3) �37,488.56 <0.01 <0.01 0.70 (0.09) 4.17

NOTE.—The clock models are the strict clock (SC), uncorrelated lognormal relaxed clock (UCL), and the random local clock (RLC). For each data set, the number of rate changes
is only estimated using the RLC. For the coronaviruses and SIV, the rate estimates are shown in subs/site/year, while those for the killer whales and marine turtles correspond to
subs/site/My. Note that substitution model assessment under the clock-free method was conducted only once per data set. Rows in italics indicate the clock model with the
lowest marginal likelihood estimate for each data set.

FIG. 4. Mean P values of the multinomial test statistic from posterior
predictive simulations from simulated data. Each cell shows the results
of 100 replicate analyses. Darker shades correspond to higher numbers.
A value of 0.5 indicates that the model is adequate. The initials indicate
the models for simulation and estimation. SC, strict clock; LOC, local
clock; UCL, uncorrelated lognormal relaxed clock; RLC, random local
clock; ACL, autocorrelated relaxed clock; BIM, beta-distributed bimodal
clock; PRI, misleading node-age prior; GTRG, data simulated under the
parameter-rich general time-reversible substitution model.
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This is probably because the posterior predictive branch
lengths have different amounts of uncertainty. In particular,
the A index will tend to be low if the posterior predictive
branch length estimates are similar to the empirical value but
have low uncertainty. This would create a scenario with a
small branch length deviation but also a low A index. This
appears to be the case for the coronaviruses, for which all the
clock models appear inadequate according to the A index,
but with the uncorrelated lognormal relaxed clock having a
small branch length deviation.

Discussion
Assessing the adequacy of models in phylogenetics is an im-
portant process that can provide information beyond that
offered by traditional methods for model selection. Although
traditional model selection can be used to evaluate the rela-
tive statistical fit of a set of candidates, model adequacy pro-
vides information about the absolute performance of the
model, such that even the best-fitting model can be a poor
predictor of the data (Gelman et al. 2014). There have been
important developments in model adequacy methods and
test statistics in the context of substitution models
(Ripplinger and Sullivan 2010; Brown 2014b; Lewis et al.
2014) and estimates of gene trees (Reid et al. 2014). Here
we have described a method that can be used for assessment
of molecular clock models, and which should be used in
combination with approaches for evaluating the adequacy
of substitution models. The results of our analyses suggest
that our method is able detect whether estimates of branch-
specific rates and times are consistent with the expected
number of substitutions along each branch. For example, in
the coronavirus data set analyzed here, the best-fitting clock
model was a poor predictor of the data, as was the substitu-
tion model. Our index is sensitive to underparameterization
of clock models and has the benefit of being computationally
efficient. In addition, our metric of uncertainty in posterior
predictive branch lengths is sensitive to some cases of mis-
specification of clock models and node-age priors, but not to
substitution model misspecification, as shown for our analy-
ses of the coronavirus data set.

Analyses based on the random local clock and the data
simulated under two local clocks generally produced low ac-
curacy (fig. 2a), with lower A indices than the other models
that were matched to the true model (fig. 3a). The substan-
dard performance of the random local clock when it is
matched to the true model is surprising. A possible explana-
tion is that our simulations of the local clock represented an
extreme scenario in which the rates of the local clocks differed
by an order of magnitude. Previous studies based on simula-
tions and empirical data demonstrated that this model can be
effective when the rate differences are smaller (Drummond
and Suchard 2010; Dornburg et al. 2012).

In our analyses of empirical data, even the highest values of
our index were lower than the minimum value obtained in
our analyses of simulated data when the three models
matched those used for simulation. This is consistent with
the results of previous studies of posterior predictive simula-
tions, which have suggested that the proposed threshold for a

test statistic using simulations is conservative for empirical
data (Bollback 2002; Ripplinger and Sullivan 2010; Brown
2014b). It is difficult to suggest a specific threshold for our
index to determine whether a model is inadequate. However,
the interpretation is straightforward: A low A index indicates
that a large proportion of branch rates and times are incon-
sistent with the expected number of substitutions along the
branches. Under ideal conditions, an A index of 0.95 or higher
means that the clock model accurately describes the true
pattern of rate variation. However, our method allows the
user to inspect the particular branches with inconsistent es-
timates, which can be useful for identifying regions of the tree
that cause the clock model to be inadequate. Measuring the
effect size of differences in the branch length estimates of the
posterior predictive and empirical data can also be useful for
quantifying potential errors in the estimates of node times
and branch-specific rates.

