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Abstract

Migraine affects the daily life of millions of people around the world. The most 

well-known disabling symptom associated with this illness is the intense headache. 

Nowadays, there are treatments that can diminish the level of pain.

OnabotulinumtoxinA (BoNT-A) has become a very popular medication for treating 

migraine headaches in those cases in which other medication is not working, 

typically in chronic migraines. Currently, the positive response to Botox treatment 

is not clearly understood, yet understanding the mechanisms that determine the 

effectiveness of the treatment could help with the development of more effective 

treatments.

To solve this problem, this paper sets up a realistic scenario of electronic medical 

records of migraineurs under BoNT-A treatment where some clinical features from 

real patients are labeled by doctors. Medical registers have been preprocessed. 

A label encoding method based on simulated annealing has been proposed. Two 

methodologies for predicting the results of the first and the second infiltration of the 
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BoNT-A based treatment are contempled. Firstly, a strategy based on the medical 

HIT6 metric is described, which achieves an accuracy over 91%. Secondly, when 

this value is not available, several classifiers and clustering methods have been 

performed in order to predict the reduction and adverse effects, obtaining an accuracy 

of 85%. Some clinical features as Greater occipital nerves (GON), chronic migraine 

time evolution and others have been detected as relevant features when examining 

the prediction models. The GON and the retroocular component have also been 

described as important features according to doctors.

Keywords: Computer science, Neurology, Bioinformatics, Medicine

1. Introduction

Migraine is a common neurological disorder characterized by recurrent headaches. 

Migraine attacks usually last for 4-72 h and involve moderate or severe intensity 

headaches which typically are worsened by routine physical activity, are of a 

pulsating nature, and are associated with nausea, vomiting, photophobia or

phonophobia [1]. In clinical terms, migraine can be classified into two types 

according to the frequency of pain: episodic migraine (less frequent headaches) 

and chronic migraine. Chronic migraine is defined as a headache occurring on 15 

or more days per month for more than 3 months, and which has the features of a 

migraine headache on at least 8 days per month [1]. Globally, approximately 2% 

of the population experiences chronic migraine [2]. In addition to the increased 

use of analgesic medication, visits to doctors, and visits to the emergency services, 

chronic migraine has a high socioeconomic cost, with higher direct and indirect 

costs. Furthermore, chronic migraine sufferers are more prone to anxiety, depression, 

other chronic diseases (respiratory, heart or circulatory) and more chronic pain, all 

of this associated with significant personal, societal, and economic burdens [3,4].

The pharmacological treatment of chronic migraine is based on two pillars: abortive 

treatment of acute migraine attacks (that taken only in the acute pain phase) and 

preventive therapy. The latter is used to diminish the severity, frequency or duration 

of attacks. Preventive therapy includes additional benefits such as reduction of 

disability and enhancement of response to acute treatments [5]. It may also result 

in a reduction in health care costs [6].

Many classes of medication are used for migraine prevention: antiepileptic drugs, 

antidepressants, betablockers, calcium channel antagonists, serotonin antagonists, 

and botulinum neurotoxins, among others. In the case of chronic migraine, although 

all preventive treatments for migraine may be useful, only topiramate (a type of 

antiepileptic) and OnabotulinumtoxinA (BoNT-A) [7] have solid proven evidence 

for their use [8,9,10,11,12,13]. BoNT-A has been an extended use treatment for 
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chronic migraine since its approval in 2010 by the Food and Drug Administration 

in the United States (FDA), having also shown a more sustained effect and better 

tolerability than topiramate in the few comparative studies performed [14,15]. 

BoNT-A can be injected under the skin (subcutaneous) or inside the muscles 

(intramuscular) in accordance with the so-called The Phase III REsearch Evaluating 

Migraine Prophylaxis Therapy (PREEMPT) paradigm. This injection method 

consists of using both fixed and follow-the-pain sites, with additional specific 

follow-the-pain sites considered depending on individual symptoms. This procedure 

should be carried out in repeated patterns after several months. Following the 

results of the initial clinical trials and subsequent published studies in real-life 

settings [16,17,18,19], today it is known that 70-80% of patients with chronic 

migraine show an improvement with this treatment (improvement defined as a 

reduction in migraine attack frequency or days with attacks by at least 50% within 3 

months, leading to a significantly improved functioning of the patients and their 

overall quality of life). Moreover, there is evidence that patients with chronic 

migraine who do not show the desired treatment response after the first cycle of 

BoNT-A treatment may indeed experience clinical improvement after one or two 

additional treatment cycles [20].

However, in clinical practice, about 20-30% of chronic migraineurs do not respond 

to BoNT-A. One of the most debated aspects in recent years has been the possible 

relationship between the clinical phenotype of migraine attacks and the response to 

BoNT-A. As has been mentioned in certain publications [21], it is very important 

to predict if the BoNT-A treatment will be effective in a patient. Knowing the 

phenotype-response relationship may help in the development of new treatments for 

the 20-30% of patients that do not respond to the treatment. Besides the cost, it would 

avoid the patients suffering the pain associated with the treatment.

In a real scenario of electronic medical records of migraineurs, we present a 

methodology for predicting whether or not the BoNT-A treatment will be efficient. 

Starting from the raw database provided by doctors, we preprocess it, identify the 

most promising feature to predict and then run several algorithms in order to get the 

prediction. Results show that it is possible to get an accuracy higher than 91% when 

employing the HIT6 [22] metric and 85% when this metric is missing. Moreover, 

our results show that some of the features leading to these accuracies are actually 

coherent with respect to the medical literature.

The rest of the paper is organized as follows. Section 2 describes the work related 

with some techniques applied to migraine and other illnesses. In Section 3, our 

methodology for predicting treatment results is explained. Section 4 describes the 

experiments and comparisons between different algorithms and our solution. Finally, 

our conclusions and future lines of work are presented in Section 5.
on.2018.e01043
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2. Related work

Several studies have looked at the clinical features of patients with migraine 

which may be associated with a favorable response to BoNT-A treatment, although 

conclusive results are not yet available for use in clinical practice. Possible predictors 

of a good response have been proposed: allodynia (painful hypersensitivity to 

superficial stimuli) [23], the unilateral character of a migraine [23,24], associated 

migraine aura (visual, language, motor or sensory alterations occurring prior to 

pain) [25], or the build-up time to maximum pain (shorter time, better response to 

BoNT-A) [26]. Pain directionality also seems to be a possible clinical predictor. This 

feature refers to whether the headache feels like it is exploding, imploding or ocular. 

The term exploding refers to when the discomfort is felt pushing from the inside 

out. Patients suffering from imploding or ocular pain tend to be relieved with the 

BoNT-A treatment than those with the exploding [27]. Pagola et al. studied a number 

of possible clinical predictive features in parallel, including unilateral location of 

headache, pericranial muscular tension, directionality of pain, duration of migraine 

history and medication overuse, comparing responders to BoNT-A treatment with 

non-responders, but no significant differences emerged [28].

In order to find the most significant features of patients and classify them, there is a 

vast number of algorithms available [29]. C4.5, k-means, Support Vector Machines 

(SVM), Expectation-Maximization (EM) algorithm, PageRank, AdaBoost, k-NN, 

Naive Bayes, and CART are among the most common data mining algorithms 

used by the research community in many fields. A Feature Subset Selection 

(FSS) approach is typically applied first [30] in order to improve the accuracy 

of the classifiers. This approach has certain advantages, such as offering a better 

understanding of the prediction model or a better generalization by reducing 

overfitting. This problem happens when a prediction model is very closely adjusted to 

the training data, so it does not perform well when predicting new observations [31]. 

These methods have been applied to different neurological anomalies, for example: 

a feature extraction and selection from EEG signals in combination with a sleep 

stages classifier [32], an automatic seizure detection system for newborns [33], or 

to assess the feasibility of employing accelerometers to characterize the postural 

behavior of early Parkinson’s disease subjects [34]. Furthermore, in order to improve 

migraine treatment predictions, we consider that simulated annealing (SA) [35]

is a particularly interesting approach to take into account. SA is a stochastic, 

metaheuristic technique used in difficult optimization problems to approximate the 

global optimum of a given function in its search space. This approach has been 

widely employed to improve the performance of other algorithms. For example, 

SA has been used to improve FSS in [36]. Furthermore, SVM and SA have been 

combined to find the best selected features to increase the accuracy of anomaly 

intrusion detection in [37], and for a hepatitis diagnosis method in [38].
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Figure 1. Framework diagram.

A key point to mention is how to measure the impact headaches have on daily life. 

In this sense, an important metric that allows the measurement of this issue is HIT6. 

The HIT6 [22] scale is a perceptional survey that is filled out by patients in order 

to measure their level of pain related with the migraine. In regular clinical practice, 

BoNT-A response is considered successful by doctors if it reduces migraine attack 

frequency or days with attacks by at least 50% within 3 months. Response features 

such as the HIT6 score (Headache Impact Test) are reflected less consistently. Thus, 

in our study, where data were obtained retrospectively through the review of clinical 

histories, we were able to obtain only a small set of patients for whom the HIT6 

score had been collected. As a consequence, for the vast majority of the cases we 

must define an alternative way to determine the efficiency of the BoNT-A based 

treatment.

Therefore, although there is an ongoing research into the prediction of the appearance 

of migraines and even the effects of migraine treatment, to the best of our knowledge 

there is no existing method for predicting the efficiency of the BoNT-A treatment. 

For this purpose, we propose two methodologies that are customized for the migraine 

patients’ clinical data, and which are able to deal with incomplete as well as 

heterogeneous data. Firstly, we present an approach that considers the medical HIT6 

metric in order to predict the treatment success. Secondly, as this metric is rarely 

found in our medical databases, an alternative approach that uses SA in combination 

with classification and clustering methods is presented.

3. Methodology

The issues involved in predicting the reduction of migraine symptoms when using 

the BoNT-A treatment will be described in this section. Figure 1 presents the 

framework on which this paper is based. Firstly, a database is loaded with the 
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medical records from the two participating hospitals. Secondly, the class attribute 

is selected by considering the limitations of the medical records. Thirdly, clinical 

features are categorized in order to work with homogeneous data. Afterwards, a 

feature weighting mechanism based on simulated annealing or a FSS step is applied 

for improving the prediction accuracy. Finally, different classification algorithms are 

run and the best models are analyzed in order to detect clinical features that allow to 

predict the effectiveness of the treatment.

3.1. Clinical data

The data were collected retrospectively from the review of medical histories of 

patients with chronic migraine and under previous or current treatment with BoNT-

A with follow-up at the Headache unit of two tertiary-level hospitals. To this end, the 

approval of the ethics committee of both hospitals was obtained under the documents 

ANA-TOX-2015-1 and PI-17-832 which are provided as supplementary content.

