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Simple Summary: Tumor-suppressor genes are involved in DNA break repair through the homolo-
gous recombination system and are widely known for their role in hereditary cancer. Beyond breast
and ovarian cancer, prostate and pancreatic cancer also have targetable homologous recombination
deficiency (HRD) beyond the well-known BRCA1 and BRCA2 with relevance that exceeds diagnostic
purposes. In this review, we aim to summarize the roles of HRD across tumor types and the treatment
landscape to guide the targeting of damaged DNA repair based on the cancer’s genetic features.

Abstract: BRCA1 and BRCA2 are the most recognized tumor-suppressor genes involved in double-
strand DNA break repair through the homologous recombination (HR) system. Widely known for
its role in hereditary cancer, HR deficiency (HRD) has turned out to be critical beyond breast and
ovarian cancer: for prostate and pancreatic cancer also. The relevance for the identification of these
patients exceeds diagnostic purposes, since results published from clinical trials with poly-ADP ribose
polymerase (PARP) inhibitors (PARPi) have shown how this type of targeted therapy can modify the
long-term evolution of patients with HRD. Somatic aberrations in other HRD pathway genes, but
also indirect genomic instability as a sign of this DNA repair impairment (known as HRD scar), have
been reported to be relevant events that lead to more frequently than expected HR loss of function
in several tumor types, and should therefore be included in the current diagnostic and therapeutic
algorithm. However, the optimal strategy to identify HRD and potential PARPi responders in cancer
remains undefined. In this review, we summarize the role and prevalence of HRD across tumor types
and the current treatment landscape to guide the agnostic targeting of damaged DNA repair. We
also discuss the challenge of testing patients and provide a special insight for new strategies to select
patients who benefit from PARPi due to HRD scarring.

Keywords: homologous recombination deficiency; HRD; BRCA; PARP inhibitors; agnostic cancer

1. Introduction

Targeting homologous recombination deficiency (HRD) has been revealed in the last
few years as one of the most promising strategies for various types of tumor. Alteration in
the homologous recombination system (HR) genes is prevalent across tumor types and can
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be mostly found in breast, ovarian, pancreatic and prostate cancer [1,2]. HRD secondary to
pathogenic germline and somatic variants in HR-associated genes has been reported as a
predictive biomarker to inform about tumor sensitivity to platinum-based regimens and
poly-ADP ribose polymerase (PARP) inhibitors (PARPi) [3,4]. Moreover, there are secondary
changes to genetic mutations in DNA that can be detected at a structural level as genomic
instability and could be associated with HRD response biomarkers that have already been
validated. Identifying patients that may respond to direct or indirect therapies against
HRD is a need in current clinical practice for cancer management and could optimize the
clinical benefits of these therapies.

2. Homologous Recombination: A Key Pathway in DNA Repair

BRCA1 and BRCA2 are the best-known proteins involved in double-strand DNA
break repair by HR. They are two of the main characters in the DNA defect situation, as
shown by hundreds of publications reported in recent years [5]. However, genetic and
epigenetic inactivation of other HR components can lead to HRD in sporadic cancers,
classically termed BRCAness [6]. HR is responsible for repairing DNA before the cell comes
into mitosis. It is produced during and immediately after DNA replication in S and G2
phases of the cell cycle, when sister chromatids are available [7]. Double-stranded breaks
induced by ionizing radiation or toxic agents as chemotherapy are first sensed by the
MRE11-RAD50-NBN (MRN) complex, which loads helicase and exonucleases onto the
breaks to start 5′–3′ double-stranded DNA resection. ATR then localizes to the ssDNA ends
and switches on the ATR-dependent checkpoint, arresting the cell cycle for HR to proceed.
Next, BRCA1 is phosphorylated in response to DNA damage by DNA-damage response
kinases, such as ATM, ATR and CHK1, which enables the cell to repair DNA before entering
mitosis and survive [8–11]. ATM, ATR, BARD1, RB, p53, p21 and their downstream effectors
are involved in induced G1/S arrest [12]. Therefore, BRCA1 loss can result in defective
S-G2/M and spindle checkpoints that together with abnormal centrosome duplication and
defective DNA damage repair can lead to genetic instability [12]. Furthermore, BRCA2 can
help to protect telomere integrity loading RAD51 during S/G2 [7,13]. Proteins involved in
the HR system have functions in DNA repair, but also participate in cell cycle regulation,
transcriptional activation and chromatin remodeling (Figure 1).