An important finding of our study is that overparameter-
ized clock models typically have higher accuracy than those
that are underparameterized. This is consistent with a statis-
tical phenomenon known as the bias–variance trade-off, with
underparameterization leading to high bias, and overparam-
eterization leading to high uncertainty. This was demon-
strated for molecular clock models by Wertheim et al.
(2009). Although our results show a bias when the model is
underparameterized, we did not detect high uncertainty with
increasing model complexity. This probably occurs because
the models used here are not severely overparameterized.
This is consistent with the fact that Bayesian analyses are
robust to mild overparameterization because estimates are
integrated over the uncertainty in additional parameters
(Huelsenbeck and Rannala 2004; Lemmon and Moriarty
2004).

We note that our index is insensitive to the overparame-
terization in our analyses. This problem is also present in some
adequacy statistics for substitution models (Bollback 2002;
Ripplinger and Sullivan 2010). Identifying an overparameter-
ized model is challenging, but a recent study proposed a
method to do this for substitution models (Lewis et al.
2014). An equivalent implementation for clock models
would also be valuable. Another potential solution is to
select a pool of adequate models and to perform model se-
lection using methods that penalize an excess of parameters,
such as marginal likelihoods or information criteria.

We find that our assessment of clock model adequacy can
be influenced by other components of the analysis. For ex-
ample, multiple calibrations can create a misleading node-age
prior that is in conflict with the clock model (Warnock et al.
2012; Duchêne et al. 2014; Heled and Drummond 2014).
Although our simulations with misleading node calibrations
were done using a strict clock, our method identified this
scenario as clock model inadequacy when the models for
estimation were the strict or random local clocks (fig. 3a).
In the case of the uncorrelated lognormal relaxed clock, our
method identified a misleading node-age prior as causing an
increase in uncertainty (fig. 3b). This highlights the critical
importance of selecting and using time calibrations appropri-
ately, and we refer the reader to the comprehensive reviews of

2991

Assessing the Adequacy of Clock Models . doi:10.1093/molbev/msv154 MBE



this topic (Benton and Donoghue 2007; Ho and Phillips 2009).
Another component of the analysis that can have an impact
on the adequacy of the clock model is the tree prior, which
can influence the estimates of branch lengths. Although one
study suggested that the effect of the tree prior is not sub-
stantial (Lepage et al. 2007), its influence on divergence-time
estimates remains largely unknown.

We found that substitution model underparameterization
led to a severe reduction in accuracy. Overconfidence in in-
correct branch lengths in terms of substitutions can cause
bias in divergence-time estimates (Cutler 2000). However, this
form of model inadequacy is incorrectly identified by the
methods we used for estimation as a form of rate variation
among lineages. For our data generated using a strict clock
and an underparameterized substitution model, the A index
rejected the strict clock and supported the overparameter-
ized uncorrelated lognormal relaxed clock. On the other
hand, the multinomial test statistic was sensitive to substitu-
tion model underparameterization, and to some forms of rate
variation among lineages. The sensitivity of the multinomial
likelihood to rate variation among lineages might explain why
the substitution model was rejected for the coronavirus data
set when using a clock model, but not when using a clock-free
method. Due to this sensitivity and the substantial impact of
substitution model misspecification, we recommend the use
of a clock-free method to assess the substitution model
before performing analyses using a clock model. Our results
suggest that it is only advisable to perform a clock model
analysis when an adequate substitution model is available.
Other methods for substitution model assessment that are
less conservative than the multinomial likelihood represent
an interesting area for further research.

