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Oxidative stress, the imbalance of the antioxidant system, results in an
accumulation of neurotoxic proteins in Alzheimer’s disease (AD). The anti-
oxidant system is composed of exogenous and endogenous antioxidants to
maintain homeostasis. Superoxide dismutase (SOD) is an endogenous enzy-
matic antioxidant that converts superoxide ions to hydrogen peroxide in
cells. SOD supplementation in mice prevented cognitive decline in stress-
induced cells by reducing lipid peroxidation and maintaining neurogenesis
in the hippocampus. Furthermore, SOD decreased expression of BACE1
while reducing plaque burden in the brain. Additionally, Astaxanthin
(AST), a potent exogenous carotenoid, scavenges superoxide anion radicals.
Mice treated with AST showed slower memory decline and decreased depo-
sitions of amyloid-beta (Aβ) and tau protein. Currently, the neuroprotective
potential of these supplements has only been examined separately in studies.
However, a single antioxidant cannot sufficiently resist oxidative damage to
the brain, therefore, a combinatory approach is proposed as a relevant
therapy for ameliorating pathological changes in AD.
Research in context
1. Systematic review. The authors conducted an electronic search across

PubMed, Medline, PsycINFO, ScienceDirect, Google Scholar, Embase library
databases for English, peer-reviewed, articles and reviews published after
1964 using the following MeSH terms: Alzheimer’s Disease (AD) AND
Models, Reactive Oxygen Species (ROS) AND/OR Oxidative Stress (OS)
AND Astaxanthin (AS) AND models, Superoxide dismutase (SOD) AND
models. Case reports were excluded. The results were further screened by
title and abstract for studies performed in rats, mice and humans, at which
time full-text articles were screened for eligibility.

2. Interpretation.Basedonprevious studies, an integratedhypothesis ispresented,
explaining theneuroprotective role of antioxidants in theAD.This proposal pro-
vides evidence for the combinatory treatment, of endogenous and exogenous
antioxidants simultaneously, for the prevention and treatment of AD.

3. Future directions. Future trials should consider administering combinations
rather than single antioxidants to facilitate redox cycling as well as maximize
bioavailability, efficiency to different cellular compartments and establish the
regimens for practical interventions at each stage of AD. The oral bioavail-
ability of AST is limited by its solubility in the gut and lipid-based
formulations of AST have been proposed as possible alternatives.

1. Objectives
This review aims to synthesize scientific findings on the neuroprotective
and therapeutic role of two specific substances—astaxanthin (AST) and superoxide
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dismutase (SOD)—that each play a role in the endogenous and
exogenous pathways of the antioxidant system against oxi-
dative stress (OS). The combination of such substances will be
beneficial for patients suffering fromAlzheimer’s disease (AD).
ietypublishing.org/journal/rsob
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2. Background
Patients with AD, along with their families and caregivers,
are faced with devastating health and financial consequences.
The number of people living with this disease is projected to
increase as the elderly population grows older and life
expectancy increases, which will eventually create a strain
on the economy [1]. Since OS in the brain increases over
time and AD is a significant age-dependent disorder of the
brain, the development of novel antioxidant-regulating treat-
ments is crucial for preventing and preserving cognitive
function in this population [2,3]. Thus, reducing the levels
of ROS is an essential strategy for AD treatment.

2.1. Generation of free radicals and oxidative stress
Reactive oxygen species (ROS) are produced by living organ-
isms due to normal cellular metabolism processes like
cellular oxidation, cell regulation and signalling [4], and
formed by the cells of aerobic organisms such as the electron
transport chain, macrophages and peroxisomes [5]. At low to
moderate concentrations, ROS can be beneficial and regulate
cellular processes such as hormonal regulation and intracellu-
lar secondary messaging [6,7]. At higher concentrations, they
can adversely modify cellular lipids, protein expression and
DNA, eventually causing cell death [8–10]. Free radicals are
highly reactive, inorganic and unstable molecules or atoms
that have lost one electron, making their outer valance shell
incomplete [11]. As a result, these incomplete and intermediate
oxygen-carrying metabolites known as oxyradicals aggres-
sively search for their remaining electron in other molecules
and, once paired, continue to produce more free radicals
[7,12]. In turn, this creates a chain reaction of more unstable
free radicals interacting with other molecules leading to more
complex and toxic mechanisms [5]. Of these, the most dama-
ging radical in many tissues is the superoxide ion (O2