Cancer genomics often harbor chromosomal aberrations arising from a defective HR
pathway. In BRCA mutant cells, chromosomal spreads reveal increased gross chromosomal
rearrangements [14]. This leads to the development of assays to evaluate the “genomic scar”
left behind by the loss of HR function, irrespective of which component of the pathway
was lost.
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Figure 1. Functional features of proteins involved in HRD. Adapted with permission from
Gorodetska et al. [7], copyright 2019 the authors, Ivyspring International Publisher under the terms
of the Creative Commons Attribution license 4.0 (https://creativecommons.org/licenses/by-nc-nd/
4.0/, accessed on 12 May 2022) and Hoppe et al. [6], copyright 2018 by the authors published by
Oxford University Press. The figures have been modified for the purposes of this review. Proteins
involved in the HR system have functions in DNA repair, but also participate in cell cycle regulation,
transcriptional activation and chromatin remodeling. Genomic scarring is defined by the presence of
chromosomal abnormalities related to HRD: (a) telomeric allelic imbalance (TAI) due to inappropriate
chromosomal end fusions because of aberrant end joining, (b) loss of heterozygosity (LOH) related to
inaccurate repair of sister chromatids during the S/G2 cell cycle phase and (c) large-scale transitions
(LSTs) that are chromosomal breaks of more than 10 Mb.

3. Prevalence and Prognostic Value of HRD in Cancer

Heritable damage in the DNA repair system can be observed in up to 10% of cancer
patients. BRCA1 and BRCA2 are the most common of these genetic abnormalities, and
breast-ovarian syndrome is the classical phenotype of germline BRCA alteration [1]. How-
ever, in the last decade, evidence has shown that somatic events are more frequent than
previously expected and that these aberrations affect tumors beyond breast and ovarian
cancer. Somatic mutations in BRCA genes are more frequent in ovarian cancer (15%), fol-
lowed closely by prostate cancer, squamous skin cell carcinoma, breast cancer (around 10%)
and pancreatic cancer. (Figure 2). It is noted that frequency varies significantly depending
on the population studied, geographic area, type of sample studied or stage.

Other relevant HR pathway members include genes such as ATM, PALB2, CHECK2
and RAD51. However, the associations between these genes and an HRD phenotype may
be less consistent than those for BRCA1 and BRCA2 and may vary by the tumor’s tissue
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of origin [15–17]. Norquist et al. [17] observed that 6.8% of the ovarian cancer patients
included in the GOG 218 trial harbored a non-BRCA somatic HR gene mutation, and
the most frequently observed alteration was in ATM. The most frequently altered DNA-
repair genes in both germline and somatic cells of mCRPC patients are BRCA2, ATM and
CHEK2: germline mutations are found in 5%, 2% and 2%, respectively [18,19]. BRCA1/2
homozygous deletions are infrequent except in prostate cancer, where BRCA2 deletions
have been reported at 2.6% frequency and accounted for 25% of BRCA1/2-altered cases [20].
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Figure 2. Prevalence of somatic BRCA1/2 mutations across different tumor types. Adapted from
Sokol et al. [20], copyright 2020 the authors, American Society of Clinical Oncology under the Creative
Commons Attribution Non-commercial No Derivatives 4.0 License (https://creativecommons.org/
licenses/by-nc-nd/4.0/, accessed on 12 May 2022). The figure has been modified for the purposes of
this review.

HRD prevalence based on the measurement of telomeric allelic imbalance (TAI), loss of
heterozygosity (LOH) and large-scale state transitions (LST) is the more extended diagnostic
method to measure HR status and varies also broadly among different types of tumors,
although there is a correlation with BRCA prevalence. TAI, LOH and LST are highly
correlated with each other and reflect increasing genomic instability. TAI refers to allelic
imbalance extending to the subtelomeric region >11 megabases (Mb) in size. LOH refers
to permanent loss of one parent’s contributed allele copy at a specific locus, leading to
homozygosity at that genomic site. LSTs refer to allelic imbalance > 10 Mb in size between
adjacent genomic regions due to translocations or copy gains/losses.

The combination of these three parameters of genomic instability provides HRD scores
by measuring LOH, TAI and LST with somatic next-generation DNA sequencing and may
estimate the underlying genomic scarring in the context of HR deficiency. HRD scores have
been more extensively studied for ovarian cancer, but when the algorithm is applied across
different tumor types, it should be considered that some modifications are applied to avoid
bias, and there is still no consensus [21]. Thus, this is not a validated method to be used in
clinical practice for agnostic tumors [15]. Ovarian cancer, followed by lung adenocarcinoma
and breast cancer, are the tumors where these alterations are more frequent, having genomic
scores higher than 30 (Figure 3). In an in silico analysis of 5371 tumors of 15 cancer types
available in the TCGA, cancers where platinum constitutes standard first-line therapy
showed increased genomic scar scores.

Lotan et al. [15] evaluated HRD scores in prostate cancer and their associations with
HR gene mutations, and observed that HRD scores vary significantly between patients
harboring BRCA2, ATM and CHEK2. Germline BRCA2-altered prostate cancer patients
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had the highest HRD scores, germline ATM-altered patients had intermediate scores and
germline CHEK2-altered patients had the lowest scores [15].