A total of 173 patients were included (116 from Hospital Clínico Universitario in 

Valladolid and 57 from Hospital Universitario de La Princesa, in Madrid). Sixty-two 

baseline features were categorized. It is necessary to mention that attributes, features, 

factors and variables are synonym terms in general. These features were related 

to the following points: clinical pain features, demographic features of patients, 

comorbidities, tested and concomitant preventive drugs, pain impact measures, and 

available analytical parameters. The latter were obtained from blood tests recorded 

in the clinical history which were performed for other reasons in the 3 months prior 

to, or 3 months after, the first infiltration, and included hemogram and liver, renal, 

thyroid, ferric, vitamin B12, folic acid and vitamin D profiles. The efficacy of BoNT-

A was evaluated by comparing the baseline situation (before the first infiltration) 

and the situation after 12-16 weeks following each of the infiltrations, through the 

following parameters: number of days of pain per month, percentage reduction in 

days with pain, subjective intensity of pain, number of days of disability due to 

pain per month, HIT-6 scale score, drug consumption for pain and adverse effects of 

infiltration. Since this was a retrospective study, not all the data could be obtained 

for each patient in a systematic way.

Only 18 out of 173 records contained the perceptional HIT6 value before infiltrations, 

and only 12 and 3 contain this value after the first and second BoNT-A infiltrations, 

respectively. On the other hand, we found several efficiency indicators such as the 

reduction and adverse effects, which are provided in 102 and 86 registers for the first 

and second infiltrations, respectively.

To tackle classification and prediction for migraine treatment with BoNT-A, clinical 

data need to be previously processed in order to achieve a high level of accuracy. In 
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lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e01043
http://creativecommons.org/licenses/by/4.0/


Article No~e01043

7 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub
Table 1. Example of features in clinical data.

Toxin-age of onset 
(years)

Body mass index 
(kg/m𝟐)

Hemoglobin 
(g/dL)

Creatinine 
(mg/dL)

Platelets 
(u/mcL)

Reduction effects 
(1-4)

51 20.39 13.4 0.71 213000 4
49 26.5 14.2 0.55 252000 2
36 23.15 13.5 0.44 304000 3
26 17.7 13.1 0.66 218000 2
31 NA 14.8 0.71 327000 1
50 NA 16.2 0.74 327000 3

fact, some patients are non-respondent, while others respond after the 𝑖th session. 

In order to predict the patients’ behavior after the infiltrations, it is necessary to 

explore the patients’ data before these take place. In other words, in order to predict 

the outcome after the 𝑖th session, the clinical data of the patient as well as the 

outcome after the (𝑖 − 1)th infiltration are required. Nevertheless, some problems 

are encountered while evaluating these data. For example, a small set of patients 

with many features is typically present in our medical databases. In addition, the 

incompleteness of data is another problem that must be dealt with. Some features are 

given as continuous numeric values while other features are categorized by medics. 

All in all, it is hard to properly process all this information. As a consequence of 

these heterogeneous data, algorithms cannot infer a good model for predicting the 

outcome of the treatment. An example of these features can be observed in Table 1.

3.2. Class attribute selection

In order to estimate the goodness of the solutions, it is necessary to define a metric, 

class attribute, that indicates how efficient the infiltration has been. In other words, 

class attribute is the selected clinical feature used to measure the effectiveness 

of treatment. According to doctors, some clinical features such as HIT6, effects 

reduction, adverse effects, or days with headache are good candidates for class 

attributes. The main problem is that the values of these features are not usually 

provided, with the exception of reduction and adverse effects. In this section, we first 

discuss the HIT6 value, which obtained a high level of accuracy in the experiments, 

as well as its limitations. In addition, a class attribute based on both the reduction 

and adverse effects is proposed to tackle the limitations imposed by the use of HIT6.

3.2.1. HIT6

HIT6 is a highly specific perceptional value provided by doctors in order to measure 

the level of pain associated with migraine episodes. This value is obtained after 

patients fill out a standardized survey [22] consisting of six questions that capture 
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Table 2. Hit6 Headache Impact Test example.

never rarely sometimes very often always

Question 1 X
Question 2 X
Question 3 X
Question 4 X
Question 5 X
Question 6 X

Points added 6+6=12 8 10 11 13

the impact of headaches as well as their treatment. An example is shown in Table 2. 

These questions are:

1) When you have headaches, how often is the pain severe?

2) How often do headaches limit your ability to perform usual daily activities 

including housework, your job, homework, or social activities?

3) When you have a headache, how often do you wish you could lie down?

4) In the past 4 weeks, how often have you felt too tired to do work or daily activities 

because of your headaches?

5) In the past 4 weeks, how often have you felt fed up or irritated because of your 

headaches?

6) In the past 4 weeks, how often did headaches limit your ability to concentrate 

on work or daily activities?

The values allowed for the answers are: never, rarely, sometimes, very often, and 

always. These values are graded with 6, 8, 10, 11 and 13 points, respectively. The 

HIT6 value is computed as the sum of all the individual scores. If the HIT6 value is 

50 or higher, doctors interpret that the level of pain is enough to affect quality of life.

As this metric is perceptional, we have focused only on those database records 

containing the HIT6 value prior and after the infiltration. By defining the class 

attribute as the difference between the two values, as Equation (1) indicates, the 

bias due to different perceptions from different patients is diminished. According 

to [20], if the HIT6 value after the infiltration diminishes by more than 30%, the 

treatment is considered as successful, and unsuccessful otherwise. Hence, for this 

particular class attribute, only two categories have been defined, namely: successful 

and unsuccessful.

The HIT6 values are rarely found in clinical databases. In fact, only 12 patients from 

the clinical dataset from Hospital Universitario de La Princesa and Hospital Clínico 

Universitario de Valladolid had the HIT6 value before and after the first infiltration 
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with BoNT-A. Therefore, although the achieved accuracy is high, as is shown in the 

experiments section, another class attribute must be defined to tackle other cases.

𝐻𝐼𝑇 6𝑑𝑖𝑓 = 𝐻𝐼𝑇 6𝑏 −𝐻𝐼𝑇 6𝑎 . (1)

3.2.2. Reduction and adverse effects

As a consequence of the HIT6 value being missing in many clinical records, the 

reduction (R) and the adverse (A) effects, which are more frequently found in the 

databases, have been selected to define the class attribute. Reduction and adverse 

effects are defined with values directly provided by doctors. These clinical features 

are quantified from 1 to 4, using 1 for the lowest and 4 for the highest level of effects.

R and A are measurable values from an objective point of view based on definitions. 

R is a clinical objective value categorized from 1 to 4 according to the percentage 

of reduction of days of migraine, being 1 when the percentage reduction of days 

of migraine is less than or equal to 25%, 2 for the interval between 25% and 49%, 

3 for the interval between 50% and 74% and 4 when the percentage is greater than 

or equal to 75%. A is equal to 1 when there are no adverse effects, 2 when there 

are mild adverse effects (easily tolerated), 3 when there are moderate adverse effects 

(interfere with usual activities and may require suspension of treatment) and 4 when 

there are serious adverse effects (incapacitate or disable usual activities, and require 

suspension of treatment as well as medical intervention).

A high level of R indicates good treatment results, while high levels of A point to 

many adverse effects. Hence, in order to obtain a directly proportional feature, our 

class attribute (𝑁𝐴𝐶 ) has been determined by dividing R and A, as Equation (2)

shows.

𝑁𝐴𝐶 = 𝑅

𝐴
. (2)

In this work, a similar approach to the one based on HIT6 (two response categories: 

low and high) [20] has been considered for class attribute categorization, instead of 

the three categories (low, medium and high) used for the rest of the clinical features. 

In following this approach, two intervals (low and high) need to be defined before 

trying to predict the efficiency of the treatment when using 𝑁𝐴𝐶 as class attribute.

Table 3 depicts an instance of the 𝑁𝐴𝐶 computation using different values provided 

by the hospitals. Lower responses are labeled when the 𝑁𝐴𝐶 value falls into the 

(𝑉𝑚𝑖𝑛, cut-off point) interval, while high response labels are used for those values 

falling within the (cut-off point, 𝑉𝑚𝑎𝑥) interval. In this case, 𝑉𝑚𝑖𝑛 = 0.25 occurs 

when 𝑅 = 1 and 𝐴 = 4, while 𝑉𝑚𝑎𝑥 = 4 occurs when 𝑅 = 4 and 𝐴 = 1. We 

select a cut-off point of 1.40. The reason to use this value is the fact of trying to 
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Table 3. Class attribute categorization.

Reduction effects (R) Adverse effects (A) R/A Categorized value

1 1 1 low
2 1 2 high
3 2 1.5 high
1 2 0.5 low

emulate the criterion used of the 30% decrease in the HIT6 value. It is considered 

as an effective response to the treatment in the PREEMPT clinical trial [20]. In this 

way, values lower than 1.40 represent the 30% of the values that 𝑁𝐴𝐶 can take. Then, 

the low and high categories are defined with the intervals (0.25, 1.40) and (1.40, 4), 

respectively.

3.3. Preprocessing

3.3.1. Categorization of clinical features

In order to improve prediction accuracy for the BoNT-A treatment, the heterogeneous 

data from the hospitals is first categorized. The method selected for the categorization 

of our medical data is based on the mean and standard deviation. Applying this 

method makes it possible to work with more homogeneous values.

The mean and standard deviation categorization type centers the intervals around 

the mean (𝜇), and defines subsequent intervals by adding or subtracting the standard 

deviation (𝜎). For instance, if three categories are defined for a certain clinical 

feature, the intervals (𝑉𝑚𝑖𝑛, 𝜇 − 𝜎), (𝜇 − 𝜎, 𝜇 + 𝜎) and (𝜇 + 𝜎, 𝑉𝑚𝑎𝑥) are used to 

refer to value 1, value 2 and value 3, respectively. It should be noted that 𝑉𝑚𝑖𝑛 and 

𝑉𝑚𝑎𝑥 are the minimum and maximum values of the data, respectively. By following 

a similar strategy it is possible to define multiple intervals. The pseudocode of the 

intervals generation for a feature categorization is presented in Algorithm 1.

3.3.2. Feature subset selection (FSS)

This technique makes it possible to enhance the prediction efficiency of the 

classification and clustering methods, as it just considers the most influential features 

when predicting the class attribute value. This approach has certain advantages, such 

as offering a better understanding of the prediction model and a better generalization 

by reducing overfitting [39]. Several approaches have been designed to implement 

the FSS technique as the filter, wrapper or embedded method [40]. The filter 

type method selects features without considering the model. In this approach, the 

emphasis is placed on the general features such as the existent correlation with the 

class to predict. The wrapper method tries to find interactions between features by 
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Algorithm 1: Intervals for categorizing features
Require: Number of intervals 𝑁 , mean 𝜇 and standard deviation 𝜎. An empty list of intervals 𝐼 = ∅.

