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Objectives: Present study aims to identify the essential mRNAs responsible for

the development of brain neurovascular-related metastases (BNM) among lung

adenocarcinoma (LUAD) patients. Further, we attempted to predict brain metastases

more accurately and prevent their development in LUAD patients.

Methods: Transcriptome data analysis was used to identify differentially expressed

mRNAs (DEMs) associated with brain metastasis, and thereby the ferroptosis index (FPI)

is calculated using a computational model. Meanwhile, the DEmRNAs linked with FPI,

and brain metastasis were derived by the intersection of these two groups of DEMs. We

also constructed a ceRNA network containing these DEmRNAs, identifying the HCP5

/hsa-miR-17-5p/HOXA7 axis for analysis. Further, a clinical cohort was employed to

validate the regulatory roles of molecules involved in the ceRNA regulatory axis.

Results: Here we report the development of a ceRNA network based on

BNM-associated DEMs and FPI-associated DEmRNAs which includes three core

miRNAs (hsa-miR-338-3p, hsa-miR-429, and hsa-miR-17-5p), three mRNAs (HOXA7,

TBX5, and TCF21), and five lncRNAs (HCP5, LINC00460, TP53TG1). Using gene

set enrichment analysis (GSEA) and survival analysis, the potential axis of HCP5

/hsa-miR-17-5p/HOXA7 was further investigated. It is found that HOXA7 and ferroptosis

index are positively correlated while inhibiting tumor brain metastasis. It may be that

HCP5 binds competitively with miR-17-5p and upregulatesHOXA7 to increase iron death

limiting brain cancer metastases

Conclusions: The expression of bothHOXA7 andHCP5 is positively correlatedwith FPI,

indicating a possible link between ferroptosis and BNM. According to the results of our

study, the ferroptosis-related ceRNA HCP5 /hsa-miR-17-5p/HOXA7 axis may contribute

to the development of BNM in LUAD patients.

Keywords: HCP5, hsa-miR-17-5p, HOXA7, lung adenocarcinoma, ferroptosis, neurovascular, brain metastasis,

biomarker
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INTRODUCTION

Lung adenocarcinoma (LUAD) is the most common histological
subtype of non-small cell lung cancer (NSCLC) which
frequently occurs in peripheral lung tissue while accounting for
approximately 70% of NSCLC and 40% of lung tumors (1–4).
There has been an increase in LUAD morbidity and mortality
rates worldwide in recent years (5–7). LUAD patients have an
extremely low average survival rate (8, 9). In some studies, it has
been estimated that there are 90,000 LAUD cases and around
8,00,000 LUAD deaths worldwide each year (10, 11). The 5-year
survival rate for LUAD is <20% even though treatment options
have evolved in recent times (12, 13). Such a low survival rate
for LUAD patients may be attributed to its high infiltration and
metastasis rates (14). Metastasis of LUAD often occurs in the
brain, where the incidence and prognosis are poor, which poses a
significant risk to the patients’ health (15, 16). This suggests that
brain metastases are a significant cause of treatment failure and
death in patients with LUAD. Hence, to improve LUAD patients’
prognosis, it is critical to identify biomarkers associated with
brain metastases (17).

It has been demonstrated that ferroptosis plays a significant
regulatory role in the treatment of many diseases, including
cardiovascular, kidney, and oncological disorders (18–21). A
ferroptosis process has been observed to influence tumor growth
in oncological diseases and its role is expected to be exploited as
an anti-cancer therapy target (22, 23). Ferroptosis is associated
with the development of NSCLC and inducing ferroptosis may
improve the therapeutic potential of NSCLC (24, 25). Some
studies suggest that ferroptosis in lung cancer is regulated by
USP35, which is thought to affect the growth and progression
of the disease and may represent a new therapeutic target
(22). Furthermore, ferroptosis appears to enhance the antitumor
effects of conventional chemotherapy and radiotherapy (26–28).
However, an exact mechanism of action for ferroptosis in LUAD
brain metastases is still unknown.

Additionally, the ceRNA network is involved in regulating
multiple tumor types (29–32). Several studies have shown that the
ceRNA network has an association with lung cancer prognosis
and NSCLC cell proliferation (33, 34). There was previously a
finding that lincRNA00494 as ceRNA suppresses the proliferation
of non-small cell lung cancer cells by regulating SRCIN1
expression (33). Studies have also shown that ceRNA regulatory
networks can be used to construct models for assessing the
prognosis of patients with malignancies (35). Thus, ferroptosis-
related ceRNA may be a good candidate for the identification of
new biomarkers in lung cancer diagnosis and prognosis (36).

