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A B S T R A C T   

Accurate and comprehensive reconstruction of in-cylinder combustion process is essential for 
timely monitoring of engine combustion state. This article developed a method based on the zero- 
dimensional (0-D) physical model integrated with big data. The traditional 0-D prediction model 
based on cumulative fuel mass is improved, the factor of in-cylinder temperature is introduced to 
adjust the heat release rate, which solves the problem of difficulty in calibrating the heat release 
rate. Then, convolutional neural network-gated recurrent unit (CNN-GRU), as a deep neural 
network, including a special convolutional layer and a gated recurrent unit (GRU) neural network 
is designed for the parameters to be calibrated in the model. The 0-D predictive combustion 
model is constructed by combining the physical model with CNN-GRU, the combustion process is 
simplified and reconstructed. The fitting results show that the 0-D physical model based on 
improved cumulative fuel mass approach is an effective method to reflect the heat release law. 
Under non-calibration conditions, the root mean square error (RMSE) value of peak firing pres
sure (PFP) based on CNN-GRU prediction model is 0.5862. The prediction model is a promising 
method to realize online fitting and optimization of combustion process.   

1. Introduction 

Recently, the demand for energy saving and emission reduction in marine engines, the real-time control of the combustion process 
in the engine cylinder becomes crucial [1,2]. The rapid increase in the calculation capacity of the electronic control unit (ECU) makes it 
possible for the engine to achieve complex control of in-cylinder combustion [3]. Therefore, the real-time control of the combustion 
process has become a research hotspot at home and abroad. This study seeks to reduce emissions, and optimize the performance of the 
engine. By establishing a combustion model, the combustion process can be better understood and controlled, thereby improving the 
combustion efficiency of the engine. 

Currently, real-time control of the combustion process is mainly implemented in two modes: model-driven control and data-driven 
control. Model-driven controls are primarily which employs cylinde r pressure signal and map interpolation. ss [4] is based on the 
engine equipped with a large number of expensive equipment such as cylinder pressure sensors and signal amplifiers. Because these 
devices are currently difficult to be equipped on mass production engines, this technology is mainly used in the test stage and cannot be 
promoted on a large scale. The control based on map interpolation [5] can achieve accurate control of the combustion process when 
there are few control variables. However, as the variables increase, the test data required for map calibration also increases, and the 
control speed and accuracy of the model begins to decline sharply. A data-driven method is one that uses heuristic rules to directly 
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establish the relationship between operating parameters and combustion results from the monitored test data. The data-driven 
combustion process control doesn’t take physical interpretability into account and therefore does not need to construct a complete 
prediction model. Instead, it conducts big data analysis on the collected historical information, and uses artificial intelligence methods 
such as machine learning to train and reconstruct the model [6–9]. Cheng Ma used extensive experimental data of a dual-fuel engine to 
construct a 0-D prediction model through long short-term memory (LSTM), which achieved a quickly response of operating parameters 
to fuel consumption and emissions. Wen Bin constructed the relationship between operating parameters and combustion results 
(indicated mean effective pressure (IMEP) and crank angle at which 50 % of the fuel mass fraction has burned (MFB50)) through the 
back propagation neural network. Research on data-driven reconstruction of combustion process is proceeding with full vigor and 
data-driven is more suitable for today’s complex control systems with diverse functions and uncertainties. However, the huge amount 
of data required for model construction and the poor reliability of data have been important constraints on the development of 
combustion process control. 

The hybrid-driven method integrates mechanistic and data-driven approaches [10–12], where the main idea is to summarize the 
uncertain parameters that vary with the environment in the process of constructing a physical model, and use the monitored big data to 
fit these parameters, so that the model can adapt to the accuracy requirements of the reconstructed combustion process under different 
working conditions. For example, in the process of constructing a combustion model based on Wiebe control, Hu Song [13] used 
algebraic analysis-least square method to calculate the parameters. The model combines the advantages of the algorithm and physical 
model to improve the computational speed while effectively explaining the variation of key parameters such as fuel injection law, 
in-cylinder temperature, heat release rate and combustion starting point during the combustion process, which greatly improves the 
interpretability of the model. Currently, there are relatively few engine modeling methods driven by the integration of mechanism and 
data, and related research is still in its infancy and promising. 

At present, the physical model that can meet the real-time control is mainly 0-D model. There are two main modeling approaches to 
0-D combustion model commonly used in the published literature for the heat release law of in-cylinder fuel. One is the combustion 
rule method based on mathematical equations, including EF method [14,15] and well-known Wiebe function [16,17]. The other is the 
cumulative fuel mass approach based on the concept of fuel injection [18]. The Wiebe function exerts excellent simulation capability 
for in-cylinder combustion process under rated or high load conditions, but in the case of multiple injections and multiple combustion 
phases coexisted, which need multiple Wiebe functions to fitting. Franz G. Chmela [19] assumed that the heat release rate was pro
portional to the mass of available fuel in the cylinder, and proposed a combustion model based on cumulative fuel mass, which was 
later improved by several scholars. Finesso added a function term to the model based on the results of Franz G. Chmela. This function 
term represents the influence of turbulent kinetic energy of fuel injection atomization, thus improving the simulation accuracy of heat 
release rate in the initial stage of combustion. And the combustion model based on cumulative fuel mass requires fewer calibration 
model parameters and has high fitting accuracy, which is suitable for multiple injection engines of various models. However, there are 
still large errors in the fitting process of the heating rate in the single injection, especially in the diffusion combustion stage, and new 
adjustment methods need to be introduced at this stage. 