1: if 𝑁 = 1 then

2: 𝐼 =
{
(𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥)

}

3: end if

4: if 𝑁 = 2 then

5: 𝐼 =
{
(𝑉𝑚𝑖𝑛, 𝜇), (𝜇, 𝑉𝑚𝑎𝑥)

}

6: end if

7: if 𝑁 ≥ 3 then

8: if isOdd(𝑁) then

9: 𝐼 = {(𝜇 − 𝜎, 𝜇 + 𝜎)}

10: 𝜆 = 𝑁−1
2

11: else

12: 𝐼 = {(𝜇 − 𝜎, 𝜇), (𝜇, 𝜇 + 𝜎)}

13: 𝜆 = 𝑁−2
2

14: end if

15: 𝐼− =
{
(𝑉𝑚𝑖𝑛, 𝜇 − 𝜆𝜎)

}

16: 𝐼+ =
{
(𝜇 + 𝜆𝜎, 𝑉𝑚𝑎𝑥)

}

17: for 𝑗 = 𝜆 − 1 downto 1 do

18: 𝐼− = 𝐼− ∪ {(𝜇 − (𝑗 + 1)𝜎, 𝜇 − 𝑗𝜎)}

19: 𝐼+ = 𝐼+ ∪ {(𝜇 + 𝑗𝜎, 𝜇 + (𝑗 + 1)𝜎)}

20: end for

21: 𝐼 = 𝐼 ∪ 𝐼− ∪ 𝐼+

22: sort(𝐼)

23: end if

24: return 𝐼

methods used in experiments.

ator Description Search method

Evaluates the worth of a subset of features by considering the individual 
predictive ability of each feature along with the degree of redundancy 
between them.

BestFirst

val Evaluates feature sets by using a learning scheme. BestFirst
buteEval Evaluates the worth of a feature by computing the value of the 

chi-squared statistic with respect to the class.
Ranker

val Evaluates feature subsets on training data or a separate hold out testing 
set.

BestFirst

evaluating subsets of them. Finally, the embedded method considers certain search 

algorithms in order to combine the advantages of the first two methods.

Different FSS algorithms [30] have been applied in order to determine the most 

relevant clinical features when obtaining the treatment response prediction. Table 4

shows the main features of the four studied FSS implementations, namely: feature 

evaluator and search method. C4.5 is the classifier selected to work together with the 

WrapperSubsetEval and ClassifierSubsetEval methods to measure the worthiness of 

the subset of features within the dataset.
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Figure 2. Flowchart with the proposed Simulated Annealing-based methodology.

3.3.3. Weighting features

In order to enhance the accuracy of the classification and the clustering algorithms, 

the simulated annealing method (SA) [35] has also been considered as a

preprocessing step. SA is a randomized search method for optimization. Our purpose 

is to find those weights that allow us to do improvements in the representation of the 

numeric labels encoded by doctors for each infiltration.

When applying this method to our problem, we define the error (100% - accuracy) 

as the objective value to be diminished. In this way, the SA algorithm will be able to 

optimize a weighted sum of features. The approach has been implemented using the 

Hero library [41]. This library implements the “Natural Optimization” proposed by 

De Vicente et al. [42], which means that the temperature does not need to be given 

because it is continuously tuned while running the SA algorithm (Equation (3)). In 

addition, an initial random weight vector solution (one weight per attribute) will be 

given as input to the SA algorithm. After this, the error rate will be computed and 

saved as the initial fitness value to be minimized. Then, a mutation over one of the 

weights will be performed. The procedure will be repeated until completing a defined 

maximum number of iterations (𝑁).

Figure 2 depicts a flowchart with the methodology, where 𝑇 is defined by Equation 

(3)

𝑇 =
𝐾 × (𝐶𝑚𝑖𝑛 − 𝐶𝑖𝑛𝑖𝑡)

, (3)

𝑁
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where 𝑁 is the number of iterations, 𝐾 is a constant that refers to the backward 

degree and time/quality trade-off and has been set to 1, and 𝐶𝑚𝑖𝑛 and 𝐶𝑖𝑛𝑖𝑡 refer to the 

current minimal cost and initial cost, respectively. The energy difference is defined 

in Equation (4).

𝐸𝑑𝑖𝑓𝑓 = 𝐶𝑠𝑜𝑙 − 𝐶𝑚𝑖𝑛 , (4)

where 𝐶𝑠𝑜𝑙 is the cost of the solution. Finally, the probability (𝑃 ) to compare with 

the random number (𝑅) is given by Equation (5). 𝑃 is the probability of changing to 

a new solution. This is calculated when accuracy is not lower than the fitness value. 

When 𝑅 ≤ 𝑃 , SA moves the solution to another point within the search space to 

avoid being trapped in a local minimum.

𝑃 = 𝑒(−𝐸𝑑𝑖𝑓𝑓 ∕𝑇 ) . (5)

3.4. Prediction accuracy evaluation

3.4.1. Classification

The problem of prediction could be tackled by using classification algorithms which 

identify categories for new records based on the previous data (training dataset) [39]. 

These records (observations) have been previously labeled by doctors (supervised 

learning). This implies that given N records characterized by given prediction 

features, the training data will be transformed into a classification model able to 

predict the label of the class attribute for every new record with some level of success 

(accuracy).

In our particular case, the 𝑁𝐴𝐶 class attribute is used whenever the HIT6 value is not 

available (for the majority of the patients). Several state-of-the-art classifiers [29]

(e.g. TAN, RIPPER, C4.5 or NB tree algorithms) are applied in order to compare 

their prediction accuracy and to gain a general idea of possible ways to improve the 

results. All these algorithms and its parameters are described in Table 5.

3.4.2. Clustering

This technique works by grouping all the records or observations into different 

groups called “clusters”, each of them containing elements with similar features [39]. 

In our study, we have considered two different clusters (low and high) to indicate 

the result of the treatment. In this technique, we consider 𝑁𝐴𝐶 as the class attribute. 

Different state-of-the-art clustering algorithms such as k-means, expectation-

maximization (𝐸𝑀) and farthest-first have been selected to predict treatment 

response. The clustering algorithm is usually an unsupervised method. However, the 
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Table 5. Descriptions of clas

Classification algorithm

Naive Bayes N
a

IBk k
RIPPER P

to
C4.5 G
Logistic B

w
AdaBoostM1 M

Bagging M

LMT B
a

NBTree G
th

Random forest B
Random tree B

e
REPTree B

a
DecisionStump B

ju
SVM B

o
c
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sifiers used in experiments.

Description Parameters

umeric estimator precision values are chosen based on 
nalysis of the training data.

No parameters

-nearest neighbors classifier. k-NN=2, Linear Search algorithm
ropositional rule learner, Repeated Incremental Pruning 
 Produce Error Reduction.

Pruning=true, Seed=1

enerates a pruned or unpruned C4.5 decision tree. Confidence factor=0.25, Seed=1
uilds and uses a multinomial logistic regression model 
ith a ridge estimator.

maxIts=-1, Ridge=1 ⋅ 10−8

eta classifier: Boosts a nominal class classifier. Classifier=Decision Stump, Iterations=10, 
Seed=1

eta classifier: Bagging a classifier to reduce variance. bagSizePercent=100, Classifier=Random 
tree or C4.5, Iterations=10, Seed=1

uilds classification trees with logistic regression functions 
t the leaves.

minNumInstances=15, 
numBoostingIterations=-1

enerates a decision tree using Naive Bayes classifiers for 
e leaves.

No parameters

uilds a forest of random trees. Number of trees=100, Seed=1
uilds a tree considering K randomly chosen features for 
ach node. Performs no pruning.

minNum=1, Seed=1

uilds a regression(decision) tree using information gain 
nd variance and prunes it using reduced-error pruning.

maxDepth=-1, minNum=2

uilds a tree that make predictions based on the value of 
st a single input feature (also called 1-rules).

No parameters

uilds a model that assigns new examples to one category 
r the other, making it a non-probabilistic binary linear 
lassifier.

cacheSize=40, cost=1, kernelType=radial

values of the class attribute have been tagged. Additionally, two clusters have been 

defined to categorize responses to treatment, so we will use the cluster algorithms as 

supervised clustering. In this sense, the clustering algorithm is applied to classified 

examples and has the objective of identifying clusters that have a high probability 

density with respect to a single class. As mentioned by Eick et al. (2005) [43], 

the fitness functions used for supervised clustering are significantly different from 

the fitness functions used by traditional clustering algorithms. The fitness function 

evaluates a clustering based on the number of clusters and class impurity. The 

impurity refers to measure the percentage of minority examples in the different 

clusters of a determined cluster.

In addition, a majority voting metacluster composed of the three aforementioned 

algorithms has also been considered. Hence, the result of the metacluster will be the 

dominant value among the three clustering algorithms. An example of this behavior 

is presented in Table 6.

3.5. Consensus model

As was mentioned in Section 1, the pathophysiological features that determine the 

positive or negative response to the migraine treatment are not known yet [44]. We 
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Table 6. Metacluster behavior.

EM k-means Farthest-First Predicted value

low high low low
high low high high
low high high high
low low high low

can take advantage of the use of a consensus model to reveal these features. The 

idea is not to build a consensus predictor model, but to understand the most relevant 

clinical features that exist in the majority of the induced prediction models of the 

best classifier.

Ensemble techniques can help us analyze feature relations with the construction 

of consensus models to make new and relevant findings [45,46]. In this sense, 

Armañanzas et al. [47] have proposed an ensemble interaction network for unveiling 

biological relations when analyzing Alzheimer’s disease. In that study, many 

Bayesian k-dependence models are induced to output a gene interaction network 

composed of arcs (edges). An occurrence threshold t is defined to output the most 

frequent edges above a predefined confidence level (the 0.999 quantile is used in 

order to retain just the most important connections). The list of interaction networks 

and the associated list of highly relevant features are obtained to reveal or corroborate 

biological hypotheses in this disease. Other studies [48,49] can be found in the 

literature with similar purposes.

In this paper, this technique is applied in order to group different prediction models 

(decision trees) produced by the best classifier in terms of accuracy for both 

infiltrations. This is done with the purpose of finding explicit features and relations 

between medical features that influence the treatment response prediction. In the 

FSS method (Section 3.3.2), these features are selected before the construction of the 

prediction model by using different metrics. In the ensemble interaction network, the 

idea is to invert the feature selection process of FSS, which means that the relevant 

features will be selected after, and not before, the construction of the prediction 

models.

We define the decision tree model as the graph 𝐺(𝑉 , 𝐸), where 𝑉 represents the 

vertex list (features as vertices) of the model and 𝐸 represents the list of edges 

(relations between vertices) of the model. The interactions in the decision tree consist 

of parent-child edge relations. Nodes are filled with the feature values and edges 

represent the parent-child relation from the decision tree model. Edges for the first 

level of the induced models will have a null value as vertex 𝑢 in the edge tuple (𝑢, 𝑣)
because the roots of decision trees do not have parents. Many decision trees will 

be induced by a resampling method (k-fold cross validation) together with the SA 

optimization. For each level of the decision tree, the most frequent clinical features 

will be taken into account. After this, an interaction network will be depicted with 
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edges whose frequencies are higher than a reliability threshold t. Edges occurring 

more than t times for each level of the tree will be retained. After that, these relevant 

features will be contrasted with the most important features obtained with the FSS 

methodology.