−) [13],
which is produced mainly in the respiratory chain of the mito-
chondria [14] and is the primary source of all radical-induced
toxicity [15,16]. O2

− is the sequential reduction of molecular
oxygen via step-wise addition of electrons, as it can readily pro-
duce the hydroxide ion (OH−) free radical, which can later
cross the cell membrane and cause severe molecular damage
known as lipid peroxidation [17]. OH− causes loss of functional
integrity of the cell and membrane receptors, alters membrane
permeability and increases membrane rigidity, thus decreasing
membrane fluidity [18,19]. If the integrity of the cell is not
maintained, homeostasis of the cell may be disrupted with
little to no chance of reversal. Homeostasis within a biological
system is maintained through the balance of antioxidation and
oxidation systems [20]. A disruption of this harmony results in
a relative deficiency of the antioxidant system, with the favour
of ROS, creating an environment known as OS. The persistence
of this ongoing rise in ROS molecules leads to adverse modifi-
cations in cell components and ismarked by lipid peroxidation,
high levels of oxidized proteins and oxidative modifications in
mitochondrial DNA [21–23]. OS is thought to be involved in
the pathophysiology of several chronic diseases like diabetes
[7,11,24], macular degeneration [25] and cancer [26,27].
2.2. Oxidative stress and Alzheimer’s disease
Oxygen is essential for sustaining life, but it does come with a
cost as it is also a threat to biological systems. Particularly,
the brain accounts for 20% of all the oxygen consumed by
the body [28,29] while only weighing 2% of the total body
weight [30]. These features make it highly susceptible to
oxidative damage due to a high concentration of easily oxi-
dizable polyunsaturated fatty acids, iron and metals, as
well as the neuronal metabolic rate which mediates the con-
tinuous production of ROS [31]. Neurons are vulnerable to
free radicals as there is a rather scarce amount of antioxidant
enzymes compared to other organs. For example, catalase
(CAT) in the brain is 10–20% of that found in liver and
heart [32,33], as well as a high content of methyl ions in
specific brain areas [34].

Evidence has consistently supported the involvement of
OS as a major contributing factor in physiological ageing
and the progression of multiple neurodegenerative pathol-
ogies [35–37]. Specifically, though the exact causes and
mechanisms underlying AD progression remain unclear
and multiple factors have been analysed, OS seems to be a
leading contender and has gained importance with the pro-
gression of this disease [38,39]. This has been confirmed by
the increase in markers of OS such as carbonyls, malondial-
dehydes and 4-hydroxynonenal [40,41]. Free radical
damage in the ageing brain influences Aβ toxicity and tauo-
pathy [42], which are responsible for impairment in
memory, thinking and language abilities in AD patients
[31,43].