Based on the parameter fitting of data-driven combustion models, many researchers have used classical algorithms [20–24] for 

Fig. 1. The main layout of TBD620 diesel engine test bench.  
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calculation. In recent years, with the rapid development of deep learning algorithms, deep learning algorithms are rapidly applied to 
the field of engine modeling [25,26]. Shahid [27] used convolutional neural network (CNN) to establish the variation of engine 
operating parameters with misfire and load by analyzing the in-cylinder combustion process, which in turn created a real-time 
diagnostic system for detecting misfire and load conditions. Alcan [28] developed a real-time prediction model for diesel soot 
emissions using the GRU neural network. Shen et al. [29] constructed a NOx emission model by combining CNN with LSTM, which 
greatly improved the prediction accuracy. GRU is simpler and easier to train than LSTM structure while solving the gradient problem 
during long term memory and back propagation. 

Song Hu [30] used the traditional 0-D physical model based on cumulative fuel mass combined with artificial intelligence neural 
network (ANN) and empirical formula (EF) to obtain a control-oriented rapid response model. Based on the improved 0-D physical 
model of cumulative fuel mass, the 0-D prediction model is constructed by combining CNN-GRU deep learning neural network. The 
construction of combustion model based on hybrid drive can realize the real-time prediction of combustion process. 

2. Diesel engine test bench and test operating point 

The current work takes the single-cylinder diesel engine (HeChai Group Co., model TBD620) as the research object, developed by 
MWM (Motorenwerke Mannheim), Federal Germany, as the test platform. The main layout of TBD620 diesel engine test bench as 
shown in Fig. 1. Because the single-cylinder engine does not match the supercharger, the load characteristics of the engine cannot be 
determined directly. Therefore, the test operating point is based on the universal characteristics of TBD620V12, and the single-cylinder 

Fig. 2. Universal characteristic diagram of the TBD620V12.  

Fig. 3. Test conditions of TBD620 single-cylinder engine.  
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engine is equipped with a blower at the air inlet to test the working conditions. Fig. 2 shows the universal characteristic diagram, from 
which we can observed that the TBD620V12 is supercharged by sequential turbocharging (STC). Therefore, the TBD620 single- 
cylinder engine tests the working conditions by changing the blowing volume of the blower, and the specific working points are 
shown in Fig. 3. Test points for steady-state testing, consisting of two parts: 83 test points selected under the 1 TC test conditions and 68 
test points selected under the 2 TC test conditions, for a total of 151 test points. Due to the difficulty of testing the test points, the linear 
interpolation of the working points is carried out on the basis of the test points. The test points plus interpolation points have a total of 
590 working points. 

Table 1 shows the comparison of parameters between TBD620V12 and single cylinder engine. Both of them are four-stroke, water- 
cooled marine diesel engines, corresponding to the same rated speed, cylinder diameter, stroke and compression ratio, but there are 
some differences in fuel system, single-cylinder calibration power, effective fuel consumption rate and fuel system. Table 2 shows the 
main test equipment. GW320 Eddy Current Dynamometer for Measuring Engine Power, a KISTLER 6058A pressure sensor is used to 
measure in-cylinder pressure, an AVL INDIMDUL 621 combustion analyzer is used to analyze the combustion process. 

3. Construction of 0-D prediction model based on cumulative fuel mass approach 

3.1. Effect of in-cylinder temperature on heat release rate 

For simulation of combustion processes, the number of Wiebe functions to be selected for a single combustion cycle usually in
creases exponentially due to the increase in the number of injections, making it more difficult to calibrate. Therefore, the cumulative 
fuel mass approach is used to solve the problem, as Eq. (1): 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dQch,pil,j

dt
(t) = kpil,j ×

[
Qfuel,pil,j(t − τ) − Qch,pil,j(t)

]

dQch,main

dt
(t) = k1,main ×

[
Qfuel,main(t − τmain) − Qch,main(t)

]
+ k2,main ×

dQfuel,main(t − τmain)

dt

Qfuel,j =

∫t

tSOI

m• f ,inj(t)HLdtt ≤ τЕΟІQfuel,j =

∫t

tSOI

m• f ,inj(t)HLdtt > τЕΟІQch =
∑n

j=1
Qch,j

(1)  

Where HL is low heating value of fuel, pil is pilot injection, main is main injection, Qch is chemical heat release, τ is ignition delay 
coefficient, kpil is combustion parameters corresponding to pilot injection combustion, k1,main and k2,main are the combustion parameters 

corresponding to the main injection combustion, m
•

f ,inj is fuel injection rate and Qfuel is chemical energy. 