Themajor focus of our study was to identify themajormRNAs
involved in the development of BNM among LUAD patients

Abbreviations: TCGA, the cancer genome atlas; GEO, gene expression

omnibus (GEO); LUAD, lung adenocarcinoma; BM, brain metastasis; nM-

LUAD, LUAD without metastasis; ceRNA, competing endogenous RNAs; DE-

mRNAs, differentially expressed mRNAs; DE-miRNAs, differentially expressed

microRNAs; DE-lncRNAs, differentially expressed lncRNAs; FPI, ferroptosis

Potential Index; GO, gene ontology; GSEA, gene set enrichment analysis; KEGG,

kyoto encyclopedia of genes and genomes; K-M, kruskal-wallis; OS, overall

survival; qRT-PCR, quantitative reverse transcription PCR.

and to explore the potential of the ceRNA regulation network
for identifying new biomarkers. In addition, this research also
intended to uncover any possible therapeutic target to monitor
and improve the risk of BNM in LUAD patients with the
possibility to extend their survival period.

METHODS

Data Download
Due to the lack of BNM information in The Cancer
Genome Atlas (TCGA, accessible at https://portal.gdc.cancer.
gov/) project, we downloaded the transcriptome profile of
LUAD brain neurovascular-related metastases (BNMs) from
GSE141685 in the Gene Expression Omnibus (GEO) database
(37). This BNM-LUAD dataset is containing bulky RNA
sequencing (RNA-seq) data from surgically resected brain
metastases of 6 LUAD patients. To investigate the potential
molecules and pathways involved in LUAD brain metastasis, we
have compared the BNM-LUAD bulk RNA-seq data with nM-
LUAD (LUAD with no metastasis) bulk RNA-seq data of 384
patients from the TCGA database. From the TCGA database, we
also downloaded miRNA sequences and clinical characterization
data on nM-LUAD. In addition, the raw transcript RNA-seq data
from the BNM-LUAD dataset were stored in Sequence Read
Archive (SRA) file format and downloaded locally for subsequent
RNA-seq analysis.

Data Preparation and Recruitment of
Patients
The Kallisto software was used to quantify transcript abundance
on bulk RNA-seq data (38). The transcripts per million (TPM)
units of gene expression are included in the quantitative results of
the transcriptome data and the log (TPM+1) for gene expression
is calculated. In the next step, we applied the “ComBat” function
from the limma package to remove the batch effect and pooling of
data (39). To validate the findings of this study, an independent
cohort of LUAD patients was also utilized. The Institutional
Ethics Review Board of The First Affiliated Hospital of Guangxi
Medical University has approved this study and informed written
consent was also obtained from all the patients. We randomly
collected and then examined 29 tumor tissue samples from the
First Affiliated Hospital of Guangxi Medical University where
this cohort was enrolled as a clinical cohort. A combination of
diagnostic imaging and histology is used to better understand
the clinical diagnosis. To obtain tumor tissue samples, surgical
excision was used, and excess tumor tissues were collected only
after a confirmed pathological diagnosis.

Identification of FPI-Related Genes
In the TCGA nM-LUAD dataset, we used the GSVA package
to calculate the enrichment scores of ferroptosis-related gene
sets (including ACSL4, ALOX15, COQ10A, COQ10B, FDFT1,
GPX4, HMGCR, SLC3A2, SLC7A11, NFE2L2, NOX1, NOX3,
NOX4, and NOX5). This followed the ferroptosis index (FPI)
calculation by applying the standardized method as described
previously (40, 41). These FPI scores are used to quantify the
likelihood of ferroptosis of cells within a tumor or tissue and
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based on median FPI scores, nM-LUAD patients are divided
into high and low FPI groups. We next performed differential
expression analyses for lncRNAs, miRNAs, and mRNAs between
the low and high FPI groups with the limma package (p < 0.05).
These differentially expressed mRNAs (DEMs) were defined
as ferroptosis-related or FPI-related mRNAs (including FPI-
related DEmRNAs, DEmiRNAs, and DElncRNAs). As described
previously by utilizing the clusterProfiler R package the FPI-
associated DEmRNAs are used for functional pathway analysis
including the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and gene ontology (GO) (42–44).