2.3. Impact of oxidative stress on neurons
AD is a neurodegenerative disorder characterized by pro-
gressive memory loss and disorientation, with extracellular
depositions of Aβ protein (senile plaques) and intracellular
fibrillary deposits of hyperphosphorylated tau (P-tau) protein
(neurofibrillary tangles, NFT). These neuropathological fea-
tures can eventually lead to neuronal death and brain
atrophy [44,45] with the loss of neuronal synapses leading
to cognitive impairment [46,47]. Aβ results when there is
abnormal cleavage of amyloid precursor protein (APP) by
β- and γ-secretases [48,49]. The increase of soluble Aβ creates
plaques and a toxic environment to neurons, leading to a
decrease in the number and plasticity of synapses [50] and,
consequently, initiating the formation of NFT [51]. Accumu-
lation of Aβ causes a loss and malformation of spines due
to spine turnover in dendrites [52,53], causing characteristic
behavioural and cognitive deficits. It has been demonstrated
through cell culture models, transgenic mouse models [21]
and post-mortem brains of AD [54] that the abundance of
ROS and neuronal oxidation [55–57] activates signalling path-
ways that alter APP or tau processing [58]. For example, a
high concentration of OS stimulates c-Jun amino terminal
kinase and p38 MAPK, which increases the expression of
β-secretase [59], leading to Aβ deposition [60], while the acti-
vation of glycogen synthase kinase 3 (GSK-3β) triggers tau
phosphorylation and formation of NFT. Also, in vitro and in
vivo studies have shown that OS affects Aβ production and
oligomerization, which generates free radicals and, in turn,
causes APP processing to create more free radicals, leading
to a vicious cycle of OS furthering the neurodegenerative
process [61,62].
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Figure 1. Enzymatic and non-enzymatic classification of antioxidants in the
cytosol of cells, acting on the formation of ROS that illicit cell toxic effects.
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3. Supporting the hypothesis
3.1. Antioxidant system: endogenous and exogenous
An ideal, physiologically functioning antioxidant system is a
defense mechanism against ROS (figure 1) and is made up of
two critical components—the endogenous antioxidants and
the exogenous ones. Enzymatic and non-enzymatic endogen-
ous antioxidants include SOD, CAT, glutathione peroxidase
(GPX) and glutathione, which are made by the body and
are therefore highly potent in repairing free radical damage
as they initiate cell regeneration, work in membrane domains
and act intracellularly to impact gene expression [64]. Studies
have shown that enhanced endogenous antioxidant activity
against ROS is directly achieved by the activation of the
Nrf2/ARE signalling pathway (nuclear erythroid 2-related
factor 2/antioxidant response element) which regulates the
expression of these enzymes and is a key mediator in OS
[64]. Exogenous antioxidants such as vitamin C, vitamin E,
carotenoids and polyphenol are assimilated through diet,
undergo a nutritional process and are responsible for
repairing free radical damage extracellularly. This can be
accomplished at a high kinetic rate by transferring one electron
to reduce free radicals [65], quench oxygen singlets, stimulate
cell regeneration [66,67] and sequester transition metals
through a chelation process [68].

Additionally, dietary exogenous antioxidants such as
carotenoids and polyphenols impact the proper utility of
these enzymatic endogenous antioxidants as they act as enzy-
matic cofactors [69] in maintaining or re-establishing redox
homeostasis in the cell [70]. Studies have demonstrated that
there is a potent synergism effect between exogenous and
endogenous after revealing that the total moles of radicals
neutralized and the velocity by which they reacted to
remove free radicals increased due to this combination. This
is relevant from a biological perspective given that a faster-
marked reaction rate equates to less cellular targets damaged
[71]. Thus, dietary exogenous antioxidants play a key role in
reinforcing and replenishing the endogenous antioxidant
enzymes to eliminate excess oxygen metabolites. Hence, an
interactive and often synergistic action occurs between
endogenous and exogenous antioxidants to maintain balance
with ROS (figure 2) [7,72].
3.2. Astaxanthin
AST is a red xanthophyll carotenoid present in freshwater
areas and produced by marine microorganisms such as bac-
teria, yeasts and fungi whereby the richest source is in the
microalga Haematococcus pluvialis [1,73,74]. As a result, AST
is consumed by fish such as salmon and trout, giving these
organisms a dark red-orange pigment [75,76]. To maintain
appreciable levels of AST, it is advised that AST be taken in
supplement form (e.g. 4–20 mg), to obtain the beneficial
effects rather than through diet alone, which would equate
to 600–2000 t of salmon [77]. The unique configuration and
size of AST—two hydroxylated ionone rings at both ends
of the long carbon chain—allows the molecule to vertically
bond to the polar heads of phospholipids and become
easily incorporated into the membrane [78]. The shape of
AST allows for increased bioavailability and quick absorption
into lipids, prevents lipid peroxidation, and increases the
stability and integrity of cell membranes [75]. Consequently,
after consumption, AST is readily passed through the gastro-
intestinal (GI) tract into the blood and crosses the blood–brain
barrier, eventually treating the brain using AST as a treatment
of AD [79–81].