Table 1 
Comparison of main parameters between TBD620V12 and the single-cylinder engine.  

Serial No. Parameters TBD620V12 TBD620 single-cylinder engine 

1 Number of cylinders 12 1 
2 Rated power (kW) 1680 146 
3 Rated speed (r/min) 1800 1800 
4 Fuel system high pressure common rail Mechanical fuel injection system 
5 Cylinder diameter (mm) 170 170 
6 Piston path (mm) 195 195 
7 Compression ratio (mm) 13.5 13.5 
8 Fuel consumption rate (g/(kW⋅h)) 198.2 225 
9 Combustion mode direct injection direct injection  

Table 2 
Main parameters of test equipment.  

Equipment names Model 

Dynamometer GW320 
Combustion analyzer AVL INDIMDUL 621 
Pressure sensor KISTLER 6058A 
Fuel consumption meter FC2210  
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For the combustion process of a multi-k injection engine, both Wiebe function and cumulative fuel mass approach can be used for 
fitting. However, in the case of the coexistence of premixed and diffusion combustion phases, the number of parameters to be cali
brated for the combustion process increases exponentially if double Wiebe function is adopted. When the fuel system is in single 
injection mode, the combustion model based on the cumulative fuel mass is also applicable, and only three calibration parameters are 
required. There are various ways of influencing fuel burn rate, of which the factors affecting heat release rate curve of the combustion 
process considered in Eq. (1) are mainly the turbulent kinetic energy and the fuel injection law generated by fuel injection atomization. 
However, in the actual combustion process, the fuel has been undergoing complex physical and chemical changes since it was injected 
into the cylinder, and these changes are closely linked to the transfer of heat, which is achieved in three ways. The heat convection in 
the combustion process is mainly affected by turbulence, which has been reflected in Eq. (1). The heat conduction is mainly related to 
the temperature difference between the mediums. The initial temperature is about 333 K, while the maximum temperature in the 
cylinder is more than 2000 K, so there is a huge difference during the fuel and cylinder temperature. The heat radiation in the engine 
cylinder is mainly caused by high temperature gas and carbon particles, which is affected by the temperature in the cylinder. Ref. [30] 
made a sensitivity analysis of the possible factors affecting the heat release rate. The fuel injection quantity, engine speed, fuel injection 
timing, fuel injection temperature, and air temperature of the intake pipe all have a great influence on the heat release rate. Therefore, 
which is necessary to quantify the cylinder temperature on the heat release rate. 

Fig. 4 shows the combustion chamber geometry used in the simulation process. CONVERGE is a new generation of thermal fluid 
analysis software developed by Convergent Science Company in the United States. Through accurate, efficient and reliable three- 

Fig. 4. Combustion chamber model.  

Fig. 5. Effect of in-cylinder temperature on heat release rate curve.  
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dimensional fluid analysis process, detailed simulation of engine combustion process can be realized. To study the influence of in- 
cylinder temperature variation on heat release rate curve, based on the 3.0 version of Converge software and the three-dimensional 
prediction model that has been calibrated [31], under rated conditions, the intake flowrate and injection volumes remain un
changed, and the intake air temperature is set to 326 K (the original machine intake air temperature) and 773 K, respectively, in order 
to roughly simulate the difference in in-cylinder temperature, and compare the final results. The reduction of intake flow rate caused 
by the sharp increase in intake temperature is offset by increasing the intake pressure. The intake pressure is set to 0.366 MPa (the 
original intake pressure) and 0.666 MPa, respectively. 

Fig. 5 shows the effect of different in-cylinder temperatures on the heat release rate curve. The difference of temperature is realized 
by adjusting the intake temperature, which in turn affects the actual heat release rate curve. The moment of fuel ignition with a higher 
in-cylinder temperature is 3oCA earlier than that of the original engine. This is because the increase of in-cylinder temperature greatly 
reduces the time required for fuel vaporization under the condition of constant fuel injection temperature. However, the increase of in- 
cylinder temperature is more reflected in the diffusion combustion stage, especially at 35oCA after the top dead center (TDC), when 
cumulative heat release rate error caused by the temperature is more than 3 %. The high temperature in the cylinder not only transfers 
heat to the cylinder liner, piston and cylinder head, but also transfers heat to the oil-air mixture that is reacting or not reacting. Table 3 
shows the in-cylinder temperature slices corresponding to different crank angles at the initial in-cylinder temperatures of 326 K and 
773 K, respectively. As can be observed from Table 3, the in-cylinder temperature is the same as the intake air temperature at the 
moment of the start of compression, proving that the differential design of in-cylinder temperature can be realized by changing the 
intake temperature without changing the intake flow rate. There is a significant difference in in-cylinder temperature between TDC and 
35oCA after TDC. Among them, at TDC, the increase of in-cylinder temperature has a great effect on the vaporization and decom
position of fuel spray. At 35oCA after TDC, the injection process is complete, and the influence of turbulent kinetic energy brought by 
injection atomization on oil-air mixing process is also reduced. At this time, the heat transfer of in-cylinder temperature to oil-air 
mixture can meet the activation energy required for chemical reaction of fuel. Therefore, study the influence of in-cylinder temper
ature on heat release rate is necessary when constructing a combustion model based on cumulative fuel mass approach. 