The threshold value t will be different for each level of the tree. Edges will be sorted 

according to their frequency of appearance in a given level. In order to retain only one 

vertex as root of the consensus decision tree, we will retrieve only the 0.99 quantile 

(t value) for the first level of edges of the induced models. For the rest of the levels, 

the 0.9 quantile will determine the t value for retaining the most important edges. 

These quantile values have been defined by considering the 0.999 quantile applied 

by Armañanzas et al. [47] but modified with the purpose of retaining only one root 

and multiple important child nodes in the consensus decision tree proposed. All these 

steps are summarized in Algorithm 2. Table 7 presents the functions and definition 

of variables used in the algorithm.

Algorithm 2: Relevant features in consensus trees
Require: Lists 𝑋1,…,𝐿𝑚𝑎𝑥

and 𝐿𝑚𝑎𝑥.

1: 𝑖 = 1 and 𝑀 = ∅

2: 𝑡=tvalue(0.99, 𝑋1)

3: while 𝑋1 ≠ ∅ do

4: 𝑒(𝑢, 𝑣)=head(𝑋1)

5: if 𝑤(𝑒, 𝑋1) ≥ 𝑡 then

6: add(𝑒, 𝑀)

7: end if

8: end while

9: for 𝑖 = 2, 𝑖 < 𝐿𝑚𝑎𝑥, 𝑖++ do

10: 𝑡=tvalue(0.9, 𝑋𝑖)

11: while 𝑋𝑖 ≠ ∅ do

12: 𝑒(𝑢, 𝑣)=head(𝑋𝑖)

13: if 𝑤(𝑒, 𝑋𝑖) ≥ 𝑡 and ∃𝑒′ = (𝑢′, 𝑣′) ∈ 𝑀 ∶ 𝑢 = 𝑣′ then

14: add(𝑒, 𝑀)

15: end if

16: end while

17: end for

18: return 𝑀

4. Experimental

In order to test the proposals, our framework was implemented with Java and using 

the Hero library [41] as well as Weka 3.8 [50]. As was mentioned in Section 3.1, the 

clinical dataset consists of 102 patients that have undergone the first infiltration and 

86 the second infiltration during BoNT-A treatment. These records are divided into 
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Table 7. Description of variables and functions employed in Algorithm 2.

Name Description

𝑣 Vertex or node.
𝑒(𝑢, 𝑣) Edge 𝑢 → 𝑣, where 𝑢 is parent of 𝑣.
𝑤(𝑒,𝑋𝑖) Weight of an edge e. 𝑤(𝑒, 𝑋𝑖) = |{𝑒 ∈ 𝑋𝑖}|.
𝑋𝑖 The edges list at level 𝑖 of the induced prediction models (decision trees) for a given 

infiltration.
𝑀 List of nodes that conform the consensus tree.
𝐿𝑚𝑎𝑥 A defined maximum number of levels to explore for the consensus tree construction.
tvalue(𝑞, 𝑋) Calculates the 𝑡 value given the quantile (𝑞) value and the 𝑋 list.
head(𝑋) Returns and removes the first element of the 𝑋 list.
add(𝑒,X) Adds 𝑒 to the 𝑋 list.

two datasets for each infiltration, one for training-test and another for validation. For 

the first infiltration, 76 and 26 records were employed for the training-testing and the 

validation datasets, respectively. In the second infiltration, 64 and 22 records were 

used for the training-testing and the validation sets, respectively. When training-

testing the predictions over the class attribute, the k-fold cross validation (k=10) 

was applied without the use of a validation set [51]. The results presented in this 

section are based on the measured accuracy of the k-fold cross validation. The k-fold 

cross validation method has been used to avoid reporting overoptimistic results of 

classifier algorithms because of overfitting. The validation set was used to verify 

the results found by the k-fold cross validation process. Moreover, the k-fold cross 

validation results were used (as fitness value) to improve the SA parameter tuning 

process (feature weighting) in the experiment presented in Section 4.2.3. Clinical 

data were provided by the Hospital Clínico Universitario in Valladolid, and the 

Hospital Universitario de La Princesa in Madrid, both being in Spain.

4.1. HIT6 prediction

In this experiment, only the clinical data belonging to patients whose database 

record contains the HIT6 value were considered. The purpose is to predict high-

low differences in HIT6 values before and after infiltrations, as was explained in 

Section 3.2.1. The HIT6 value is required before and after the first infiltration with 

BoNT-A in order to apply Equation (1). Only 12 patients meet this requirement. In 

this initial test, the feature subset selection (FSS) step was not considered. Moreover, 

the validation dataset was not taken into account because of the number of records.

Due to the small size of the dataset with the HIT6 value, an exhaustive cross-

validation method called Leave-One-Out Cross-Validation (LOOCV) is applied 

for training-testing the classifier algorithms of this section. This method has been 

applied with the purpose of creating all possible partitions of 𝑛 cases, when the 

cardinality of a training set is fixed to 𝑛 − 1 and the cardinality of a testing set is 1.
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Table 8. HIT6-difference prediction.

Classification algorithm First infiltration
Accuracy Sensitivity Specificity

Naive Bayes 66.66% 0.00 0.72
IBk 66.66% 0.00 0.72
RIPPER 75.00% 0.50 0.80
C4.5 91.66% 1.00 0.90
Logistic 50.00% 0.20 0.71
AdaBoostM1 (DecisionStump) 91.66% 1.00 0.90
Bagging (Random tree) 75.00% 0.50 0.80
Bagging (C4.5) 66.66% 0.00 0.72
LMT 58.33% 0.25 0.75
NBTree 91.66% 1.00 0.90
Random forest 75.00% 0.00 0.75
Random tree 66.66% 0.33 0.78
REPTree 75.00% 0.00 0.75
DecisionStump 91.66% 1.00 0.90
SVM 75.00% 0.00 0.75

Means 74.44% 0.39 0.79

Medians 75.00% 0.25 0.75

Table 8 presents the accuracy values after employing the class attribute defined by 

Equation (1) in combination with several state-of-the-art classification algorithms. 

As can be observed, some algorithms show a high level of accuracy. For example, the 

AdaBoost, DecisionStump, C4.5 and NB tree algorithms possess an accuracy that 

is higher than 91%. These algorithms are based on rules or trees, with the exception 

of the AdaBoost meta classifier algorithm, which boosts a nominal class classifier 

(DecisionStump).

The values of sensitivity and specificity are also presented in Table 8. These values 

are considered because they are more important than high accuracy values in many 

medical problems [52]. The sensitivity measures the fraction of positive cases that 

are classified as positive, while the specificity measures the fraction of negative cases 

classified as negative. In our case, the positive values will be the patients who have 

a good therapeutic response (labeled as “high”) to the treatment, while the negative 

cases will be the ones that obtain a bad response (labeled as “low”). Overall, the 

classifiers that obtain high accuracies (greater than 90%) also have high values of 

specificity and sensitivity. This means that the number of false positives and false 

negatives is very low.

Despite the positive results, there are very few patients possessing HIT6 values for 

the first infiltration (12 records). As it has been mentioned above, it is not usual to 

have this information in our clinical databases. In fact, predictions on the second 

infiltration have not been performed because only 3 patients registered their HIT6 

value after this infiltration. As a consequence of this reduced amount of records, we 

can only conclude that HIT6 seems to be a good choice as a measurement of the 

treatment effectiveness. Therefore, we can only recommend the collection of such 
on.2018.e01043

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e01043
http://creativecommons.org/licenses/by/4.0/


Article No~e01043

Table 9. Accuracy percentag

Classification algorithm

Naive Bayes
IBk
RIPPER
C4.5
Logistic
AdaBoostM1 (DecisionStump
Bagging (Random tree)
Bagging (C4.5)
LMT
NBTree
Random forest
Random tree
REPTree
DecisionStump
SVM

Means

Medians
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e of some classic classification methods.

First infiltration Second infiltration
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

57.89% 0.65 0.44 51.56% 0.50 0.53
50% 0.78 0.35 59.37% 0.61 0.58

56.57% 0.61 0.33 59.37% 0.60 0.59
50% 0.65 0.22 48.43% 0.46 0.50

51.31% 0.61 0.37 51.56% 0.50 0.53
) 53.94% 0.60 0.28 45.31% 0.41 0.48

50% 0.57 0.09 54.68% 0.54 0.55
43.42% 0.54 0.15 57.81% 0.58 0.57
63.15% 0.63 1.00 56.25% 0.56 0.56
51.31% 0.60 0.33 62.50% 0.61 0.64
55.26% 0.60 0.27 51.56% 0.50 0.53

50% 0.58 0.30 56.25% 0.55 0.58
57.89% 0.61 0.29 48.43% 0.44 0.50
59.21% 0.61 0.25 51.56% 0.50 0.52
61.84% 0.62 0.00 50.00% 0.48 0.51

54.12% 0.62 0.31 53.64% 0.52 0.54

53.94% 0.61 0.29 51.56% 0.50 0.53

clinical feature in the medical records of migraine treatment and more specifically in 

the treatment with BoNT-A. Future research may show that HIT6 is a good severity 

index for measuring the effectiveness in the migraine treatment. Consequently, other 

strategies for treatment classification need to be analyzed.

4.2. Reduction and adverse-effects-based prediction

Because of the lack of availability of HIT6 values, in this section the new class 

attribute defined by Equation (2) is considered. In the same fashion as defined in 

Section 3.2.2, the reduction-adverse effect values are used to measure the accuracy 

comparison among different classification and clustering algorithms of this section.

4.2.1. Classification methods

Several classifiers were applied in order to select the best algorithm in terms of 

accuracy. In Table 9, the accuracy percentage of different classifiers is presented. 

High values of sensitivity and specificity are also presented to visualize the correct 

prediction of high and low responses to treatment. Some algorithms achieved an 

accuracy of more than 60% for the two class values classification (high-low) on 

the first infiltration treatment prediction. By considering a probability function that 

predicts the two class values with a probability of 50% for each one, it can be 

observed that these algorithms do not achieve high accuracies. Moreover, 63.72% of 

class values in the complete dataset take the value of “high” as treatment response 

after the first infiltration. Therefore, classifying all instances as “high” can ensure 
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Table 10. FSS on first infiltration training data.

Features selected FSS1 FSS2 FSS3 FSS4

Onset age of toxin treatment X
Retroocular component X X
Migraine chronic X X
Calcium antagonists X X X X
Enolism X X X X
Vitamin B12 X X
First grade family with migraine X X

Table 11. FSS on second infiltration training data.