The most common genomic scar assays reported to date are two commercially available
tests that combine tumor BRCA mutation testing with a Genomic Instability Score (GIS)
based on quantification of TAI, LOH and LST. These tests are myChoice® HRD test (Myriad
Genetics, Salt Lake City, UT, USA) and Foundation Focus CDxBRCA HRD® (Foundation
Medicine, MA, USA).
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Figure 3. HRD prevalence across different tumor types. Adapted from Marquard et al. [21], copyright
2015 Marquard et al, under the Creative Commons Attribution Non-commercial No Derivatives
4.0 License (https://creativecommons.org/licenses/by-nc-nd/4.0/, accessed on 12 May 2022). The
figure has been made for the purposes of this review. HRD analysis of TCGA samples across
15 different cancer types was performed based on the number of Telomeric Allelic Imbalances (TAI)
based on a genomic scar accumulation, the large scale transition (LST) based on a type of genomic
scar associated with loss of BRCA1 or BRCA2 and the HRD-LOH based on a scar enriched in high-
grade serous ovarian cancer patients with a loss of BRCA1 or BRCA2 [21–23]. However, the method
originally used for ovarian cancer samples was adapted to avoid bias when the algorithm is applied
across different tumors: (1) In the original publication describing TAI [24], all allelic imbalance events
that extended to the telomere were counted, if they did not span the centromere. This results in
an overrepresentation of tumors with an uneven copy number among high TAI cases, which has
been corrected in the method used for the present study. (2) The original publication describing
HRD-LOH [23] excluded chromosome 17 because LOH on chromosome 17 in the ovarian cancer
samples is ubiquitous and for this reason did not provide independent information. However, for
this figure, chromosome 17 was not excluded, as chromosome 17 is not ubiquitously lost in all cancer
types, and therefore may provide independent information in some tumor samples.

Ovarian cancer has the strongest association with HRD, and up to 50% of high-grade
serous ovarian carcinoma have a genetic aberration in the HR pathway [25]. In general,
somatic aberrations are twice as frequent as germline alterations [20]. In non-endometrioid
TP53-mutant endometrial cancer, which is molecularly similar to high-grade serous ovarian
carcinoma, a high incidence of HRD genomic scars of up to 48% has been reported [26].
The prognostic significance of HRD in ovarian cancer is controversial. It has been reported
to have more favorable overall survival (OS) compared to non-carriers [27], for both BRCA1
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(HR 0.78; 95% CI, 0.68–0.89; p < 0.001) and BRCA2 mutation carriers (HR 0.61; 95% CI,
0.50–0.76; p < 0.001). However, Candido-dos-Reis et al. [28] analyzed the effect of germline
BRCA mutations in 4314 ovarian cancer patients with a 10-year follow-up and showed that
the better short-term survival observed decreased over time, and patients who harbored
a BRCA1 mutation even showed worse OS. Mutations in non-BRCA HR genes, including
ATM, CHEK2, PALB2 and RAD51c, have been reported to be predictors of survival in
ovarian cancer patients [16].

The prognostic relevance of BRCA in breast cancer is also questionable: some studies
demonstrated that patients with a BRCA1/2 mutation had worse OS [29–32], and other stud-
ies showed no significant differences when compared with non-carriers [33–36]. Patients
diagnosed with HRD breast cancer have shown an association with a more aggressive
phenotype: BRCA1 is more frequently associated with triple-negative breast cancer, and
BRCA2-related breast cancer correlated with a higher histological grade compared to pa-
tients who do not have germline mutations [37–39]

The prognostic significance of HRD in patients with pancreatic adenocarcinoma is
currently unknown [40]. Golan et al. [40] analyzed 71 patients with BRCA1/2-asssociated
pancreatic cancer and observed an improvement in survival in patients with advanced
disease (stage 3 and 4) who had received platinum-based therapy in comparison to those
patients who were not treated with these agents. In their study, a more favorable outcome
with platinum treatment was suggested, but a statistically significant improvement was
not observed [40].

In prostate cancer, germline BRCA2 mutations have been associated with a more ag-
gressive phenotype and poorer outcomes [41]. Castro et al. [42] studied germline DNA re-
pair defects in an unselected cohort of patients with metastatic castration-resistant prostate
cancer and observed that gBRCA2 mutation was an independent prognostic factor for
cause-specific survival in this setting. The prognostic role of somatic BRCA2 alterations
remains unclear.

4. HRD as an Actionable Target

The treatment landscape has evolved in the last decade, and HRD has been proposed
as a predictive biomarker to determine increased sensitivity to platinum chemotherapy
and PARPi [43,44].

4.1. Platinum

Platinum chemotherapy binds directly to the DNA in order to cause the cytotoxic
effect of crosslinking DNA strands and induce double-stranded breaks, which are not
repaired in cells that harbor defects in involved DNA repair pathways. In the last decade,
BRCA mutations, as lead actors of HRD, have been suggested as predictive biomarkers for
response to platinum across different tumor types [45–52] (Table 1). However, despite of
high rates of platinum sensitivity in this population, it seems much more is needed beyond
BRCA alterations to select candidates for treatment.