3.2. Optimization of the model 

Through the analysis of the three-dimensional combustion process, we can conclude that the heat release rate of in-cylinder 
combustion process is closely linked to the in-cylinder temperature. Based on the above analysis, for single injection engines, the 
author further improved Eq. (1) by adding a function term that is proportional to the increase in internal energy of the unburned 
accumulated fuel during fuel injection. Assuming that the fuel in the injection area is not mixed with air at the moment of combustion 
injection and that the fuel spray is rapidly heated to the in-cylinder temperature, the improved combustion model can be expressed as 
Eq. (2): 

Table 3 
In-cylinder temperature corresponding to different crank angles. 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dQch

dt
(t) = k1 ×

[
Qfuel(t − τ) − Qch(t)

]
+ k2 ×

dQfuel(t − τ)
dt

+ k3 × QE(t − τ)

Qfuel =

∫t

tSOI

m• f ,inj(t)HLdtt ≤ τЕΟІQfuel =

∫t

tSOI

m• f ,inj(t)HLdtt > τЕΟІQE =

⎛

⎝
∫t

tSOI

m• f ,inj(t) −
Qch(t)

HL

⎞

⎠(T − T0)

(2)  

where QE is the increase in internal energy of the unburned accumulated fuel during fuel injection, T is in-cylinder temperature, and T0 
is fuel temperature at injection time. 

Fig. 6 shows the comparison results of heat release rate curves of different combustion models based on cumulative fuel mass 
approach, where Qch1 represents the burnt fraction curve without considering the influence of turbulent kinetic energy and in-cylinder 
temperature on the heat release rate, Qch2 represents burnt fraction curve after only considering the influence of turbulent kinetic 
energy on heat release rate, Qch3 represents the burnt fraction curve after considering the influence of in-cylinder temperature and 
turbulent kinetic energy. The influence of turbulent kinetic energy on heat release rate is mainly reflected in the initial combustion 
stage, where the turbulent kinetic energy generated by fuel injection atomization effectively improves the mixing effect of oil and gas 
and greatly promotes the combustion rate of fuel. The in-cylinder temperature can influence heat release rate mainly occurs in 
diffusion combustion stage, where the in-cylinder temperature reaches the peak value of the combustion process, and the heat 
absorbed per unit fuel before combustion also reaches its highest value. When the temperature is lower than 2500 ◦C, the effect of 
temperature on flame propagation speed increases geometrically, so that the in-cylinder flame propagation speed increases signifi
cantly as the injected fuel itself absorbs heat more rapidly. Although the QE derived from the above simplification cannot be taken as a 
change in the total energy of the fuel and is somewhat contrary to the physical meaning, it can effectively regulate the heat release rate, 
which is necessary for the accurate prediction of the heat release rate curve. In summary, the turbulent kinetic energy can effectively 
correct the heat release rate curve in the initial stage of combustion, and the increase of internal energy of unburned accumulated fuel 
can effectively adjust the heat release rate curve. 

Fig. 7 is the comparison results of the heat release rate curves based on the cumulative fuel mass approach and the standard Wiebe 
function. The data in Fig. 8 were calculated by 3.9 version of Python, and 2022 version of Origin software was used to generate the 
graphs. It can be observed from the figure that under the four classical working conditions, the improved cumulative fuel mass 
approach has a higher fitting accuracy than the traditional cumulative fuel approach and the standard Wiebe function. As the load 
decreases, the difference value between the burnt fraction curves calculated by the three methods and the experimental value increases 
to varying degrees, indicating that the decrease in load will reduce the fitting accuracy of the three methods [32,33]. The main reason 
is that under high load conditions (Fig. 7(a), (b) and (c)), the combustion process is dominated by diffusion combustion and the 
combustion form is relatively simple, so it is less difficult to calculate. The continuous decrease of load caused a gradual increase of 
ignition delay period. The peak of the heat release rate curve gradually changes from a single peak to double peaks (Fig. 7(d)). The 
standard Wiebe function can only accurately calculate a single peak, so the calculation accuracy is significantly decreased under low 
load conditions. The cumulative fuel mass approach also has varying degrees of decrease in calculation accuracy under low load 
conditions, where the influence of the turbulent kinetic energy caused by in-cylinder temperature and injection is significantly 
weakened due to the reduced fuel injection quantity and the lower in-cylinder temperature, so the error curves corresponding to Qch2 

Fig. 6. Comparison of heat release rate curves of different combustion models.  
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and Qch3 are close. Compared with the traditional method, the improved cumulative fuel mass approach has a better regulation of the 
instantaneous heat release rate in the diffusion combustion stage. The traditional cumulative fuel mass approach needs to adjust k1 and 
k2 to achieve the final total heat release. Therefore, the instantaneous heat release rate of the traditional cumulative fuel mass 
approach in the premixed combustion stage and the tail combustion stage is lower than that of the improved cumulative fuel mass 
approach, and the corresponding calculation accuracy also decreases. 