We find that the A index is sensitive to patterns of rate
variation among lineages that conflict with the clock model
used for estimation. This is highlighted in the simulations of
rate variation among lineages under autocorrelated and the
unusual beta-distributed rates. In these cases, the A index
identified the uncorrelated lognormal clock as the only ade-
quate clock model, despite an increase in uncertainty in both
cases. Although other studies have also suggested that the
uncorrelated lognormal relaxed clock can account for rate
autocorrelation (Drummond et al. 2006; Ho et al. 2015), an
increase in uncertainty can impair the interpretation of
divergence-time estimates. We suggest caution when the un-
certainty values are above 1, which occurs when the widths of
the 95% credible intervals are greater than the mean param-
eter estimates.

In our analyses of the two virus data sets, the multinomial
test statistic suggested that the best-fitting substitution
model was inadequate. In the analyses of the SIV data, our
index of clock model adequacy was 0.78, similar to that of
killer whales, for which the substitution model appeared ad-
equate. We recommend caution when interpreting estimates
of evolutionary rates and timescales when the substitution
model is inadequate. This typically suggests that the substi-
tution process is not being modeled correctly, which can
affect inferences of branch lengths regardless of whether a
clock model is used or not. For this reason, the A index of 0.78

for the SIV data set might be overconfident compared with
the same index obtained for the killer whale data. Previous
research has also suggested that there are processes in the
evolution of SIV that are not accounted for by current evo-
lutionary models (Wertheim and Worobey 2009).

We also found that all the clock models were inadequate
for the coronavirus sequence data. Our results might provide
an explanation for the lack of consensus over the evolutionary
timescale of these viruses. For example, a study of mammalian
and avian coronaviruses estimated that these viruses origi-
nated at most 5,000 years ago (Woo et al. 2012). This result
stands in contrast with a subsequent study that suggested a
much deeper origin of these viruses, in the order of millions of
years (Wertheim et al. 2013). Our results suggest that esti-
mating the timescale of these viruses might not be feasible
with the current clock models.

Our analysis of mitochondrial genomes of killer whales
shows that even if the clock model performance is not
as high as that obtained in the simulations that match
the models used for estimation, a large proportion of the
divergence-time estimates can still be useful. Examining the
estimates of specific branch lengths can indicate whether
many of the node-age estimates are reliable, or whether im-
portant branches provide unreliable estimates. We recom-
mend this practice when the substitution model has been
deemed adequate and when a substantial proportion of the
branch lengths are consistent with the clock model (i.e., when
the A index is high). We note that the mitochondrial genomes
of killer whales have the lowest A index of any data set when
analyzed using a random local clock. This might occur be-
cause the model identified an average of 0–3 rate changes
along the tree (0.79 rate changes; table 1). Although rate
variation is likely to be higher in this data set, it might not
be sufficiently high for the model to detect it.

Analyses of mitochondrial protein-coding genes from
marine turtles identified the substitution model as inade-
quate using the multinomial test statistic. The clock model
with the highest performance had an A index of 0.70, which
might be considered sufficient to interpret the divergence-
time estimates for at least some portions of the tree. Again,
the fact that the substitution model is inadequate precludes
further interpretation of the estimates of evolutionary rates
and timescales. This is a surprising result for a mitochondrial
data set with several internal-node calibrations. A potential
solution is to assess substitution-model adequacy for individ-
ual genes and to conduct the molecular clock analysis using
only those genes for which an adequate substitution model is
available. We believe that, with the advent of genomic data
sets, this will become a feasible strategy in the near future.