Identification of Brian Metastasis-Related
Genes
In this study, a significance level of p < 0.05 was set as the cut-
off criterion. We have also performed a differential expression
analysis between the BNM and no metastasis groups using the
“limma” package. The calculated DEMs were named BNM-
related mRNAs which are associated with the development of
BNM in LUAD.

Identification of Genes Potentially
Regulated by Identified FPI-Related
miRNAs
We performed intersection analysis studies while including FPI-
related DEmRNAs and BNM-related DEmRNAs that may play
a crucial role in ferroptosis and brain metastases. Firstly, the
miRcode database confirmed a relationship between delncRNAs
and demiRNAs (45, 46). After that, we used miRWalk (http://
mirwalk.umm.uni-heidelberg.de/) to identify shared DEmiRNAs
and DEmRNAs between FPI and BNM (47). As a result, ceRNA
networks were constructed based on DElncRNA-DEmiRNA
interaction pairs and DEmiRNA-DEmiRNA interaction pairs.

Identification of Genes as the Target of
FPI-Related miRNAs Associates to FPI,
Brain Metastasis, and FPI-Related miRNAs
The correlation analysis was used to screen possible lncRNA-
miRNA and miRNA-mRNA interaction pairs further. A Cox
regression analysis was conducted on the molecules in these
interaction pairs to predict the probability of survival of LUAD
patients after 1, 3, and 6 years. To quantify and predict the
survival rates of LUAD patients, the time-dependent receiver
operating characteristic curve (ROC) and area under the curve
(AUC) were used. We used the “survival” R package to analyze
survival data and the “survminer” R package to visualize the
data. A Pearson’s method and linear regression analysis were then
performed to determine the correlation between the variables.
The “ggplot2” package was used to plot the heat map and scatter
plots of the statistical tests.

Gene Set Enrichment Analysis
GSEA (Gene Set Enrichment Analysis) is a bioinformatics
technique for exploring a specific set of functional genes
(48, 49). Two groups are generated depending on the
expression level of the target gene and critical pathway

analysis was then conducted using GSEA. We used the
reference dataset “c2.cp.v7.2.symbols.gmt [Curated]” for the
enrichment analysis. All adjusted p-values<0.05 were considered
significantly enriched.

Quantitative Reverse Transcription PCR
(qRT-PCR)
To quantify the abundance of mRNAs and miRNAs in samples,
the total RNA was extracted from cells using Trizol reagent
(Invitrogen) and quantified using Nanodrop (Thermo Scientific,
Waltham, USA). The expression of miRNAs was determined
by stem-loop qPCR (Taq-Man) as mentioned previously as a
reference. We conducted a qPCR on the cDNA template with TB
GreenTM Premix Ex TaqTM II (Takara; RR820A) to determine
the levels of mRNA. In addition, qPCR primer sets for miRNAs as
well as mRNAs were obtained from RiboBio while mRNA qPCR
primers have been synthesized by Sangon (Shanghai, China), as
described in previous studies (50). For the relative quantification
of gene expression levels, the CT method was performed in
triplicates while GAPDH or U6 are included as internal controls.

Statistical Methods
Statistical analyses were performed using R software (version
4.0.2). The Kaplan-Meier method was used, and survival curves
were plotted for survival analyses. Unless otherwise stated, p <

0.05 was found to be significant.

RESULTS

DEGs Related to Ferroptosis Index in LUAD
The flow chart of this study is shown in Figure 1. We
calculated the probability of ferroptosis based on the core
mRNAs associated with ferroptosis and it was termed the
ferroptosis index (FPI) (40). According to their median FPI
values, 384 LUAD patients without metastasis (nM-LUAD) in
the TCGA-LUAD project were classified into high or low FPI
groups. We then identified 5,958 DEmRNAs, 2,380 lncRNAs,
and 68 DEmiRNAs to analyze the differences between the low
and high FPI groups (Figures 2A–C). It has been proposed
that these dysregulated mRNAs are associated with ferroptosis
and are known as FPI-related mRNAs. The DEmRNAs that
were upregulated in the low FPI group were enriched in
RNA splicing, stereocilium, presynaptic active zone, and RNA
polymerase complex (Figure 2D). Conversely, pathways that
were downregulated in the low FPI group included collagen–
containing extracellular matrix, positive regulators of cell
adhesion, focal adhesion, and cell adhesion molecule binding
(Figure 2E). The analysis described above can identify the
mRNAs associated with FPI in LUAD, as well as their
possible functions.