Fig. 7. The comparison results of the heat release rate curves calculated by different methods under 100 %, 75 %, 50 % and 25 % work
ing conditions. 
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4. Identification of mapping relationship between parameters based on data-driven 

4.1. Determination of the mapping relationship between parameters in the model 

The EF obtained by power function fitting shows the number of independent variables has no significant impact on fitting accuracy, 
and greatly increases the complexity of the formula. Similarly, the excessive increase in the number of independent variables may lead 
to overfitting of neural networks. Therefore, in order to determine a reasonable number of independent variables, sensitivity analysis 
of the parameters is necessary. Pearson correlation coefficient is one of the main methods to measure the correlation between variables 
[34], which can be expressed as Eq. (3): 

P
(
xi, xj

)
=

cov
(
xi, xj

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var(xi) × var
(
xj
)√ (3)  

where var(xi) and var(xj) are variances of xi and xj respectively, cov(xi, xj) is covariance of xi and xj. 
Taking 151 sets of data under steady-state test conditions as the training set, calculate the Pearson correlation coefficient of the 

parameters, then select the candidate operation parameters corresponding to the parameters to be fitted. From Fig. 8, we can see the 
Pearson correlation coefficient heat map between the variables. The numbers 1–6 in the figure are τ, k1, k2, k3, Qglob and Qevape, 
respectively, noted as derived variables, and numbers 7–14 are for engine speed n, start of injection SOI, fuel injection mass mmfuel, 
intake manifold pressure Pint , exhaust manifold temperature Tex, intake manifold temperature Tint , exhaust manifold pressure Pex, and 
air mass flow mair, respectively, noted as measured variables. The Pearson correlation coefficient takes values between − 0.89 and 1. 

Fig. 8. Pearson correlation coefficient between variables.  

Fig. 9. Principal component analysis results.  
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The size of the absolute value indicates the strength of the linear correlation, and a smaller absolute value indicates a weaker cor
relation between two parameters. From Fig. 8, the correlation coefficients between the six derived variables and the eight measured 
variables can be obtained, with Tex and Pex having the lowest influence on the derived variables. In the analysis of the two measured 
variables, mair and Tint , it is found that Tint was chosen to replace mair due to the lower stability and accuracy of the mair, as well as the 
larger correlation coefficient with Tint, which had a strong physical correlation. For mass-produced engines, Pex is usually not measured 
and has a strong correlation with engine speed, so Pex is not considered as an input variable. 

Pearson correlation coefficient only considers the correlation between two variables, and the interaction between multiple factors 
is not considered at the same time. On this basis, this paper realizes the extraction and dimension reduction of the feature of sample 
data by introducing principal component analysis (PC A) [35]. In Fig. 9, the covariance, eigenvalue and eigenvector required for the 
principal components are calculated in the same way as the Pearson correlation coefficient. The principal components of the above 
eight measured variables were selected by cumulative percent variance (CPV) [36]. The cumulative variance contribution rate of the 
first five components reached 95.08 %, which was greater than 95 %, meeting the accuracy requirements for nonlinear fitting. As can 
be observed from Table 4, the principal components with the lowest variance contribution rate are Tex, Pex and mair. The independent 
variable parameters of the EF and the neural network are finally determined as n, SOI, mmfuel, Tint and Pint , respectively. 

4.2. Parameter relationship identification model based on EF 

Through the sensitivity analysis performed, the independent variable set corresponding to the parameters to be calculated in the 
model is obtained, and then EF of each parameter is obtained by using the power function as primary function. Finally, the mapping 
relationship between the parameters to be calculated and the independent variable set in the combustion model is determined, as 
shown in Eqs. (4)–(9): 

τp= 6.69×104 · n0.593SOI− 1.25mfuel
− 0.38Pint

− 0.41Tint
− 0.23 (4)  

k1= 2.13×106 · n− 1.1SOI1.1mfuel
− 0.42Pint

− 0.59Tint
− 3.13 (5)  

k2= 1.06 ·n− 0.15SOI − 0.26mfuel
0.43Pint

0.38Tint
0.042 (6)  

k3= 11.3 ·n− 0.436SOI1.78mfuel
− 2.1Pint

− 0.24Tint
0.13 (7)  

Qf ,evap= 6.18×10− 5 · n0.342SOI2.38mfuel
− 0.29Pint

− 0.52Tint
0.023 (8)  

Qht,glob= 1.74 ·n− 0.53SOI3.22mfuel
− 0.47Pint

0.32Tint
− 1.87 (9)  

Table 4 
Variance contribution rate and CPV of each principal component.  