Features selected FSS1 FSS2 FSS3 FSS4

Retroocular component X X
GON X X X X
Pneumopathy X X
Dermopathy X X
Vitamin B12 X X
1-Red. and Adv.Eff.clasif X X

an accuracy of 63.72% (baseline accuracy). Similar results were achieved in the 

second infiltration response prediction, where the “low” response represents 52.32% 

of all the dataset. These low accuracies may be a consequence of the large number of 

features in comparison with the reduced number of records in the medical data (52 

and 56 features vs 102 and 86 records for first and second infiltrations, respectively). 

Additionally, sensitivity and specificity values are less than or equal to 0.65. The 

exception is the IBk classifier for the first infiltration, whose sensitivity value is 0.78, 

which involves an excellent detection of patients who respond positively to treatment.

4.2.2. Feature subset selection

In Tables 10 and 11, the clinical features selected by methods of Table 4 are presented 

for the first and the second infiltrations, respectively.

For the first infiltration, calcium antagonists and enolism features were selected 

by the four evaluated FSS methods. For the second infiltration, only the previous 

greater occipital nerve block (GON) was taken into account by the four evaluated 

FSS methods. In addition to these, two features were selected in the first and the 

second infiltrations: the retroocular component and vitamin B12.

In the experiment of this section, only the features presented in the Tables 10

and 11 have been taken into account for building the prediction models of the first 

and second infiltration respectively. Table 12 presents the accuracy of classifiers 

when just using these features. A noticeable improvement in the second infiltration 

response prediction was achieved when using this approach. More specifically, the 

Naive Bayes algorithm achieved an accuracy of 70.31% in contrast to the 62.50% 
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Table 12. Accuracy percenta

Classification algorithm

Naive Bayes
IBk
RIPPER
C4.5
Logistic
AdaBoostM1 (DecisionStump
Bagging (Random tree)
Bagging (C4.5)
LMT
NBTree
Random forest
Random tree
REPTree
DecisionStump
SVM

Means

Medians

21 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub
ge of classifiers with feature subset selection.

First infiltration Second infiltration
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

64.47% 0.67 0.56 70.31% 0.77 0.66
53.94% 0.60 0.31 42.18% 0.42 0.42
51.31% 0.58 0.17 68.75% 0.69 0.69
57.89% 0.61 0.33 60.93% 0.60 0.62
65.78% 0.68 0.59 62.50% 0.64 0.62

) 59.21% 0.62 0.40 62.50% 0.62 0.63
56.58% 0.62 0.38 64.06% 0.67 0.63
60.52% 0.63 0.46 54.68% 0.54 0.56
63.15% 0.65 0.54 54.68% 0.55 0.54
55.26% 0.59 0.14 59.37% 0.59 0.60
56.57% 0.62 0.38 65.62% 0.68 0.64
52.63% 0.59 0.29 59.37% 0.60 0.59
59.21% 0.62 0.38 65.62% 0.68 0.64
63.15% 0.63 0.67 56.25% 0.58 0.56
64.47% 0.65 0.63 67.18% 0.67 0.67

58.94% 0.62 0.42 60.93% 0.62 0.60

59.21% 0.62 0.38 62.50% 0.61 0.62

obtained by the NBTree classifier without applying the FSS method. Moreover, the 

sensitivity value of this classifier for the second infiltration is equal to 0.77, which 

involves an excellent detection of patients who respond positively to the treatment 

for such infiltration.

Despite this promising improvement, response predictions for the first infiltration 

were not significantly improved when comparing the baseline accuracy of 63.72% 

explained in Section 4.2.1. Furthermore, an accuracy of 70% for two class prediction 

is not close to the 91% accuracy obtained when using HIT6, as shown in Section 4.1. 

In addition, the sensitivity and specificity values are less than or equal to 0.67, which 

implies that false positive and false negatives are appearing with certain frequency.

4.2.3. Feature weighting with SA

As was mentioned in Section 3.3.3, SA is applied with the purpose of improving 

the representation of the numeric labels encoded by doctors (preprocessing). The 

number of iterations was defined as two million. Table 13 presents the accuracy 

of the classifier algorithms when applied together with the SA technique. Their 

accuracies improved significantly when using this technique. The best accuracy was 

achieved with random tree (≈85% and ≈86% for the first and the second infiltrations, 

respectively). The relevant medical factors found by the effective combination of SA 

and random tree are presented in Section 4.2.5. The sets of the best features found 

by FFS and the SA process are compared and discussed in Section 4.2.5 and 4.3.
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Table 13. Accuracy percenta

Classification algorithm

Naive Bayes
IBk
RIPPER
C4.5
Logistic
AdaBoostM1 (DecisionStump
Bagging (Random tree)
Bagging (C4.5)
LMT
NBTree
Random forest
Random tree
REPTree
DecisionStump
SVM

Means

Medians

22 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub
ge of classifiers with simulated annealing.

First infiltration Second infiltration
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

64.98% 0.61 0.25 67.64% 0.63 0.68
75.00% 0.80 0.67 81.25% 0.83 0.80
67.11% 0.66 0.75 72.02% 0.72 0.75
61.24% 0.70 0.50 73.44% 0.68 0.81
67.11% 0.75 0.56 62.50% 0.61 0.65

) 65.79% 0.67 0.67 64.07% 0.68 0.62
75.00% 0.73 0.85 81.25% 0.83 0.80
61.85% 0.61 0.36 73.43% 0.75 0.72
65.79% 0.64 1.00 67.62% 0.70 0.68
60.53% 0.64 0.47 67.62% 0.70 0.68
80.77% 0.79 0.85 81.25% 0.83 0.80
84.61% 0.85 0.83 85.94% 0.82 0.90
67.11% 0.67 0.70 63.63% 0.64 0.63
65.79% 0.64 1.00 67.62% 0.69 0.68
75.00% 0.73 0.85 81.25% 0.83 0.80

69.18% 0.70 0.69 72.70% 0.73 0.73

67.11% 0.67 0.70 72.02% 0.70 0.72

Regarding the sensitivity and specificity, we can observe that some classifiers such as 

IBk, bagging with random tree, random forest, random tree and SVM possess values 

greater than 0.80. Of special consideration is the random tree algorithm, which also 

achieves a high accuracy. Given their high sensitivity and specificity values we can 

conclude that these classifiers perform a good detection of positive and negative 

responses to treatment in both infiltrations.

On the basis of the results, we can observe that non-deterministic classifier

algorithms (random tree and random forest) combined with SA perform the best 

in Table 13 (an accuracy higher than 80%). Previous results (Tables 8, 9 and 12) 

show that the best classifiers were deterministic. Then we can conclude that SA 

becomes an important factor, as it helps to optimize non-deterministic algorithms. 

Looking for the lowest fitness, SA moves the solution within the search space to avoid 

being caught in a local minimum in non-convex problems [53], and this benefits the 

non-deterministic algorithms.

Looking more closely at the results of sensitivity and specificity values of Tables 9

and 12, we can see an overall improvement in the specificity of nearly all

classification methods because of the SA pre-processing. In general, those now 

correctly classified cases are female patients with chronic migraine without aura, 

no retroocular component, nausea and vomiting, less than 48 months of migraine 

time evolution, previous radiofrequency treatment, topiramate and at least two other 

preventives drugs tested before toxin and calcium antagonists.

With the purpose of statistically validating if the improvement in classification due to 

the FSS and SA methods is significant, the Kruskal-Wallis (non-parametric) test with 
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Figure 3. Accuracies distribution for first and second infiltration under the methods used in Tables 9, 12

and 13.

Table 14. Nemenyi post-hoc test for accuracies of Tables 9, 12 and 13.

Pair-methods comparison First infiltration Second infiltration
Mean rank difference p Mean rank difference p

Baseline-FSS −8.50000 0.1588 −10.17857 0.0720
SA-FSS 15.03571 0.0034 13.39286 0.0108
SA-Baseline 23.53571 1.2 ⋅ 10−6 23.57143 1.1 ⋅ 10−6

two degrees of freedom was carried out between the accuracy values of Tables 9, 12

and 13 for both infiltrations. This test gave us the results of 𝑝 = 1.753 ⋅ 10−6 for the 

first infiltration and 𝑝 = 2.146 ⋅ 10−6 for the second infiltration. These values, being 

less than 0.05, guarantee us that there is a significant difference in the distributions 

of values among groups. The distribution of classification accuracy obtained under 

the baseline (classifiers without any improvement), FSS and SA methods used in 

Tables 9, 12 and 13 for both infiltrations are presented in Figure 3. Table 14 shows 

the results of the Nemenyi post-hoc test for detecting which pairs of methods are 

significantly different. According to this test, the classifiers improved with SA had 

a highly significant difference (𝑝 < 0.01) in comparison to baseline classifiers and 

when considering FSS. On the contrary, FSS-baseline difference is not significant 

(𝑝 > 0.05).

4.2.4. Clustering methods

In this section, several clustering methods were evaluated by considering the class 

attribute defined by Equation (2) in combination with the SA algorithm. Cluster 

methods use heuristic criteria that seek to group patient records that contain the 

maximum closeness between them (Section 3.4.2). The number of clusters was 

established as two. This number was decided in order to cover the two values that 

take the class attribute to predict (high-low). The number of iterations that were 
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Table 15. Accuracies of clustering algorithms when using 
simulated annealing.

Algorithm First infiltration Second infiltration

Meta-Cluster 80.77% 81.82%
EM 73.08% 77.28%
k-means 65.38% 81.82%
Farthest-First 88.47% 63.64%

executed to optimize the weights of features by SA was established in one million. As 

in the previous tests, clinical data belonging to the first and second infiltrations were 

taken into account. Table 15 shows the accuracy percentages for the four clustering 

methods described in Section 3.4.2. The farthest-first clustering method achieves 

the highest accuracy (88.47%) for the first infiltration. This prediction is better than 

the one obtained when using the random tree and SA combination for the same 

infiltration. Nevertheless, in general we have observed that this method does not 

obtain a big accuracy difference as random tree and SA combination. Supervised 

clustering may have achieved better accuracies than traditional clustering for the 

first infiltration, because the dataset has a high probability density with respect to a 

single class in that infiltration [43].

4.2.5. Consensus model

Section 3.5 discusses the importance of studying a consensus model with the 

prediction models built for the first and the second infiltration of the treatment. With 

our medical datasets, the random tree and SA combination has proved to be the best 

classifier for both infiltrations. We have induced many random tree models instead of 

clustering algorithms or random forest. This decision was taken because the models 

generated by clustering methods and by random forest are difficult to interpret in 

terms of relevant features. Moreover, only the most frequent features for each level 

of the studied models were taken into account. An important point to emphasize 

is that the ensemble tree obtained is not intended to be a prediction model of the 

treatment response for each infiltration. On the contrary, this allows us to know the 

most frequent clinical features and the relations that appear in the majority of the 

prediction models selected (only prediction models with the highest accuracies).