In ovarian cancer, the standard first-line chemotherapy regimen includes platinum and
taxanes, independently of BRCA status, and response rates are greater than 80%. Platinum-
free interval has been identified as a key biomarker to response to subsequent lines. Higher
intervals are associated with predominance of HRD in tumor progression, and this will
determine the indication for platinum re-treatment.

In breast cancer, an increasing amount of evidence suggests that TNBC patients
with BRCA mutations could be more sensitive to platinum-based chemotherapy [46,53].
A recently published meta-analysis by Chai et al. [54] included six trials with HRD in
TNBC data and showed that patients with HRD-positive TNBC had higher complete
response rates compared to HRD-negative ones after receiving platinum-based neoadjuvant
chemotherapy. However, the GeparSixto trial showed that the response to platinum-agents
was not dependent on BRCA status [47], and TNBC non-mutated BRCA patients showed
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increased response rates with carboplatin, meaning that HRD did not predict carboplatin
benefit [55].

HRD associated pancreatic cancer was under-identified until recently [56]. A family
history of breast, ovarian or pancreatic cancer has been associated with increased sensitivity
to platinum drugs as DNA-damaging agents [57], suggesting the presence of DNA repair
defects in those patients. However, studies considering only clinical inheritance have
failed to demonstrate this clinical biomarker as effective. Thus, Okano et al. [49] evaluated
platinum benefit in patients with a family history of ovarian, prostate, pancreatic or breast
cancer without analyzing BRCA genes and did not observe a benefit in OS. Patients with
HRD pancreatic cancer have shown a clinical benefit and a longer OS due to platinum-
based treatments [50,58–60], and data also suggest a notable and significant increase in the
response rates: 50–65% [61]. Similar activity of oxaliplatin and cisplatin in patients with
germline BRCA and PALB2 mutations has been suggested by retrospective data [50,62], and
a survival benefit of platinum-based first line chemotherapy in this subgroup of patients
have been observed [50,63].

Metastatic prostate cancer patients harboring DNA repair gene alterations treated with
platinum-based chemotherapy showed encouraging antitumor activity [51,52], although
the role of HRD in this setting is still controversial [51,52]. Recently, Pokataev et al. [64]
published a meta-analysis reporting higher overall survival in patients with HRD, ad-
vanced prostate cancer treated with platinum-based chemotherapy. Prospective validation
in ongoing randomized clinical trials will be needed to determine the role of platinum
treatment in advanced prostate cancer.

Table 1. Clinical trials evaluating platinum therapy for HRD tumor types.

Type of
Tumour Author Type of

Study N Primary
Endpoint Platinum Benefit Target Sub-Population

Breast Cancer

Localized

Tung 2020
[45]

Randomized
Phase II 118 pCR Cisplatin

Platinum vs.
Control: 18% vs.

26%. Risk ratio 0.70
(90% CI, 0.39–1.2).

HER2-
I-III

69% gBRCA1
30% gBRCA2
2% Both

Hahnen
2017 [47]

Randomized
Phase II 50 pCR Carboplatin

Platinum vs.
Control: 65.4% vs.
66.7%. Odds ratio
0.94 (0.29–3.095),

(p = 0.92).

TNBC
II-III 17% gBRCA1/2

Advanced Isakoff
2015 [65] Phase II 86 ORR Cisplatin

Carboplatin

BRCA1/2 mut vs.
wild type: 54.5% vs.
19.7%, (p = 0.022).

TNBC
metastatic or

locally
recurrent

unresectable

13% gBRCA1/2
77% wild type
10% not known

Pancreatic Cancer

Localized Golan 2020
[48]

Retrospective
analysis 61 pCR Oxaliplatin

Mutated vs.
non-mutated:
44.4% vs. 10%,

(p = 0.009).

Borderline
resectable

23% gBRCA2
77% gBRCA
wild type

Metastatic

Okano
2020 [49] Phase II 43 OS Oxaliplatin

1-year survival
27.9%

(90% CI 17–41.3).
Primary endpoint

not met (30%).

Metastatic
PDAC

Family history
(ovarian, prostate,
pancreatic, breast)

- BRCA not
known

Wattenberg
2020 [50]

Retrospective
analysis 26 PFS Oxaliplatin

Cisplatin

Mutated vs.
non-mutated: 10.1

vs. 6.9 months,
(p = 0.0068)

Locally
advanced or
metastatic

33% Mutated:

- 19.2% gBRCA1
- 65.4% gBRCA2
- 15.4% gPALB2
- 67%

Non-mutated
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Table 1. Cont.

Type of
Tumour Author Type of

Study N Primary
Endpoint Platinum Benefit Target Sub-Population

Prostate Cancer

Castration-
resistant
prostate
cancer

Schmid
2020 [51]

Retrospective
analysis 508

Platinum
Antitumor

activity
(decrease
PSA 50%
and/or

radiological
response)

Carboplatin
Cisplatin

Oxaliplatin

Mutated (cohort 1)
vs. non-mutated

(cohort 2) decrease
PSA: 47.1% vs.