Principal components Eigenvalue Variance contribution rate (%) CPV (%) 

1 3.64 41.65 41.65 
2 2.17 24.83 66.48 
3 1.11 12.70 79.18 
4 0.91 10.41 89.59 
5 0.48 5.49 95.08 
6 0.36 4.12 99.2 
7 0.05 0.57 99.77 
8 0.02 0.23 100  

Fig. 10. CNN-GRU neural network structure diagram.  
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4.3. Parameter relationship identification model based on deep learning 

According to the fuel delivery parameters, the burnt fraction curve and the in-cylinder temperature obtained from the test, the 
parameters to be calculated in the improved cumulative fuel mass formula can be calculated. Taking the engine operating parameters 
as the input parameters and the parameters to be calculated as the output parameters, the identification model is constructed by using 
the neural network, and the nonlinear relationship between the operating parameters and the parameters to be calculated in the model 
is established. 

To further improve the nonlinear mapping effect of engine operating parameters and combustion model parameters, the nonlinear 
fitting of the two is carried out by CNN-GRU deep learning neural network in this work. CNN can perform efficient extraction in the 
face of complex network structures. It was first designed for image data, but CNN is a deep neural network with a parameter sharing 
mechanism based on convolution, which can effectively extract features from data. Therefore, it can also adapt to the processing of 
one-dimensional data. The relationship between operating parameters and combustion model parameters is a multi-input and multi- 
output relationship. It is difficult to accurately obtain an explicit mathematical expression between variables. CNN can extract the 
overall characteristics of the data within a certain range from the input data as the input of the GRU model, it can greatly improve the 
recognition effect of GRU on the data. In Fig. 10, the input data is convolved twice to perform scanning local feature extraction on the 
data, passes through the flatten layer, and finally passes through the output layer. 

4.4. The identification effect of different calculation methods on the mapping relationship between parameters 

To study the identification effect of different solution methods on the mapping relationship between parameters, it is necessary to 
keep the sample order unchanged. 90 % of the samples were randomly selected as the training set, and the remaining 10 % of the 
samples were selected as the test set. In Fig. 11, the fitting results of the identification model based on EF to the parameters to be 

Fig. 11. The regression analysis and error distribution between the simulation results and the test results of the training set and the test set based on 
EF identification model. 

Table 5 
Statistical values of different neural network performance.   

EF CNN-GRU  

Training Test Training Test 
R2 0.9513 0.9507 0.9861 0.9851 
MAPE% 8.61 % 8.41 % 3.11 % 3.50 % 
RMSE 0.0213 0.0196 0.0096 0.0110  
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calculated. The figure shows the prediction results (Fig. 11(a) and (Fig. 11(b))) of the in-cylinder combustion prediction model based 
on the EF for k2, and gives the regression analysis (Fig. 11(c)) and error distribution between the test results and the simulation results 
of the training set and the test set. From the figure we can see that, there is a large error between the tested and predicted values of k2 
(Fig. 11(d)), with the highest error exceeding 0.04. Meanwhile, from Table 5 (obtained using Python software), the coefficient of 
determination (R2) of the training set and test set of k2 are 0.9513 and 0.9507, respectively, which are lower than 0.97, and the 
regression effect is poor. Besides, the corresponding mean absolute percentage error (MAPE) values are 8.61 % and 8.41 %, respec
tively. In summary, although the prediction results based on EF can roughly reflect the variation law of the parameter values, the 
prediction accuracy cannot meet the minimum accuracy required by the model. 

Fig. 13 is the prediction result (Fig. 12(a) and (Fig. 12(b))) of the identification model based on CNN-GRU for the parameters to be 
calculated, from which the prediction accuracies of k2 (Fig. 12(c) and (Fig. 12(d))) have been greatly improved compared with the 
identification model based on EF. As can be observed from Table 5, the R2 of the training set and the test set of the identification model 
based on CNN-GRU are 0.9861 and 0.9851, respectively, which are both greater than 0.97, with an increase of 3.48 % and 3.44 % 
respectively compared to EF. The MAPE value of the test set of the identification model based on CNN-GRU is 3.5 %, which is less than 
5 % and is 58.38 % lower than the MAPE value of EF. In addition, the RMSE based on CNN-GRU of the test set of the identification 
model is 0.011, which is 0.086 less than EF. Therefore, we can recognize that identification effect of parameters by GRU neural 
network based on optimized convolution layer has been greatly improved. 