Some of the reasons for the paucity of studies that assess
model adequacy in phylogenetics include computational
demand and the lack of available methods. In this study,
we have presented a method of evaluating clock model ad-
equacy, using a simple test statistic that can be computed
efficiently. Assessment of clock model adequacy is an impor-
tant complement to traditional methods of model selection
for two primary reasons: It allows the researcher to reject
all the available models if they are inadequate; and, as
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implemented in this study, it can be used to identify the
branches with length estimates that are implausible under
the assumed model. The results of our analyses of empirical
data underscore the importance of evaluating the adequacy
of the substitution and clock models. In some cases, several
models might be adequate, particularly when they are overpa-
rameterized. In this respect, methods for traditional model
selection are important tools because they can be used to
select a single best-fitting model from a set of adequate
models. Further research into methods, test statistics, and
software for evaluating model adequacy is needed, both to
improve the existing models and to identify data sets that will
consistently provide unreliable estimates.

Materials and Methods

Analyses of Simulated Data

We generated 100 pure-birth trees with 50 tips and root-node
ages of 50 My using BEAST v2.1 (Bouckaert et al. 2014). We
then simulated branch-specific rates under five clock model
treatments using the R package NELSI (Ho et al. 2015). This
program simulates rates under a given model and multiplies
rates by time to produce phylogenetic trees in which the
branch lengths represent subs/site, known as phylograms.
These phylograms were then used to simulate the evolution
of DNA sequences of 2,000 nt in the R package phangorn.

The five clock model treatments included the following: 1)
A strict clock with a rate of 5� 10�3 subs/site/My; 2) an
uncorrelated lognormal relaxed clock (Drummond et al.
2006), with a mean rate of 5� 10�3 subs/site/My and a stan-
dard deviation of 0.1; 3) a treatment in which a randomly
selected clade with at least ten tips experienced an increase in
the rate, representing a scenario with two local clocks (Yoder
and Yang 2000), with rates of 1� 10�2 and 1� 10�3 subs/
site/My; 4) a treatment with rate autocorrelation, with an
initial rate of 5� 10�3 subs/site/My and a � parameter of
0.3 (Kishino et al. 2001); and 5) a treatment with rate variation
that followed a beta distribution with equal shape parameters
of 0.4 and centered at 5� 10�3 subs/site/My, resulting in a
bimodal shape. In every simulation, the mean rate was
5� 10�3 subs/site/My, which is approximately the mean mi-
tochondrial evolutionary rate in mammals, birds, nonavian
reptiles, and amphibians (Pereira and Baker 2006). We se-
lected this mean rate instead of sampling from the prior be-
cause our estimation methods involved an uninformative rate
prior, and random samples from this can produce data sets
with high sequence saturation or with low information con-
tent. We used the Jukes–Cantor substitution model for sim-
ulation (Jukes and Cantor 1969). This model allows us to
avoid making arbitrary parameterizations of more parame-
ter-rich models, which is not the focus of this study.

To explore the effect of substitution model underparam-
eterization, we simulated additional data sets under a strict
clock and a general time-reversible model with gamma-
distributed rates among sites, using parameters from
empirical data (Murphy et al. 2001). We analyzed these
data sets using the same method as for the rest of the sim-
ulated data, including the use of the simpler Jukes–Cantor

substitution model. We also explored the effect of using mis-
leading node-age priors. To do this, we placed two time cal-
ibrations with incorrect ages. One calibration was placed in
one of the two nodes descending from the root selected at
random, with an age prior of 0.1 times its true age (i.e., youn-
ger than the truth). The other calibration was placed on
the most recent node in the other clade descending from
the root, with an age of 0.9 of the root age (i.e., older than the
truth). For this scenario, we only used trees with more than
one descendant in each of the two oldest clades. We show an
example of the simulated phylogeny compared with this kind
of marginal prior on node ages in the supplementary infor-
mation, Supplementary Material online. Our study had 100
simulated data sets for each simulation treatment, for a total
of 700 simulated alignments.

We analyzed the simulated alignments using Bayesian
Markov chain Monte Carlo (MCMC) sampling as imple-
mented in BEAST. We used three different clock models to
analyze each of the simulated alignments: The strict clock,
uncorrelated lognormal relaxed clock (Drummond et al.
2006), and random local clock (Drummond and Suchard
2010). We used the same tree prior and substitution model
for estimation as those used for simulation. We fixed the age
of the root to 50 My and fixed the tree topology to that used
to simulate sequence evolution in every analysis. We analyzed
the simulated data with an MCMC chain length of 2� 107

steps, with samples drawn from the posterior every 2� 103

steps. We discarded the first 10% of the samples as burn-in,
and assessed satisfactory sampling from the posterior by ver-
ifying that effective sample sizes for all parameters were above
200 using the R package CODA (Plummer et al. 2006). We
performed analyses using each of the three clock models for
each of the 300 simulated data sets, for a total of 900 clock
analyses.