36.1%, (p = 0.20).

Advanced

- 15.7% Mutated
(cohort 1):

- 55% BRCA2
- 15% ATM
- 3.8% BRCA1
- 19.3%

Non-mutated
(cohort 2)

- 65% Unknown
(cohort 3)

Mota 2020
[52]

Retrospective
analysis 109

Platinum
efficacy in

DDR-mutant

Carboplatin
Cisplatin

67% BRCA2
achieved a PSA50
response (adjusted

Odds Ratio 9.5;
95% CI 1.5–82.9)

compared to
DDRwt (13%),

(p = 0.022).

Metastatic

- PARPi naïve
and prior
taxane:

- 9% BRCA2
- 3% ATM
- 6% CDK12
- 6% FANCA
- 1% PALB2
- 75% DDRwt

pCR: Pathologic complete response; ORR: objective response rate; OS: overall survival; PFS: progression free
survival; CI: confidence interval. g: germline mutation. PSA: prostate-specific antigen. DDR: DNA damage repair,
including somatic and germline mutations in BRCA1/2, ATM, CDK12, FANCA and PALB2 genes. DDR wt: DDR
wild type.

4.2. PARP Inhibitors

In 2005, two groundbreaking studies observed that tumor cells lacking BRCA1 or
BRCA2 were particularly sensitive to PARPi through various mechanisms [66,67]. The main
target of PARPi is PARP1, which is involved in the repair of single-strand DNA breaks, so
in order to produce cytotoxicity, a defective HR is required [66,67].

PARP1 is a damage sensor that is able to synthesize PAR chains on target proteins near
DNA break, and with these PAR chains recruit additional DNA repair effectors [5]. PARPi
causes a catalytic inhibition of PARP1 and traps PARP1 by either inhibiting autoPARylation
or by causing allosteric changes in its structure [68,69]. Patients’ tumors which lack BRCA1
or BRCA2 are not able to repair DNA lesions and try to use error-prone DNA repair
pathways that have a cytotoxic effect that kills the cells [5].

In 2015, a basket trial of olaparib in patients with gBRCA1/2 mutations identified
responding patients beyond the ovarian or breast cancer population, suggesting that other
HR-defective tumors could be suitable for PARPi treatment [70]. The current developments
of PARPi in solid tumors are displayed in Table 2.

Three PARPi, olaparib, rucaparib and niraparib, have been approved by the United
States Food and Drug Administration (FDA) and the European Medicines Agency (EMA)
as maintenance therapy in platinum-sensitive recurrent epithelial ovarian cancer [71–74].
Rucaparib has been also approved as monotherapy in patients with somatic or germline
BRCA1/2 mutations [74]. In 2018, the FDA granted approval to olaparib monotherapy for
the first-line maintenance treatment of patients with BRCA-mutated advanced epithelial
ovarian, fallopian tube or primary peritoneal cancer who have completely or partially
responded to first-line platinum-based chemotherapy based on SOLO-1 trial results [75].
Shortly after, niraparib achieved indication for same setting independently of BRCA status
based on a PRIMA trial [76]. Analysis subgroups revealed a benefit for all populations,
although less significant for HRD-proficient patients. The PAOLA-1 phase III first-line
ovarian cancer maintenance study showed a benefit on progression free survival of the com-
bination of olaparib and bevacizumab compared to bevacizumab in the overall population;
however, this benefit was not seen in the subgroup analysis of the HRD-proficient popula-
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tion [77]. On May 2020, the FDA expanded the approval of olaparib and bevacizumab for
first-line maintenance treatment of HRD, advanced ovarian cancer [78].

Metastatic breast cancer patients with a germline BRCA1 or BRCA2 mutation treated
with PARPi have better outcomes in terms of PFS compared to standard chemother-
apy [79,80]. Recently, the OlympiA trial evaluated PARPi efficacy in early breast cancer after
standard adjuvant treatment with chemotherapy and local therapy, achieving in patients
with gBRCA1/2 mutations longer survival, free of invasive or distant disease, than the
placebo [81].

In metastastic gBRCA-mutated pancreatic adenocarcinoma, olaparib has been ap-
proved for the maintenance after at least 16 weeks of first-line platinum-based chemother-
apy if the disease has not progressed [82]. The objective response rate was 23% in the
olaparib arm; 10% for placebo and 10% of patients from the placebo arm maintained a
median duration of response of 24.9 months. On the other hand, cisplatin plus gemcitabine
was evaluated in a phase II trial of 50 patients with gBRCA or PALB2-mutated locally
advanced or metastastic pancreatic cancer randomly assigned alone or with veliparib [59],
and concurrent veliparib did not improve the response rate in this subset of patients.