Many random trees were induced by the resampling method (using k-fold cross 

validation with k=10) with the SA optimization (used for the experiments in 

Section 4.2.3). These relevant features are contrasted with the important features 

obtained when using the FSS methodology in Section 4.2.2. The prediction models 

selected for induction were the models that achieved an accuracy of 84.61% and 

85.94% for the first and the second infiltrations, respectively. 5000 prediction models 

for each infiltration were generated from 50 SA weighted feature vectors, which 
on.2018.e01043
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Table 16. Frequency of clinical features for the first level (root) of 
random trees on the first infiltration.

Feature Frequency

GPT 1690
Hemoglobin 1056
Emergency days by month 668
Migraine days by month 516
History of migraine status 500
Vitamin B12 482
Creatinine 464
HTA 350
Platelets 310
Onset age of toxin treatment 300
Serum iron 300
Calcium antagonists 300
Headache days by month 248
Gastropathy 248
Radiofrequency Treatment 230
Urea 230
Enolism 222
GOT 184
GGT 182
Analgesics abuse 176
Retroocular component 168
Catamenial 120
Neuromodulator 114
Unilateral pain 112
Triptan days by month 110
Local painful pressure of greater occipital nerve (GON) 100
Chronic migraine 94
Nausea(Vomiting) 92
Folic acid 90
Tricyclic antidepressants 70
Migraine type 54
First grade family with migraine 50
Oral Preventive Treatment 42
Betablockers (B-blocker) 42
Concomitant antihypertensive treatment 28
Alkaline phosphatase 18
Migraine evolution time 18
Analgesic days by month 12
Symptomatic treatment 10

makes it possible to achieve the highest accuracies for both infiltrations. Regarding 

the root vertex of the ensemble tree, the 0.99 quantile was applied as the t value. 

Taking into account Table 16, this value was equal to 1449.08 for the first infiltration 

(t = 1552.56 for the second infiltration). In this way, GPT was selected as the root of 

the consensus tree for the first infiltration because of its high frequency (1690 times). 

In a similar way, t was defined as the 0.9 quantile from the empirical edge frequency 

distribution of the other levels of the ensemble tree for both infiltrations.

Figures 4 and 5 present the most frequent clinical features for both infiltrations. 

An important aspect to note is that we have defined the 𝐿𝑚𝑎𝑥 value as 3 for both 

infiltrations. This value was established by considering the comprehension of the 
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Figure 4. Consensus tree using random tree models for the first infiltration.

Figure 5. Consensus tree using random tree models for the second infiltration.

resultant consensus tree as a primordial criterion. Higher values of this parameter 

would allow us to see more features, but comprehension could decrease when 

contrasting these features with those obtained with the FSS method. In this sense, a 

consensus tree with a low number of leaves is more understandable. Features were 

filled with different box colors that indicate different levels of the tree (purple, blue 

and black for levels 1, 2 and 3 of the tree). In addition to this, red circles indicate the 

features that were selected when performing the FSS methods presented in Tables 10

and 11 for the first and the second infiltrations, respectively. With this analysis, the 

sum of the frequency of edges will not necessarily be equal to the frequency of their 

parent nodes because not all edges are represented in the consensus tree, but only 

the edges that exceeded the t value.

According to these consensus trees, the most important factors that influence the 

prediction of the treatment response to BoNT-A for the first infiltration are GPT, 

drugs tested before toxin, migraine type, chronic migraine time evolution, first grade 

family with migraine and others. For the second infiltration, the factors are GON, 
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drugs tested before toxin, x1-migraine days by month, tricyclic antidepressants, 

retroocular component and analgesic days by month. Although it is true that in the 

experiments of the previous sections it has been shown that SA obtains a better 

accuracy than the use of FSS, we can point out that they select similar features 

with respect to the selected by FSS. For example: first grade family with migraine, 

enolism, onset of toxin administration and calcium antagonists were indicated by 

both methods as relevant features for the first infiltration while for the second were 

the GON and the retroocular component.

4.3. Medical discussion

The transformation of episodic migraine into chronic migraine occurs over months 

or years and involves atypical pain modulation and central sensitization triggered 

by repetitive inputs from sensitized peripheral sensory neurons [54]. The exact 

analgesic mechanism of action of BoNT-A is only partially known. The main 

hypothesis is that the toxin exerts its antinociceptive action inhibiting peripheral 

sensitization. BoNT-A lowers neuropeptide and neurotransmitter release from 

peripheral sensory neurons, thereby indirectly reducing central sensitization, the 

hallmark of chronic migraine [55,56].

The aforementioned data suggest that the pharmacological response to BoNT-A 

might be better when the migraine headache is “trigeminal” in pain location and 

corresponds to reflex trigeminal-autonomic activation [56,57]. As a consequence, 

BoNT-A action may be more effective in migraineurs who overactivate peripheral 

trigeminal endings during the attack, and such patients may be identified by means of 

easily obtainable patient-reported clinical findings, such as pain location or direction 

(unilateral, implosive-retroocular), the presence of cranial autonomic symptoms 

(allodynia) and cortical spreading depression signs (aura) [56]. Other data such 

as the response to anesthetic block of the greater occipital nerve (GON) or its 

local painful pressure (positive palpation) might suggest the same. Many authors 

believe that a therapy which blocks peripheral transmission of pain signals from 

extracranial areas prior to central sensitization will successfully disrupt migraine 

headache propagation [25,58,59].

In our results, the GON and the retroocular component were also selected as relevant 

features when building our most accurate prediction models. Therefore, we can 

conclude that the relevant features extracted by FSS and the consensus random trees 

are coherent with respect to the medical literature.
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5. Conclusions

This study assesses the application of data mining techniques to the prediction of 

BoNT-A treatment efficiency for migraine patients. In this work, two methodologies 

are presented. The first is based on the perceptional HIT6 value, which is not 

frequently found in our clinical databases. In order to overcome this limitation, a 

second methodology based on more widely available clinical features is presented. 

A preprocessing strategy based on simulated annealing is proposed to select the best 

way to represent the information in terms of prediction accuracy. The combination of 

simulated annealing and the random tree algorithm allows us to obtain an accuracy 

of 85% without considering the rarely found HIT6 value.

In addition, relevant clinical features extracted when using FSS and consensus 

random trees have been presented. Features such as GON and the retroocular 

component have also been described as important clinical features to consider for 

migraine treatment in the medical literature. This knowledge allows us to conclude 

that the features considered in our prediction models are coherent with respect to the 

medical literature.

In the future, the use of bootstrapping-based techniques to obtain a predictive 

model from the random sampling generated will be contempled. In addition, some 

optimizations need to be done in order to increase the prediction accuracy.

Declarations

Author contribution statement

Franklin P. Bravo, Alberto A. Del Barrio García, José L. Ayala: Conceived and 

designed the experiments; Performed the experiments; Analyzed and interpreted the 

data; Wrote the paper.

María M. Gallego, Ana B. Gago Veiga, Marina Ruiz, Angel G. Peral: Analyzed and 

interpreted the data; Contributed reagents, materials, analysis tools or data.

Funding statement

This work was funded by the Instituto Carlos III Healthcare Research Fund 

(Pl15/01976) and the Ministry of Education, Science, Technology and Innovation 

(SENESCYT) of the Government of the Republic of Ecuador (8905-AR5G-2016). 

The project was co-financed by the European Regional Development Fund.
on.2018.e01043

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e01043
http://creativecommons.org/licenses/by/4.0/


Article No~e01043

29 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub
Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] H. C. C. of the International Headache Society (IHS), The international 

classification of headache disorders (beta version), Cephalalgia 33 (9) (2013) 

629–808.

[2] J. Natoli, A. Manack, B. Dean, Q. Butler, C. Turkel, L. Stovner, R. Lipton, 

Global prevalence of chronic migraine: a systematic review, Cephalalgia 30 (5) 

(2010) 599–609.

[3] D. Buse, A. Manack, D. Serrano, C. Turkel, R. Lipton, Sociodemographic 

and comorbidity profiles of chronic migraine and episodic migraine sufferers, 

J. Neurol. Neurosurg. Psychiatry 81 (4) (2010) 428–432.

[4] A.M. Adams, D. Serrano, D.C. Buse, M.L. Reed, V. Marske, K.M. 

Fanning, R.B. Lipton, The impact of chronic migraine: the chronic migraine 

epidemiology and outcomes (CaMEO) study methods and baseline results, 

Cephalalgia 35 (7) (2015) 563–578.

[5] R.B. Lipton, S.D. Silberstein, Why study the comorbidity of migraine? 

Neurology 44 (10 supl. (7)) (1994) S4–S5.

[6] S.D. Silberstein, P.K. Winner, J.J. Chmiel, Migraine preventive medication 

reduces resource utilization, Headache 43 (3) (2003) 171–178.

[7] J.E. Frampton, OnabotulinumtoxinA (Botox), Drugs 72 (6) (2012) 825–845.

[8] S. Aurora, D.W. Dodick, C. Turkel, R. DeGryse, S. Silberstein, R. Lipton, 

H. Diener, M. Brin, OnabotulinumtoxinA for treatment of chronic migraine: 

results from the double-blind, randomized, placebo-controlled phase of the 

PREEMPT 1 trial, Cephalalgia 30 (7) (2010) 793–803.

[9] S.K. Aurora, P. Winner, M.C. Freeman, E.L. Spierings, J.O. Heiring, R.E. 

DeGryse, A.M. VanDenburgh, M.E. Nolan, C.C. Turkel, OnabotulinumtoxinA 

for treatment of chronic migraine: pooled analyses of the 56-week PREEMPT 

clinical program, Headache 51 (9) (2011) 1358–1373.
on.2018.e01043

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://refhub.elsevier.com/S2405-8440(18)31003-X/bib686561646163686532303133696E7465726E6174696F6E616Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib686561646163686532303133696E7465726E6174696F6E616Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib686561646163686532303133696E7465726E6174696F6E616Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6E61746F6C6932303130676C6F62616Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6E61746F6C6932303130676C6F62616Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6E61746F6C6932303130676C6F62616Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6275736532303130736F63696F64656D6F67726170686963s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6275736532303130736F63696F64656D6F67726170686963s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6275736532303130736F63696F64656D6F67726170686963s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6164616D7332303135696D70616374s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6164616D7332303135696D70616374s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6164616D7332303135696D70616374s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6164616D7332303135696D70616374s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C6970746F6E313939347374756479s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C6970746F6E313939347374756479s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73696C626572737465696E323030336D69677261696E65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73696C626572737465696E323030336D69677261696E65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6672616D70746F6E323031326F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6175726F7261323031306F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6175726F7261323031306F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6175726F7261323031306F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6175726F7261323031306F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6175726F7261323031316F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6175726F7261323031316F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6175726F7261323031316F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6175726F7261323031316F6E61626F74756C696E756D746F78696E61s1
https://doi.org/10.1016/j.heliyon.2018.e01043
http://creativecommons.org/licenses/by/4.0/


Article No~e01043

30 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub
[10] H. Diener, D.W. Dodick, S. Aurora, C. Turkel, R. DeGryse, R. Lipton, S. 