Fig. 13 shows the fitting results of some of the dependent variable parameters fitted by EF and CNN-GRU. In the figure, the MAPE 
values of the CNN-GRU for τ, k1 and k2 parameters are 0.901 %, 3.47 % and 3.88 %, respectively, with significantly higher accuracy 
compared with EF, especially in the prediction of ignition delay coefficient (τ). Because τ has a strong regularity with the change of 
different working conditions, both EF and CNN-GRU neural network have a significant improvement in prediction accuracy for τ 
compared to k1 and k2, but the MAPE value of τ by CNN-GRU neural network is still 73.58 % higher than that of EF. The CNN-GRU can 
well fit and predict the relationship between model parameters and operating parameters, and the fitting accuracy and prediction 
accuracy are significantly higher than those of EF. Comparing to EF, CNN-GRU neural network does not need to consider the form of 
the function and fitting method, and has better ability to fit the nonlinear relationship between parameters. 

5. Construction of 0-D prediction model 

5.1. The construction method of engine prediction model 

Based on the improved cumulative fuel mass method combined with EF or parameter relationship identification model, the pre

Fig. 12. The regression analysis and error distribution between the simulation results and the test results of the training set and the test set based on 
CNN-GRU identification model. 
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Fig. 13. Fitting results of dependent variable parameters based on EF and CNN-GRU.  
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diction model can be constructed and the combustion results can be predicted. In Fig. 14, according to the operating parameters and 
state parameters obtained from the test, the unknown parameters in the improved cumulative fuel mass formula are calculated using 
EF or the parameter relationship identification model, and the construction of the combustion model (Qch model) is completed. The 
combustion model can calculate heat release rate, and the combustion characteristic parameter MFB50 can be extracted. According to 
the simplified in-cylinder heat transfer model and evaporative heat absorption model, the explicit heat release (Qnet) can be obtained. 
Then, Qnet is used as the input parameter of the cylinder pressure model, and the corresponding cylinder pressure curve is iterated by 
the Runge-Kutta method, from which the PFP can be extracted. Finally, the IMEP720 can be calculated by using the pumping loss 
model. 

5.1.1. Reconstruction of cylinder pressure curve 
From the above, the chemical heat release Qch from the combustion model based on the cumulative fuel mass approach does not 

consider the effects of in-cylinder heat transfer and evaporative heat absorption, so it is necessary to simplify in-cylinder heat transfer 
model and evaporative heat absorption model. The total heat transfer loss in the combustion process is simplified as the difference 
value between the maximum value of the fuel chemical energy release from ignition moment and the maximum value of the explicit 
heat release curve, denoted as Qht,glob. The expression of the explicit heat release curve is shown as Eq. (10): 

QSOC
net =Qch

m• f ,inj(t)HL − Qht,glob

m• f ,inj(t)HL

(10) 

The fuel evaporation process runs through the two stages of compression process and combustion process. The heat absorption 
quantity by fuel evaporation Qf ,evap is mainly determined by the in-cylinder temperature, the temperature of injected fuel and injected 
fuel quantity. The fuel evaporation process is accompanied by complex chemical reactions such as fuel decomposition and combustion, 
so it is difficult to calculate accurately according to the cylinder pressure curve and the burnt fraction curve. In order to facilitate the 
rapid estimation of Qf ,evap, the calculation of Qf ,evap is simplified, that is, the reduction in heat quantity from the start of injection to the 
minimum value of the explicit heat release curve. The optimized explicit heat release curve is shown in Eq. (11). 

QSOI
net =QSOC

net − Qf ,evap (11)  

Qht,glob and Qf ,evap are the same as the model parameters, which can be calibrated by the test values of specific working conditions. The 
in-cylinder thermodynamic process consists of five stages: intake, compression, combustion, expansion and exhaust. The combustion 
model based on the improved accumulated fuel mass approach can calculate the heat release rate curve during the combustion process. 
Then, the heat release rate curve is combined with the initial state parameters of the engine, and the cylinder pressure curve of each 
process is calculated by the Runge-Kutta method. 

5.1.2. Simplification and reconstruction of MFB50, PFP and IMEP 
The value of MFB50 can be obtained by interpolation calculation of the burnt fraction curve, as shown in Eq. (12): 

MFB50= interp
(

xb,
max(xb)

2

)

(12)  

where xb is the burnt fraction curve. 
From Fig. 14, using QSOI

net as the input parameter of the cylinder pressure model, the cylinder pressure curve can be reconstructed, 
and the PFP can be extracted from the curve, as shown in Eq. (13): 

PFP= interp(p,max(p)) (13) 

Fig. 14. The construction process of engine prediction model.  
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where p represents the cylinder pressure curve from inlet valve close (IVC) to exhaust valve open (EVO). 
IMEP720 is the integral of the total in-cylinder pressure to the volume, as shown in Eq. (14): 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

IMEP720 =

∫540

180

pdV

Vd
− PMEP

PMEP =

∫180

− 180

pdV

Vd

(14)  

where Vd is cylinder clearance volume, PMEP is pumping mean effective pressure, that is, pumping loss. 