Several PARPi are currently under development for the treatment of advanced prostate
cancer [83–88]. Alterations in BRCA2, particularly homozygous deletions, seem to be the
best predictor of response to PARP inhibition [89]. In patients with BRCA1/2 alterations,
40–46% radiographic response rates have been reported with the different agents. PSA
declines of >50% have been noted in half of the BRCA1/2 patients included in the different
trials, despite being heavily pretreated. No differences in efficacy have been reported based
on the germline or somatic origin of the alterations [87]. The predictive roles of other HR
defects beyond BRCA1/2 remain unclear. Little or no benefit from PARP inhibition has
been observed in patients with ATM or CDK12 alterations, whilst the predictive roles of
less frequent alterations have not been stablished due to the limited number of patients
included in trials. Olaparib has been the only PARPi to be investigated in monotherapy in
a phase 3 trial for advanced prostate cancer patients. In the PROfound study, men with
metastatic castration-resistant prostate cancer (mCRPC) with alterations in one of the 15 HR
genes screened whose disease had already progressed to an AR-targeting inhibitor (ARTi)
were randomized to receive treatment with olaparib 300 mg bid or a second ARTi. A benefit
in overall survival was observed for patients in cohort A, which included patients with
BRCA1, BRCA2 and ATM alterations, whereas no benefit was observed for patients with
other alterations included in cohort B. These results led to the EMA approval of olaparib
for the treatment of mCRPC patients with BRCA1/2 alterations after disease progression to
treatment with an ARTi.

In non-small lung cancer and colorectal cancer, two of the most prevalent tumors,
preliminary in vivo studies in cell lines with HRD features have supported the potential
use of PARPi [90,91].

Uterine leiomyosarcoma has recently been identified as a sarcoma subtype with
characteristic defects in the HR repair pathway and frequent BRCA2 loss [92]. Preclinical
data demonstrate marked activity for PARPi in combination with the alkylating agent
temozolomide. Ongoing research in order to identify other sarcomas with DNA repair
defects is promising, and may offer a new opportunity for the targeted treatment of this
rare, aggressive cancer [92].

Table 2. Phase III trials with PARP inhibitors.

Type of
Tumor Author Principal

Endpoint Treatment Benefit OS
Benefit Target Sub-

Population
Breast Cancer

Localized
disease

Tutt et al.,
2021 [80] DFS

Local treatment and
neoadjuvant or

adjuvant chemotherapy.
Olaparib vs. placebo.

Yes NS gBRCA1/2 71.3% BRCA1
28.3% BRCA2
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Table 2. Cont.

Type of
Tumor Author Principal

Endpoint Treatment Benefit OS
Benefit Target Sub-

Population

Pre-treated
M1 or

unresectable

Diéras 2020
[93] PFS Carbo, pacli ±

veliparib Yes NS gBRCA1/2 -

Litton 2018
[78] PFS Chemo 1 vs.

Talazoparib
Yes NS gBRCA1/2 -

Robson 2017
[79] PFS Chemo 1 vs. olaparib Yes NS gBRCA1/2 -

O’Shaughnessy
2014 [94] PFS and OS Carbo, gem ± iniparib Yes Yes Triple

negative
Ovarian Cancer

1st line
maintenance

Coleman
2019 [95] PFS Carbo, pacli ±

veliparib Yes NR Platinum
sensitive

30% BRCA,
60% HRD

Gonzalez-
Martin 2019

[76]
PFS Niraparib vs. placebo Yes NS 2 Platinum

sensitive
30% BRCA
51% HRD

Ray-
Coquard
2019 [76]

PFS Olaparib +
Bevacizumab Yes NR Platinum

sensitive
30% BRCA
50% HRD

Moore 2018
[74] PFS Olaparib vs. placebo Yes NS 2 BRCA1/2 3

Platinum
sensitive

recurrence

Coleman
2017 [96] PFS Rucaparib vs. placebo Yes NS 2 Platinum

sensitive
35% BRCA
60% HRD

Pujade-
Lauraine
2017 [97]

PFS Olaparib vs. placebo Yes NS gBRCA1/2

Mirza 2016
[72] PFS Niraparib vs. placebo Yes NS Platinum

sensitive

BRCA and
non-BRCA

cohorts
Pancreatic Cancer

1st line
maintenance

Golan 2019
[61] PFS Olaparib vs. placebo Yes NS 2

gBRCA1/2 +
platinum
sensitive

Prostate Cancer

Pre-treated
M1 CRPC

De Bono 2020
[83]

PFS in
cohort A Olaparib vs. AA/enza Yes NS

Somatic HRD
by NGS 15

genes
multi-panel

Cohort A:
BRCA + ATM

Cohort B:
non-

BRCA/ATM
1 Physician’s choice chemotherapy. 2 Immature data published. 3 Only two patients had somatic BRCA1/2 mutation.