Silberstein, M. Brin, OnabotulinumtoxinA for treatment of chronic migraine: 

results from the double-blind, randomized, placebo-controlled phase of the 

PREEMPT 2 trial, Cephalalgia 30 (7) (2010) 804–814.

[11] D.W. Dodick, C.C. Turkel, R.E. DeGryse, S.K. Aurora, S.D. Silberstein, 

R.B. Lipton, H.-C. Diener, M.F. Brin, OnabotulinumtoxinA for treatment of 

chronic migraine: pooled results from the double-blind, randomized, placebo-

controlled phases of the PREEMPT clinical program, Headache 50 (6) (2010) 

921–936.

[12] H. Diener, G. Bussone, J.V. Oene, M. Lahaye, S. Schwalen, P. Goadsby, 

Topiramate reduces headache days in chronic migraine: a randomized, double-

blind, placebo-controlled study, Cephalalgia 27 (7) (2007) 814–823.

[13] S. Silberstein, R. Lipton, D. Dodick, F. Freitag, N. Ramadan, N. Mathew, J. 

Brandes, M. Bigal, J. Saper, S. Ascher, et al., Topiramate chronic migraine 

study group efficacy and safety of topiramate for the treatment of chronic 

migraine: a randomized, double-blind, placebo-controlled trial, Headache 

47 (2) (2007) 170–180.

[14] N.T. Mathew, S.F.A. Jaffri, A double-blind comparison of 

OnabotulinumtoxinA (Botox) and Topiramate (Topamax) for the prophylactic 

treatment of chronic migraine: a pilot study, Headache 49 (10) (2009) 

1466–1478.

[15] R.K. Cady, C.P. Schreiber, J.A. Porter, A.M. Blumenfeld, K.U. Farmer, A multi-

center double-blind pilot comparison of OnabotulinumtoxinA and Topiramate 

for the prophylactic treatment of chronic migraine, Headache 51 (1) (2011) 

21–32.

[16] E. Cernuda-Morollón, C. Ramón, D. Larrosa, R. Alvarez, N. Riesco, J. Pascual, 

Long-term experience with onabotulinumtoxinA in the treatment of chronic 

migraine: what happens after one year? Cephalalgia 35 (10) (2015) 864–868.

[17] R. Lipton, S. Varon, B. Grosberg, P. McAllister, F. Freitag, S. Aurora, D.W. 

Dodick, S. Silberstein, H. Diener, R. DeGryse, et al., OnabotulinumtoxinA 

improves quality of life and reduces impact of chronic migraine, Neurology 

77 (15) (2011) 1465–1472.

[18] A. Oterino, C. Ramón, J. Pascual, Experience with onabotulinumtoxinA 

(Botox) in chronic refractory migraine: focus on severe attacks, J. Headache 

Pain 12 (2) (2011) 235–238.

[19] G. Sandrini, A. Perrotta, C. Tassorelli, P. Torelli, F. Brighina, G. Sances, 

G. Nappi, Botulinum toxin type-A in the prophylactic treatment of 
on.2018.e01043

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6469656E6572323031306F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6469656E6572323031306F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6469656E6572323031306F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6469656E6572323031306F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib646F6469636B323031306F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib646F6469636B323031306F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib646F6469636B323031306F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib646F6469636B323031306F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib646F6469636B323031306F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6469656E657232303037746F706972616D617465s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6469656E657232303037746F706972616D617465s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6469656E657232303037746F706972616D617465s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73696C626572737465696E32303037746F706972616D617465s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73696C626572737465696E32303037746F706972616D617465s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73696C626572737465696E32303037746F706972616D617465s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73696C626572737465696E32303037746F706972616D617465s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73696C626572737465696E32303037746F706972616D617465s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6D617468657732303039646F75626C65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6D617468657732303039646F75626C65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6D617468657732303039646F75626C65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6D617468657732303039646F75626C65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib63616479323031316D756C7469s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib63616479323031316D756C7469s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib63616479323031316D756C7469s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib63616479323031316D756C7469s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6365726E756461323031356C6F6E67s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6365726E756461323031356C6F6E67s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6365726E756461323031356C6F6E67s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C6970746F6E323031316F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C6970746F6E323031316F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C6970746F6E323031316F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C6970746F6E323031316F6E61626F74756C696E756D746F78696E61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6F746572696E6F32303131657870657269656E6365s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6F746572696E6F32303131657870657269656E6365s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6F746572696E6F32303131657870657269656E6365s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73616E6472696E6932303131626F74756C696E756Ds1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73616E6472696E6932303131626F74756C696E756Ds1
https://doi.org/10.1016/j.heliyon.2018.e01043
http://creativecommons.org/licenses/by/4.0/


Article No~e01043

31 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub
medication-overuse headache: a multicenter, double-blind, randomized, 

placebo-controlled, parallel group study, J. Headache Pain 12 (4) (2011) 

427–433.

[20] S.D. Silberstein, D.W. Dodick, S.K. Aurora, H.-C. Diener, R.E. DeGryse, R.B. 

Lipton, C.C. Turkel, Per cent of patients with chronic migraine who responded 

per onabotulinumtoxinA treatment cycle: PREEMPT, J. Neurol. Neurosurg. 

Psychiatry 86 (9) (2015) 996–1001.

[21] C. Lovati, L. Giani, Action mechanisms of Onabotulinum toxin-A: hints for 

selection of eligible patients, Neurol. Sci. 38 (1) (2017) 131–140.

[22] M. Kosinski, M. Bayliss, J. Bjorner, J. Ware, W. Garber, A. Batenhorst, R. Cady, 

C. Dahlöf, A. Dowson, S. Tepper, A six-item short-form survey for measuring 

headache impact: the HIT-6, Qual. Life Res. 12 (8) (2003) 963–974.

[23] N.T. Mathew, J. Kailasam, L. Meadors, Predictors of response to botulinum 

toxin type A (BoNTA) in chronic daily headache, Headache 48 (2) (2008) 

194–200.

[24] M. Lainez, R. Gil, A. Salvador, A. Piera, B. Lopez, Unilateralism as a predictor 

of response in treatment of chronic headache patients with botulinum toxin, 

Headache 46 (5) (2006) 846, F12.

[25] P.M. Grogan, M.V. Alvarez, L. Jones, Headache direction and aura predict 

migraine responsiveness to rimabotulinumtoxin B, Headache 53 (1) (2013) 

126–136.

[26] E.A. Schulman, A.E. Lake, P.J. Goadsby, B.L. Peterlin, S.E. Siegel, H.G. 

Markley, R.B. Lipton, Defining refractory migraine and refractory chronic 

migraine: proposed criteria from the Refractory Headache Special Interest 

Section of the American Headache Society, Headache 48 (6) (2008) 778–782.

[27] M. Jakubowski, P.J. McAllister, Z.H. Bajwa, T.N. Ward, P. Smith, R. Burstein, 

Exploding vs. imploding headache in migraine prophylaxis with botulinum 

toxin A, Pain 125 (3) (2006) 286–295.

[28] I. Pagola, P. Esteve-Belloch, J. Palma, M. Luquin, M. Riverol, E. Martinez-

Vila, P. Irimia, Predictive factors of the response to treatment with 

onabotulinumtoxinA in refractory migraine, Rev. Neurol. 58 (6) (2014) 

241–246, PMID:9925225.

[29] X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan, 

A. Ng, B. Liu, S.Y. Philip, et al., Top 10 algorithms in data mining, Knowl. Inf. 

Syst. 14 (1) (2008) 1–37.
on.2018.e01043

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73616E6472696E6932303131626F74756C696E756Ds1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73616E6472696E6932303131626F74756C696E756Ds1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73616E6472696E6932303131626F74756C696E756Ds1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73696C626572737465696E32303135706572s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73696C626572737465696E32303135706572s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73696C626572737465696E32303135706572s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73696C626572737465696E32303135706572s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C6F7661746932303137616374696F6Es1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C6F7661746932303137616374696F6Es1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6B6F73696E736B6932303033736978s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6B6F73696E736B6932303033736978s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6B6F73696E736B6932303033736978s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6D617468657732303038707265646963746F7273s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6D617468657732303038707265646963746F7273s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6D617468657732303038707265646963746F7273s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C61696E657A32303036756E696C61746572616C69736Ds1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C61696E657A32303036756E696C61746572616C69736Ds1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C61696E657A32303036756E696C61746572616C69736Ds1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib67726F67616E323031336865616461636865s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib67726F67616E323031336865616461636865s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib67726F67616E323031336865616461636865s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib736368756C6D616E32303038646566696E696E67s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib736368756C6D616E32303038646566696E696E67s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib736368756C6D616E32303038646566696E696E67s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib736368756C6D616E32303038646566696E696E67s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6A616B75626F77736B69323030366578706C6F64696E67s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6A616B75626F77736B69323030366578706C6F64696E67s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6A616B75626F77736B69323030366578706C6F64696E67s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib7061676F6C613230313470726564696374697665s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib7061676F6C613230313470726564696374697665s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib7061676F6C613230313470726564696374697665s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib7061676F6C613230313470726564696374697665s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib777532303038746F70s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib777532303038746F70s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib777532303038746F70s1
https://doi.org/10.1016/j.heliyon.2018.e01043
http://creativecommons.org/licenses/by/4.0/


Article No~e01043

32 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub
[30] H. Liu, H. Motoda, Feature Selection for Knowledge Discovery and Data 

Mining, vol. 454, Springer Science & Business Media, 2012.

[31] L.C. Molina, L. Belanche, À. Nebot, Feature selection algorithms: a survey 

and experimental evaluation, in: Data Mining, ICDM 2003. Proceedings. 2002 

IEEE International Conference on, IEEE, 2002, pp. 306–313.

[32] B. Şen, M. Peker, A. Çavuşoğlu, F.V. Çelebi, A comparative study on 

classification of sleep stage based on EEG signals using feature selection and 

classification algorithms, J. Med. Syst. 38 (3) (2014) 18.

[33] A. Aarabi, F. Wallois, R. Grebe, Automated neonatal seizure detection: 

a multistage classification system through feature selection based on relevance 

and redundancy analysis, Clin. Neurophysiol. 117 (2) (2006) 328–340.

[34] L. Palmerini, L. Rocchi, S. Mellone, F. Valzania, L. Chiari, Feature selection 

for accelerometer-based posture analysis in Parkinson’s disease, IEEE Trans. 

Inf. Technol. Biomed. 15 (3) (2011) 481–490.

[35] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, 

Science 220 (4598) (1983) 671–680.