Identification of Shared DEmRNAs and
Construction of ceRNA Network
To identify DEmRNAs shared with both FPI and BNM,
the differential analysis between BNM-LUAD and nM-LUAD
revealed 154 BNM-related DEmRNAs. Then, the intersection
analysis of BNM-related DEmRNAs and FPI-related DEmRNAs
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FIGURE 1 | The research strategy for this study.

identified 46 downregulated 44 mRNAs that are common to both
brain metastases and ferroptosis (Figures 3A,B). BNM-LUAD
downregulated 44 out of the 46 shared mRNAs. Downregulated
mRNAs were mostly found to be enriched in leukocyte-mediated
cytotoxicity MHC protein complexes, segment specification,
HMG box domain binding, allograft rejection, and graft-vs.-host
diseases (Figure 3C). Immunologically-related pathways may
likely be downregulated in patients with LUAD, contributing to
brain metastases.

Based on these 44 DEmRNAs [RT1], we constructed a ceRNA
network (Figure 3D). The DElncRNAs and DEmiRNAs in the
network were derived from DEMs related to FPI. The ceRNA
network consists of three core miRNAs (hsa-miR-338-3p, hsa-
miR-429, and hsa-miR-17-5p), three mRNAs (HOXA7, TBX5,
and TCF21), and five lncRNAs (HCP5, LINC00460, TP53TG1,
RGS5, and MAGI2-AS3).

Identification of Potential
HCP5/hsa-miR-17-5p/HOXA7 Pathways
From the ceRNA Network
Based on the constructed ceRNA network, we performed
correlation analysis to identify potential pathways. An analysis
of the correlation between these 11 dysregulated molecules is
depicted in Figure 4A. Significant correlations (p < 0.01) were
observed between the mRNA and miRNA groups. The heat
map in Figure 4B shows the expression of these 11 dysregulated
molecules in LUAD. The correlation studies identified the HCP5
/hsa-miR-17-5p/HOXA7 axes associated with ferroptosis and
BNM from the ceRNA network (Figures 4C,D). There was a

negative correlation between the expression of HCP5 and hsa-
miR-17-5p (Pearson r = −0.13, p 0.05). Also, the expression
of hsa-miR-17-5p and HOXA7 exhibited a negative correlation
(Pearson r = −0.17, p 0.01). Additionally, we found a positive
correlation between FPI and HXOA7 and HCP5 (p < 0.01), as
well as a negative correlation between FPI and hsa-miR-17-5p
(p < 0.05). HCP5 overexpression was also linked to a superior
primary therapy outcome, suggesting that it may improve the
prognosis of LUAD patients (Table 1). Thus, ceRNA HCP5 /hsa-
miR-17-5p/HOXA7may play a role in the development of LUAD.

Correlation of HCP5, hsa-miR-17-5p, and
HOXA7 With LUAD Prognosis and FPI
To further evaluate the effect of HCP5 /hsa-miR-17-5p/HOXA7
in LUAD, ROC curves and analysis of differential expression
were used to examine the relationship between HCP5, hsa-miR-
17-5p, and HOXA7 and LUAD prognosis and FPI. In ROC
analysis, HCP5 (AUC = 0.596, 95% CI: 0.534-0.657), HOXA7
(AUC = 0.617, 95% CI: 0.556–0.678) and hsa-miR-17-5p (AUC
= 0.575, 95% CI: 0.512–0.637) significantly predicted low FPI
scores (Figures 5A–C). In addition, time-dependent ROC curves
indicated that HCP5, HSA-miR-17-5p, and HOXA7 might be
associated with the survival of LUAD patients (Figures 5D,E).
In addition, there was a statistically significant difference in the
expression levels of HCP5, HOXA7, and hsa-miR-17-5p between
the high and low FPI groups (Figure 5G). The potential HCP5
/hsa-miR-17-5p/HOXA7 axis is therefore thought to be related
to ferroptosis.
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FIGURE 2 | FPI-related DEGs and functional pathway analysis. Volcano plots showed FPI-related (A) DEmRNAs, (B) DEmiRNAs, and (C) DElncRNAs. The plots show