5. The Challenge of Testing: Searching for HRD Scar

Next generation sequencing (NGS) techniques, as the current gold standard of genetic
diagnosis, have helped to shorten the time to obtain a genetic test result. However, at the
same time, an NGS multi-panel may provide data about other HRD genes beyond BRCA
where the current evidence as biomarkers to select therapy is limited, hindering decision
making in clinical practice. To handle this complexity, an adequate bioinformatic analysis
will be key, along with a multidisciplinary approach.

Traditionally, BRCA testing has been conducted in germline DNA triggered by a famil-
ial aggregation of cancer. Recent studies have demonstrated that a significant proportion
of mutation carriers are undiagnosed due to the lack of a significant family history of
cancer [18,42,98], leading to changes in the recommendations for genetic testing. As an
example, testing is now recommended for all metastatic prostate cancer patients, regardless
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of their personal or family history of cancer [99]. Moreover, the advent of therapies that
target BRCA alterations and other HRD defects requires the investigation of germline
mutations and alterations acquired by the tumor, as described previously.

For that reason, somatic mutation analysis is moving germline testing in various
scenarios, such as advanced ovarian and prostate cancer. HRD testing of the tumor directly
has the advantage of providing higher rates of positivity compared with germline tests [19].
However, somatic testing is associated with higher rates of failure for sequencing [84].
For that reason, new protocols for improving the conservation and storage of paraffined
samples should be implemented in hospitals. In fact, a systematic and consensus protocol
for high-quality minimum biomarker testing is being requested by the scientific commu-
nity [100]. These molecular testing recommendations should be offered to all cancer patients for
diagnosis and prevention, detailing the type, the technique and the methods of implementation
and ensuring adequate training for clinicians to guide the treatment decisions.

ESMO and NCCN guidelines [98,101,102] recommend pre-test counseling to deter-
minate the most appropriate test for each patient and specific post-test counseling when
results are available. Table 3 summarizes the current recommendations for testing based on
international clinical guidelines.

A different strategy to identify HRD patients could be to measure the “genomic
scarring” associated with loss of function in DNA repair pathways, as genomic instability.
In 2012, three SNP-based assays were developed to quantify the extent of chromosomal
abnormalities related to HRD: (a) TAI due to inappropriate chromosomal end fusions
because of aberrant end joining; (b) LOH—related to inaccurate repair of sister chromatids
during the S/G2 cell cycle phase; and (c) LST—chromosomal breaks of more than 10 Mb.
These “functional assays” have been proposed as more reliable methods for identifying
patients responding to PARPi compared to simply identifying gene mutations, although
their role in guiding therapy is pending on validation, and their values and thresholds are
heterogeneous across cancer types [103].

In 2020, the phase III PAOLA-1 trial in ovarian cancer was the first one to obtain
FDA/EMEA approval for HRD-positive patients to use the PARPi combination with be-
vacizumab using the Myriad myChoice® test defined by GIS ≥ 42 [77]. However, the
evaluations of the utility of these tests to predict the benefit from PARPi in the BRCAwt
populations were preplanned secondary analyses in clinical trials, and there are not defini-
tive results for trials specifically designed for this subpopulation [103,104]. In breast cancer
patients, GIS ≥ 42 has been associated with BRCA mutations, and furthermore, TAI has
been associated with an improved response to platinum chemotherapy [105,106]. In pan-
creatic cancer patients, GIS ≥ 42 has shown a sensitivity of 91% and a specificity of 83% for
the identification of HRD. Moreover, a higher GIS has been associated with an improved on-
cological outcome with platinum chemotherapy [107]. Currently, there are different thresholds
proposed as best classifiers for HRD score evaluation, but they are still pending validation [108].

In prostate cancer, non-commercial signatures based on genomic instability scores
have been explored. An adequate correlation between BRCA-deficient samples and HRD-
associated mutational signatures using WGS data was reported [109]. However, there are
not clinical trials demonstrating the optimal threshold to assure the role of the HRD score
testing as a predictor of treatment with PARPi or platinum therapy.

Another type of functional assay that may have the potential to provide a dynamic
readout of HRD scarring is based on the estimation of the amount of nuclear RAD51,
a downstream HR protein (a DNA recombinase). RAD51 enables high-fidelity double-
strand DNA repair by facilitating DNA strand invasion into the sister chromatid, a process
supported by the BRCA1/PALB2/BRCA2 complex. Reduced, DNA-damaged, induced
nuclear RAD51 foci have been associated with BRCA1 or BRCA2 gene defects and PARPi
responses [110,111]. This approach is currently under investigation, and functional assays
have not yet been validated for pancreatic cancer [112].

Additionally, the HRD profile may change during cancer progression, as reversion
mutations of HR genes have been reported to occur in 26% of patients, and this fact may be
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related to response to previous treatment to generate resistance to platinum or PARPi [113].
In this setting, monitoring the dynamic evaluation of HRD in cancer should be relevant.
Moreover, one of the main difficulties in tumors such as pancreatic cancer is obtaining an
adequate amount of tissue for genetic testing. Thus, liquid biopsy approaches to identify
HRD based on circulating tumoral DNA analysis to assess chromosomal instability or
mutational signatures is a promising method under study, but is not ready yet to use in
clinical practice (pending validation) [114].