We assessed the accuracy and uncertainty of the estimates
made using each of the analysis schemes (fig. 2). To do this,
we compared the simulated rates with the branch-specific
rates in the posterior. Next, we tested the power of our
method for assessing clock model adequacy using the simu-
lated data under each of the scenarios of simulation and
analysis. We provide example code and results in a public
repository in GitHub (https://github.com/duchene/modad-
clocks, last accessed July 1, 2015). We also tested the power
of the multinomial test statistic to assess clock model ade-
quacy in each of the 900 analyses. This test statistic quantifies
the frequency of site patterns in an alignment and is appro-
priate for testing the adequacy of models of nucleotide sub-
stitution (Bollback 2002; Brown 2014b).

Analyses of Empirical Data

We used four published data sets to investigate the perfor-
mance of our method of assessing clock model adequacy in
empirical data. For each data set, we performed analyses in
BEAST using each of the three clock models used to analyze
the simulated data sets. To select the substitution model for
each empirical data set, we used the Bayesian information
criterion as calculated in the R package phangorn.
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For each analysis of the empirical data sets, we ran the
MCMC chain for 108 steps, with samples drawn from the
posterior every 103 steps. We discarded the first 10% of the
samples as burn-in and assessed satisfactory sampling from
the posterior by verifying that the effective sample sizes for all
parameters were above 200 using the R package CODA. We
used stepping-stone sampling to estimate the marginal like-
lihood of the clock model (Gelman and Meng 1998; Lartillot
and Philippe 2006; Xie et al. 2011). For each Bayesian analysis,
we performed posterior predictive simulations as done for the
simulated data sets, and assessed the substitution model
using the multinomial test statistic. In addition, to estimate
the clock-free multinomial test statistic, we analyzed each of
the empirical data sets using MrBayes 3.2 (Ronquist et al.
2012). For these analyses we used the same chain length,
sampling frequency, sampling verification method, and sub-
stitution model as in the analyses using clock models.

Our empirical data sets included nucleotide sequences of
coronaviruses. This data set contained 43 sequences of 638 nt
of a portion of the M (matrix) gene, as used by Wertheim et al.
(2013). These sequences were sampled between 1941 and
2011. The best-fitting substitution model for this data set
was GTR+G. We also used a data set of the gag gene of
SIVs, which comprised 78 sequences of 477 nt, sampled be-
tween 1983 and 2004 (Wertheim and Worobey 2009). The
best-fitting substitution model for this data set was GTR+G.
We used the Bayesian skyline demographic model
(Drummond et al. 2005) for the analyses of both of the
virus data sets, and used the sampling times for calibration.

We analyzed a data set of the killer whale (O. orca), which
contained 60 complete mitochondrial genome sequences of
16,386 nt (Morin et al. 2010). We calibrated the age of the
root using a normal distribution with mean of 0.7 and a
standard deviation of 5% of the mean, as used in the original
study. The best-fitting substitution model for this data set was
HKY+G. Finally, we analyzed a data set of several genera of
marine turtles, which comprised 24 sequences of the 13 mi-
tochondrial protein-coding genes (Duchene et al. 2012), and
we selected the GTR+G substitution model. Following the
scheme in the original study, we used calibrations at four
internal nodes. The pure-birth process was used to generate
the tree prior in the analyses of the killer whales and the
marine turtles.

Supplementary Material
Supplementary information is available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals.org/).
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Ho SYW, Duchêne S. 2014. Molecular-clock methods for estimating
evolutionary rates and timescales. Mol Ecol. 23:5947–5965.
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