[36] M.C. Sharma, S. Sharma, K.S. Bhadoriya, QSAR analyses and pharmacophore 

studies of tetrazole and sulfonamide analogs of imidazo [4, 5-b] pyridine using 

simulated annealing based feature selection, J. Saudi Chem. Soc. 10 (2012) 

1016.

[37] S.-W. Lin, K.-C. Ying, C.-Y. Lee, Z.-J. Lee, An intelligent algorithm with 

feature selection and decision rules applied to anomaly intrusion detection, 

Appl. Soft Comput. 12 (10) (2012) 3285–3290.

[38] J.S. Sartakhti, M.H. Zangooei, K. Mozafari, Hepatitis disease diagnosis using a 

novel hybrid method based on support vector machine and simulated annealing 

(SVM-SA), Comput. Methods Programs Biomed. 108 (2) (2012) 570–579.

[39] I.H. Witten, E. Frank, M.A. Hall, C.J. Pal, Data Mining: Practical Machine 

Learning Tools and Techniques, Morgan Kaufmann, 2016.

[40] Y. Saeys, I. Inza, P. Larrañaga, A review of feature selection techniques in 

bioinformatics, Bioinformatics 23 (19) (2007) 2507–2517.

[41] jlrisco/hero, GitHub, https://github .com /jlrisco /hero. (Accessed 18 September 

2017).

[42] J. De Vicente, J. Lanchares, R. Hermida, Adaptive FPGA placement by natural 

optimisation, in: Rapid System Prototyping, 2000. RSP 2000. Proceedings. 

11th International Workshop on, IEEE, 2000, pp. 188–193.
on.2018.e01043

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C69753230313266656174757265s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C69753230313266656174757265s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6D6F6C696E613230303266656174757265s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6D6F6C696E613230303266656174757265s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6D6F6C696E613230303266656174757265s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6373656E32303134636F6D7061726174697665s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6373656E32303134636F6D7061726174697665s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6373656E32303134636F6D7061726174697665s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib616172616269323030366175746F6D61746564s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib616172616269323030366175746F6D61746564s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib616172616269323030366175746F6D61746564s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib70616C6D6572696E693230313166656174757265s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib70616C6D6572696E693230313166656174757265s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib70616C6D6572696E693230313166656174757265s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6B69726B7061747269636B313938336F7074696D697A6174696F6Es1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6B69726B7061747269636B313938336F7074696D697A6174696F6Es1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib736861726D613230313277697468647261776Es1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib736861726D613230313277697468647261776Es1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib736861726D613230313277697468647261776Es1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib736861726D613230313277697468647261776Es1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C696E32303132696E74656C6C6967656E74s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C696E32303132696E74656C6C6967656E74s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C696E32303132696E74656C6C6967656E74s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73617274616B68746932303132686570617469746973s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73617274616B68746932303132686570617469746973s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib73617274616B68746932303132686570617469746973s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib77697474656E3230313664617461s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib77697474656E3230313664617461s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib736165797332303037726576696577s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib736165797332303037726576696577s1
https://github.com/jlrisco/hero
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6465323030306164617074697665s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6465323030306164617074697665s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6465323030306164617074697665s1
https://doi.org/10.1016/j.heliyon.2018.e01043
http://creativecommons.org/licenses/by/4.0/


Article No~e01043

33 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub
[43] C.F. Eick, N. Zeidat, Using supervised clustering to enhance classifiers, in: 

International Symposium on Methodologies for Intelligent Systems, Springer, 

2005, pp. 248–256.

[44] R. Ornello, S.V. Lisi, D. Degan, C. Tiseo, F. Pistoia, A. Carolei, S. Sacco, O059. 

Predictors of response to botulinum toxin for the treatment of chronic migraine: 

data from a Headache Center, J. Headache Pain 16 (S1) (2015) A179.

[45] P. Villoslada, L. Steinman, S.E. Baranzini, Systems biology and its application 

to the understanding of neurological diseases, Ann. Neurol. 65 (2) (2009) 

124–139.

[46] P. Larranaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J.A. Lozano, 

R. Armañanzas, G. Santafé, A. Pérez, et al., Machine learning in bioinformatics, 

Brief. Bioinform. 7 (1) (2006) 86–112.

[47] R. Armañanzas, P. Larrañaga, C. Bielza, Ensemble transcript interaction 

networks: a case study on Alzheimer’s disease, Comput. Methods Programs 

Biomed. 108 (1) (2012) 442–450.

[48] D. Otaegui, S.E. Baranzini, R. Armañanzas, B. Calvo, M. Muñoz-Culla, P. 

Khankhanian, I. Inza, J.A. Lozano, T. Castillo-Triviño, A. Asensio, et al., 

Differential micro RNA expression in PBMC from multiple sclerosis patients, 

PLoS ONE 4 (7) (2009) e6309.

[49] S.A. Small, K. Kent, A. Pierce, C. Leung, M.S. Kang, H. Okada, L. Honig, 

J.-P. Vonsattel, T.-W. Kim, Model-guided microarray implicates the retromer 

complex in Alzheimer’s disease, Ann. Neurol. 58 (6) (2005) 909–919.

[50] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The 

WEKA data mining software: an update, ACM SIGKDD Explor. Newsl. 11 (1) 

(2009) 10–18.

[51] P. Refaeilzadeh, L. Tang, H. Liu, Cross-validation, in: Encyclopedia of 

Database Systems, Springer, 2009, pp. 532–538.

[52] N. Lavrač, Selected techniques for data mining in medicine, Artif. Intell. Med. 

16 (1) (1999) 3–23.

[53] H.H. Szu, R.L. Hartley, Nonconvex optimization by fast simulated annealing, 

Proc. IEEE 75 (11) (1987) 1538–1540.

[54] H.-C. Diener, D.W. Dodick, P.J. Goadsby, R.B. Lipton, J. Olesen, S.D. 

Silberstein, Chronic migraine—classification, characteristics and treatment, 

Nat. Rev. Neurol. 8 (3) (2012) 162–171.

[55] K. Aoki, Review of a proposed mechanism for the antinociceptive action of 

Botulinum toxin type A, Neurotoxicology 26 (5) (2005) 785–793.
on.2018.e01043

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6569636B323030357573696E67s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6569636B323030357573696E67s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6569636B323030357573696E67s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6F726E656C6C6F323031356F303539s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6F726E656C6C6F323031356F303539s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6F726E656C6C6F323031356F303539s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib76696C6C6F736C6164613230303973797374656D73s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib76696C6C6F736C6164613230303973797374656D73s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib76696C6C6F736C6164613230303973797374656D73s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C617272616E616761323030366D616368696E65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C617272616E616761323030366D616368696E65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C617272616E616761323030366D616368696E65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib61726D616E616E7A617332303132656E73656D626C65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib61726D616E616E7A617332303132656E73656D626C65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib61726D616E616E7A617332303132656E73656D626C65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6F74616567756932303039646966666572656E7469616Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6F74616567756932303039646966666572656E7469616Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6F74616567756932303039646966666572656E7469616Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6F74616567756932303039646966666572656E7469616Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib736D616C6C323030356D6F64656Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib736D616C6C323030356D6F64656Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib736D616C6C323030356D6F64656Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib68616C6C3230303977656B61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib68616C6C3230303977656B61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib68616C6C3230303977656B61s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib7265666165696C7A616465683230303963726F7373s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib7265666165696C7A616465683230303963726F7373s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C6176726176633139393973656C6563746564s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6C6176726176633139393973656C6563746564s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib737A75313938376E6F6E636F6E766578s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib737A75313938376E6F6E636F6E766578s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6469656E6572323031326368726F6E6963s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6469656E6572323031326368726F6E6963s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6469656E6572323031326368726F6E6963s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib616F6B6932303035726576696577s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib616F6B6932303035726576696577s1
https://doi.org/10.1016/j.heliyon.2018.e01043
http://creativecommons.org/licenses/by/4.0/


Article No~e01043

34 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub
[56] P. Barbanti, G. Egeo, L. Fofi, C. Aurilia, S. Piroso, Rationale for use of 

Onabotulinum toxin A (Botox) in chronic migraine, Neurol. Sci. 36 (1) (2015) 

29–32.

[57] P. Barbanti, G. Egeo, Pharmacological trials in migraine: it’s time to reappraise 

where the headache is and what the pain is like, Headache 55 (3) (2015) 

439–441.

[58] J. Olesen, R. Burstein, M. Ashina, P. Tfelt-Hansen, Origin of pain in migraine: 

evidence for peripheral sensitisation, Lancet Neurol. 8 (7) (2009) 679–690.

[59] D.W. Dodick, A. Mauskop, A.H. Elkind, R. DeGryse, M.F. Brin, S.D. 

Silberstein, Botulinum toxin type A for the prophylaxis of chronic daily 

headache: Subgroup analysis of patients not receiving other prophylactic 

medications: a randomized double-blind, placebo-controlled study, Headache 

45 (4) (2005) 315–324.
on.2018.e01043

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://refhub.elsevier.com/S2405-8440(18)31003-X/bib62617262616E746932303135726174696F6E616C65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib62617262616E746932303135726174696F6E616C65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib62617262616E746932303135726174696F6E616C65s1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib62617262616E746932303135706861726D61636F6C6F676963616Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib62617262616E746932303135706861726D61636F6C6F676963616Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib62617262616E746932303135706861726D61636F6C6F676963616Cs1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6F6C6573656E323030396F726967696Es1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib6F6C6573656E323030396F726967696Es1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib646F6469636B32303035626F74756C696E756Ds1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib646F6469636B32303035626F74756C696E756Ds1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib646F6469636B32303035626F74756C696E756Ds1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib646F6469636B32303035626F74756C696E756Ds1
http://refhub.elsevier.com/S2405-8440(18)31003-X/bib646F6469636B32303035626F74756C696E756Ds1
https://doi.org/10.1016/j.heliyon.2018.e01043
http://creativecommons.org/licenses/by/4.0/

	Prediction of patient's response to OnabotulinumtoxinA treatment for migraine
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Clinical data
	3.2 Class attribute selection
	3.2.1 HIT6
	3.2.2 Reduction and adverse effects

	3.3 Preprocessing
	3.3.1 Categorization of clinical features
	3.3.2 Feature subset selection (FSS)
	3.3.3 Weighting features

	3.4 Prediction accuracy evaluation
	3.4.1 Classiﬁcation
	3.4.2 Clustering

	3.5 Consensus model

	4 Experimental
	4.1 HIT6 prediction
	4.2 Reduction and adverse-effects-based prediction
	4.2.1 Classiﬁcation methods
	4.2.2 Feature subset selection
	4.2.3 Feature weighting with SA
	4.2.4 Clustering methods
	4.2.5 Consensus model

	4.3 Medical discussion

	5 Conclusions
	Declarations
	Author contribution statement
	Funding statement
	Competing interest statement
	Additional information

	References