the predicted RNAs in ceRNA networks. Red dots indicate upregulated genes in low FPI groups. The low FPI fraction group (D) upregulated (E) downregulated GO

and KEGG pathways.
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FIGURE 3 | An intersection analysis of FPI- and BM-associated DEmRNAs, and the construction of ceRNA networks. (A) Venn plot showed 46 shared DEmRNAs

among FPI- and BNM-associated DEmRNAs. In BNM and the low FPI group, 44 of these shared DEmRNAs were downregulated. (B) Expression of genes shared by

brain metastases and non-metastases. (C) The functional pathways of the shared DEmRNAs downregulated in BNM. (D) Construction of ceRNA networks based on

the shared DEmRNAs.

Clinical Correlation Analysis of HCP5,
hsa-miR-17-5p, and HOXA7
To explain the potential effectiveness of the HCP5 /hsa-miR-17-
5p/HOXA7 axis in LUAD at the clinical level, we performed qRT-
PCR using available tumor samples from 29 LUAD patients. The
expression of HCP5 and HOXA7 correlated positively in clinical
samples (Figure 6A; Pearson r = 0.45, p = 0.014), while hsa-
miR-17-5p correlated negatively with HCP5 (Figure 6B; Pearson
r = −0.39, p = 0.037) as well as HOXA7 (Figure 6C; Pearson
r = −0.548, p = 0.002). Furthermore, HOXA7 expression and
hsa-miR-17-5p expression were negatively related. In this study,
lncRNA HCP5 was found to act as an “RNA sponge” to sequester
hsa-miR-17-5p, thereby decreasing the effects of hsa-miR-17-5p
on the target HOXA7 mRNA.

Functional Analysis of HCP5 and HOXA7
Using GSEA, we determined the relationship between pathway
activation and inhibition when HCP5 and HOXA7 expression
levels were high and low, respectively. The GSEA indicated
that the tumor samples with elevated HOXA7 expression
downregulated miRNA targets in ECM andmembrane receptors,
as well as metastatic brain tumor pathways, while the apoptosis
pathway was upregulated (Figure 6D). Additionally, the tumor
samples with elevated HCP5 expression downregulated miRNA
targets in ECM and membrane receptors, metastatic brain
tumors, as well as and miRNA regulation of the p53 pathway
in prostate cancer (Figure 6E). Therefore, increased levels of
HOXA7 and HCP5 were associated with the downregulation of
tumor brain metastasis. Additionally, the expression of HOXA7
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FIGURE 4 | Identification of potential HCP5 /hsa-miR-17-5p/HOXA7 pathways from the ceRNA network. (A) Correlation analysis of each element in the ceRNA

network. (B) FPI and the expression of individual elements in the HCP5 /hsa-miR-17-5p/HOXA7 pathway have statistically significant connections. (C,D) Ferroptosis

is significantly linked to each molecule in the HCP5 /hsa-miR-17-5p/HOXA7 pathway; (C) shows the correlation coefficients and (D) shows the statistical

differences.

and HCP5 was positively correlated with FPI, indicating a strong
relationship between ferroptosis and BNM.

DISCUSSION

According to this study, BNM and ferroptosis are linked in
LUAD. It has been observed that the ferroptosis-related ceRNA
HCP5/hsa-miR-17-5p/HOXA7 axis may play an important role
in the development of BNM in LUAD.

We examined the BNM-related DEMs in LUAD with
and without metastatic tumors. In addition, we investigated
DEmRNAs associated with FPI in LUAD patients without
metastatic tumors between high and low FPI. Furthermore,
the intersection studies identified DEmRNAs shared between

BMogenesis and ferroptosis. Based on intersection analysis,
a ceRNA network associated with BNM and ferroptosis was
constructed. The HCP5/hsa-miR-17-5p/HOXA7 axis is thought
to play a central role in the ceRNA regulatory network of
LUAD. In a clinical cohort, we validated the HCP5 /hsa-miR-17-
5p/HOXA7 axis and confirmed our bioinformatic findings.

Previous studies suggest that HOXA7 participates in the
pathogenesis of LUAD, providing a new target for the early
treatment of LUAD (51). In brain tumors, HOXA7 is involved in
glioma progression and affects patient prognosis (52). However,
there is a lack of research on the role of HOXA7 in the brain
metastasis of lung cancer. Several studies have demonstrated that
HOXA7 is involved in tumor metastasis, suggesting that HOXA7
expression is different in different types of cancer.
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TABLE 1 | The relation between HCP5 expression levels and LUAD

clinicopathological features.