Table 3. Genetic testing recommendations for breast and/or ovarian cancer, exocrine pancreatic
cancer and prostate cancer. National Comprehensive Cancer Network (NCCN) guidelines V2.2022,
American Society of Clinical Oncology (ASCO) somatic genomic testing and European Society of
Medical Oncology (ESMO) recommendations for the use of next-generation sequencing (NGS) in
metastatic cancer.

Breast and/or Ovarian Cancer Exocrine Pancreatic Cancer Prostate Cancer

Hereditary testing
criteria

All patients diagnosed with epithelial
ovarian cancer (including fallopian or
peritoneal cancer).
Any blood relative with a known
pathogenic/likely pathogenic variant.
Personal history of breast cancer with
specific features:

- ≤45 years.
- 46–50 years with any:

• Unknown family history
• Multiple primary breast

cancers (synchronous
or metachronous)

• ≥1 close relative with
breast, ovarian, pancreatic
or prostate cancer at
any age

- ≥51 years:

• ≥1 close blood relative
with any: breast cancer
≤50 years, or male breast
cancer/ovarian/
pancreatic cancer any age,
or metastatic,
intraductal/cribiform
histology, or high-or very
high-risk group prostate
cancer any age.

• ≥3 diagnoses of breast
cancer in patient and/or
close blood relatives

• ≥2 close blood relatives
with breast or prostate
cancer at any age.

• Any age:
• TNBC.
• ≥1 close relative with male

breast cancer at any age
• Aid in systemic treatment

decisions or adjuvant
treatment decisions.

- Ashkenazi Jewish ancestry

All individuals diagnosed.
First-degree relatives of
individuals diagnosed *

Metastatic prostate cancer
Intraductal/cribriform
histology
High or very high-risk group
Family history:

- ≥1 close blood relative
with breast cancer
50 years, or
ovarian/pancreatic cancer
any age, or metastatic,
intraductal/cribriform
histology, or high- or
very-high risk
prostate cancer.

- ≥2 close blood relatives
with breast or
prostate cancer.

- Ashkenazi Jewish ancestry
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Table 3. Cont.

Breast and/or Ovarian Cancer Exocrine Pancreatic Cancer Prostate Cancer
Genetic testing process

-Familial
pathogenic/likely
pathogenic variant

known

Testing for specific familial
pathogenic/likely pathogenic variant

Testing for specific
familial variant.

• If Ashkenazi Jewish
descendent: test for all
three-founder
pathogenic/likely
pathogenic variants.

Consider NGS panel testing.

-No known familial
pathogenic/likely
pathogenic variant

Comprehensive testing with
multigene panel

Comprehensive testing with
multigene panel.

In the abscense of family history
or clinical features may be of
low yield.

Germline
recommendations

BRCA1, BRCA2, ATM, BARD1, BRIP1,
CDH1, CDKN2A, CHEK2, NBN, NF1,
PALB2, PTEN, RAD51C, RAD51D,
STK11, TP53. Lynch syndrome genes
(MLH1, MSH2, MSH6, PM2).

BRCA1, BRCA2, ATM,
CDKN2A, Lynch syndrome
genes (MLH1, MSH2, MSH6,
EPCAM), PALB2, STK11
and TP53.

BRCA1, BRCA2, ATM, PABL2,
CHECK2. Lynch syndrome
genes (MLH1, MSH2,
MSH6, PM2).
• HOXB13 may be valuable

for family counselling.

Somatic testing ASCO
recommendations

BRCA 1/2
NTRK1, NTRK2, NTRK3 fusions

MSI-H, TMB-H
Breast cancer: ERBB2 amplification.
Oncogenic mutations in PIK3CA in
HR+ HER2−.
Ovarian cancer: GIS-positive
or HRD-positive.

MSI-H, ATM, BARD1, BRIP1,
CDK12, CHEK1, CHEK2, FANCL,
PALB2, RAD51B, RAD51C,
RAD51D, RAD54L.

ESMO Scale for clinical
actionability of

molecular targets

Metastatic breast cancer: BRCA1/2
(germline/somatic)

Advanced pancreatic cancer:
BRCA1/2 germline/somatic
mutations, MSI-H

Advanced prostate cancer:
BRCA1/2 somatic
mutations/deletions, MSI-H,
ATM mutations/deletions

NGS
recommendations

Tumour multigene NGS can be used
in ovarian cancer to determine
somatic BRCA1/2.
In breast cancer, no current indication
for tumour multigene NGS.

No current indication for
tumour multigene NGS

Multigene tumour NGS to
assess level I alterations.

6. Conclusions

The detection of DNA repair defects related to the HR pathway provide a unique op-
portunity for the development of treatments in different type of tumors that take advantage
of a same tumor feature. Tools and validation trials to identify the optimal HRD test across
tumor types are urgently needed.
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