5.2. Comparison of prediction performance under calibrated conditions 

A 0-D prediction model based on hybrid drive can be constructed by combining the cumulative fuel mass approach with EF or CNN- 
GRU neural network identification model, and the combustion results of different operating conditions can be predicted. Fig. 15 shows 
the comparison of simulation results of 0-D prediction models based on EF and CNN-GRU under calibration conditions. From the 
figure, we can observe that the prediction accuracies of the above two models are lower than those of EF and CNN-GRU neural 
networks identification model. The main reason is that the 0-D prediction model is based on the parameter identification model and the 
cumulative fuel mass approach, the accuracy will be significantly reduced due to the superposition of the two errors. The IMEP value of 
the 0-D prediction model based on CNN-GRU is 4.12 %, which is lower than MFB50 and PFP, but still 44.92 % higher than the IMEP 
value of the prediction model based on EF, and the prediction accuracy is still at a high level. 

5.3. Comparison of prediction performance under non-calibrated conditions 

To verify the prediction accuracy of the 0-D prediction models based on EF and CNN-GRU under non-calibration conditions, In 
Fig. 16, the comparison between the experimental and predicted values of the two prediction models under dynamic conditions. It can 
be seen that under non-calibration conditions, the RMSE values of IMEP (Fig. 16(b)), PFP (Fig. 16(a)) and MFB50 (Fig. 16(c)) of the 
model based on CNN-GRU are 0.11367, 0.5862 and 0.9824, respectively, which are 40.39 %, 29.29 % and 40.36 % lower than those of 
the prediction model based on EF. The above results show that under non-calibration conditions, the prediction model based on EF has 
low prediction accuracy and poor generalization, while based on CNN-GRU, the prediction model still has high prediction accuracy 
and good generalization. 

5.4. Proposed model development flow diagram 

The structure of the article is shown in Fig. 17. First, we introduced the test bench and completed the selection of test operating 

Fig. 15. Comparison of simulation results of 0-D prediction models based on EF and CNN-GRU under calibration conditions.  
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points. Second, based on the classical cumulative fuel mass model, the effect of in-cylinder temperature on the heat release rate of 
combustion process is introduced, and an improved cumulative fuel mass model is proposed. Third, the number of operating pa
rameters is first determined by Pearson correlation coefficient combined with principal component analysis (PCA). Fourth, based on 
the improved combustion model, the prediction model of combustion process is constructed by combining EF and CNN-GRU 
respectively, and then the combustion results are simplified and reconstructed. In the final results, the advantages and disadvan
tages of the two prediction models based on EF and CNN-GRU are determined by comparing the prediction performance of steady-state 
and transient conditions. 

Fig. 16. The simulation results of the prediction models based on EF and CNN-GRU under uncalibrated conditions.  

D. Hu et al.                                                                                                                                                                                                             



Heliyon 9 (2023) e21494

17

6. Conclusion 

This work proposes a hybrid-driven model, represented as a prediction model based on the improved cumulative fuel mass 
approach combined with a data-driven CNN-GRU identification model to reconstruct the combustion process of the engine in different 
environments. The prediction accuracy of the model is validated.  

(1) The classical prediction model based on cumulative fuel mass approach is structurally optimized. By setting different in-cylinder 
temperatures, the influence of in-cylinder temperature difference on heat release rate is verified. The increase of internal energy 
accumulated during fuel injection is introduced as an effective method to regulate the heat release rate. For the single injection 
engine, the optimized model has high accuracy, especially in the diffusion combustion stage where the fitting accuracy of the 
heat release rate is significantly improved. 

(2) The advantages of Pearson correlation coefficient and PCA are combined. By analyzing the correlation between different pa
rameters and considering the interaction between multiple factors, the dimension reduction of independent variable parameters 
is achieved, and the selection of independent variable set is completed.  

(3) We designed a deep learning neural network including a special convolution layer and a gated neural network. CNN is used for 
feature identification of one-dimensional data and then embedded in GRU, which can achieve effective extraction of data 
features. The MAPE value of the test set of CNN-GRU neural network is 3.5 %, which is 58.38 % less than the MAPE value 
corresponding to EF, so the accuracy of the GRU optimized by convolutional layer is significantly improved.  

(4) The prediction accuracy of the 0-D prediction model based on CNN-GRU tends to decrease significantly under non-calibration 
conditions, compared with the calibration condition, but it still has higher accuracy than the EF. It is more suitable as a digital 
twin model for real-time simulation and online optimization of engines.  

(5) When calculating the heat release rate of the combustion model based on the improved cumulative fuel mass approach, the in- 
cylinder temperature is involved as a known parameter. However, in the actual calculation process, it is difficult to measure the 
in-cylinder temperature in real time and accurately. Therefore, map interpolation was performed on the measured test data for 
the 151 sets of temperatures, and the obtained in-cylinder temperatures were involved in the calculation. In order to further 
improve the prediction accuracy, the prediction model of in-cylinder temperature based on deep learning neural network can be 
considered. 
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Fig. 17. Proposed CNN-GRU model development process flow diagram.  
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