Characteristic Low expression of High expression of p-value

HCP5 (n = 267) HCP5 (n = 268)

Age, n (%) 0.187

<=65 135 (26.2%) 120 (23.3%)

>65 122 (23.6%) 139 (26.9%)

Gender, n (%) 0.022

Female 129 (24.1%) 157 (29.3%)

Male 138 (25.8%) 111 (20.7%)

Smoker, n (%) 0.139

No 31 (6%) 44 (8.4%)

Yes 229 (44%) 217 (41.7%)

Race, n (%) 0.371

Asian 2 (0.4%) 5 (1.1%)

Black or African

American

31 (6.6%) 24 (5.1%)

White 204 (43.6%) 202 (43.2%)

T stage, n (%) 0.172

T1 77 (14.5%) 98 (18.4%)

T2 152 (28.6%) 137 (25.8%)

T3 29 (5.5%) 20 (3.8%)

T4 9 (1.7%) 10 (1.9%)

N stage, n (%) 0.379

N0 176 (33.9%) 172 (33.1%)

N1 43 (8.3%) 52 (10%)

N2 40 (7.7%) 34 (6.6%)

N3 0 (0%) 2 (0.4%)

M stage, n (%) 0.621

M0 185 (47.9%) 176 (45.6%)

M1 11 (2.8%) 14 (3.6%)

Pathologic stage, n

(%)

0.681

Stage I 144 (27.3%) 150 (28.5%)

Stage II 62 (11.8%) 61 (11.6%)

Stage III 46 (8.7%) 38 (7.2%)

Stage IV 11 (2.1%) 15 (2.8%)

Primary therapy

outcome, n (%)

0.005

Progressive disease 45 (10.1%) 26 (5.8%)

Stable disease 20 (4.5%) 17 (3.8%)

Partial response 0 (0%) 6 (1.3%)

Complete response 159 (35.7%) 173 (38.8%)

Residual tumor, n (%) 0.172

R0 180 (48.4%) 175 (47%)

R1 6 (1.6%) 7 (1.9%)

R2 0 (0%) 4 (1.1%)

HOXA1 has diverse effects on tumor progression depending
on the type of malignancy. By downregulating HOXA7 and
promoting cell migration and invasion, miR-196a plays a
pro-cancer role in colorectal cancer (53). It has been shown that
HOXA7 expression is elevated in metastatic hepatocellular

carcinoma, enhancing the metastasis of hepatocellular
carcinoma, and is associated with a poor prognosis for patients
(54). Also, HOXA7 is upregulated in the ceRNA network in oral
squamous cell carcinoma, increasing the invasion and migration
of oral cancer cells (55). Our study is the first to investigate the
role of HOXA7 in brain metastasis in LUAD. In patients with
brain metastases, HOXA7 expression has been observed to be
downregulated. Downregulation of HOXA7 can lead to tumors
becoming more likely to metastasize to the brain, which may
be associated with a poor prognosis in patients who have brain
metastases. Our findings showed a positive correlation between
HOXA7 and the ferroptosis index, suggesting HOXA7 may
promote ferroptosis. Some studies have revealed that negative
regulation of ferroptosis can lead to increased resistance to
chemotherapy in lung cancer patients with brain metastases
(56). In addition, the promotion of ferroptosis inhibited brain
metastasis in HER2-positive breast cancer (57). Thus, we
hypothesized that HOXA7 downregulation promotes LUAD
brain metastasis, which may be related to ferroptosis induced
by HOXA7.

Li et al. demonstrated that miR-17-5p is highly expressed in
LUAD and is associated with patient prognosis as a novel marker
for clinical diagnosis of NSCLC (58, 59). Moreover, miR-17-
5p is a direct target of metastasis-associated LUAD transcript
1 (MALAT1) (60). Additionally, miR-17-5p has been shown to
directly target MALT1 (metastasis-associated LUAD transcript
1). A study has shown that increased MALAT1 expression
promotes brain metastasis in lung cancer and correlates with
patient survival (61). Additionally, miR-17-5p is also involved in
brain metastasis of other cancers (62). It is therefore thought that
miR-17-5p promotes LUAD brain metastasis, and this may be
due to the inhibition of ferroptosis. Even though no studies have
indicated a link betweenmiR-17-5p and ferroptosis, some studies
have found that miR-17-5p can resist lung cancer cell apoptosis
(63). In the present study, miR-17-5p has been observed to
negatively regulate HOXA7, thus possibly promoting LUAD
brain metastasis. According to our correlation analysis, miR-17-
5p promotes LUAD brainmetastasis by inhibiting ferroptosis and
negatively targeting HOXA7.

HCP5 affects tumor progression differently depending on
the type of malignancies. Several studies have explored the
relationship between HCP5 and metastasis and prognosis in
cancer (64). It was reported by Jiang et al. that HCP5 was highly
expressed in tumor tissues of LUAD patients and contributed to
epithelial-mesenchymal transition (EMT) of LUAD cells, tumor
growth, and metastasis, and was positively correlated with poor
patient prognosis (65). Brain metastasis associated with lung
cancer is also attributed to EMT (61, 66). We observed that
patients with high HCP5 expression had a lower prognosis than
those with low HCP5. We found, however, that HCP5 may
regulate HOXA7 by binding to miR-17-5p and inhibiting LUAD
brain metastasis by adsorbing miR-17-5p, indicating a different
mechanism of action for HCP5 to affect LUAD brain metastasis.
Furthermore, our study revealed a positive correlation between
HCP5 and ferroptosis index, suggesting that HCP5may promote
ferroptosis. Cancer metastasis is promoted by HCP5 through
EMT in several tumor diseases (65, 67). Ferroptosis is enhanced
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FIGURE 5 | Correlation between HCP5, hsa-miR-17-5p, and HOXA7 with LUAD prognosis and FPI. (A–C) ROC curves predicting high or low FPI scores for (A)

HCP5, (B) HOXA7, (C) hsa-miR-17-5p. (D–F) ROC curves for predicting 1-, 3-, and 6-year survival rates. (G) Comparison of the expression of HCP, hsa-miR-17-5p,

and HOXA7 in high and low FPI groups. *P < 0.05, **P < 0.01, and ***P < 0.001.
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FIGURE 6 | Validation of the HCP5 /hsa-miR-17-5p/HOXA7 pathway using GSEA and correlation analysis. (A) A positive correlation between the expression of

HOXA7 and HCP5 in clinical cohort samples (Pearson r = 0.45, p = 0.014). (B) The expression of hsa-miR-17-5p and HCP5 was negatively correlated (r = −0.39, p

= 0.037). (C) The expression of HOXA7 and hsa-miR-17-5p was negatively correlated (Pearson r = −0.548, p = 0.002). (D,E) GSEA demonstrates pathways

involving HOXA7 and HCP5.

by the induction of EMT in cancer cells (68). We, therefore,
proposed that HCP5 promotes ferroptosis and inhibits LUAD
brain metastasis by upregulating HOXA7 through adsorption
of miR-17-5p.

We can speculate that dysregulation of HCP5 expression
in LUAD patients may lead to tumor brain metastasis by
downregulating HOXA7 by affecting miR-17-5p. Therefore, a
decrease in HOXA7 expression may promote the development
of brain metastases. In the present study, HOXA7 levels
were significantly lower in the BNM group than in the
metastasis-free group. According to GSEA, elevated HOXA7
and HCP5 were linked to a decreased incidence of brain

metastasis in tumors and may affect brain metastasis by
regulating cell membrane surface receptors. In addition, the
expression of both HOXA7 and HCP5 was positively correlated
with FPI, suggesting a strong correlation between ferroptosis
and tumor brain metastasis. The study demands further
investigation to explore the relationship between brain tumors
and ferroptosis.

The study was limited by the small number of subjects,
including clinical study, and the lack of in vitro cell-based
validation. We plan to further validate the ceRNA HCP5 /hsa-
miR-17-5p/HOXA7 axis’ effect on LUAD BNM from basic
experiments and clinical samples in our future studies.
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CONCLUSION

In conclusion, bioinformatics and clinical studies have
demonstrated a correlation between the expression of HOXA7
and HCP5. It may be possible to link ferroptosis to tumor
neurovascular brain metastasis from correlation studies.
Moreover, our study demonstrated that the ferroptosis-related
ceRNAHCP5 /hsa-miR-17-5p/HOXA7 axis may play an essential
role in LUAD BNM.
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