By contrast, comparative studies have shown that AST is
6000 times more potent than vitamin C and 100 times more
potent than vitamin E in neutralizing toxic ROS without form-
ing pro-oxidants, commonly known as a negative side effect
among many other carotenoids [82,83]. The powerful antioxi-
dant potential of AST is due to its ketone-bearing ionone
rings which attract ROS into its polyene backbone. In addition,
its ability to freely donate an electron and form chemical bonds
with free radicals helps in scavenging free radicals and quench-
ing singlet oxygen particles [84–86]. When a cell is stressed,
AST inhibits phosphorylated extracellular regulated protein
kinase/extracellular regulated protein kinase ratio (p-ERK/
ERK) [87], which increases the concentration of haem oxyge-
nase-1 (HO-1) due to the activation of Nrf2/ARE,
consequently promoting the expression of SOD and other
endogenous antioxidant enzymes [8,88,89]. Thesemechanisms
of action are of importance given that ROS increases
with normal brain ageing [90] and is further increased in AD.
Therefore, additional antioxidants need to be in place to keep
OS to a minimum.

3.2.1. AST: in vivo studies

AST’s ability to ameliorate the cognitive decline in normal
ageing and decrease the pathophysiology of AD have been
investigated by researchers in animal and humans [91,92].
The supplement showed promotion of neuronal survival
when differentiated pheochromocytoma (PC12) were sub-
jected to Aβ [93,94] in a mouse model of AD. Extrapolated
studies revealed that AST was able to protect neuroblastoma
cells from amyloid toxicity by upregulating the HO-1 anti-
oxidative enzyme of the haem pathway [95]. Another study
demonstrated that the supplement decreased the amount of
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Figure 2. The interplay of exogenous antioxidants and endogenous antioxidants to reduce ROS levels.
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apoptotic-related mediators such as caspase 3,9, cytochrome
C and protected L-glutamate induced cell death in PC12
cells through the Bcl-2/Bax apoptotic pathway [96–98]. These
findings were replicated by Lobos et al., and the multipotent
nature of the nutraceutical was further shown when primary
hippocampal neurons were seen to be protected against amy-
loid-produced ROS [78]. Densitometry and western blot
analysis showed that the expression of P-tau proteinwas inhib-
ited with the use of AST in transgenic mice [99]. In a recent
study, Hongo and colleagues [100] investigated the effects of
AST intake on the cognitive and pathological progression of
AD. They used AppNl-G-f mice which carry three APP knock-
outmutationswith familial AD causing elevated levels of Aβ42
and observed decreased amyloid deposition, a decline in
P-tau-positive areal fraction in the hippocampus ( p < 0.001),
increased activation of microglial in the area of amyloid
deposition (p < 0.001) and a significantly higher mean
Parvalbumin-positive (PV+) neuron density ( p = 0.019) in the
AST group over the control group. The Barnes maze test was
later used to assess memory function in these mice and results
indicated a significant difference in the number of visits to the
goal region in the control-fed mice as opposed to the AST-fed
mice ( p = 0.0247). In another experiment, the nutraceutical
was shown to enrich spatial learning and memory skills by
reducing the number of reference memory errors and working
memory errorsmade byAPP/PS1 transgenicmice in a radial 8-
arm maze apparatus and Morris water maze test (p < 0.05)
[100]. Overall, AST has a multitude of neuroprotective effects,
from reducing oxidative brain dysfunctions and preventing
cellular toxicity and neuronal apoptosis to promoting survival
in adult hippocampal neurogenesis and improving spatial
memory [101,102].
3.2.2. Implication of astaxanthin in clinical studies

Some preliminary work has begun to examine the therapeutic
effects of AST supplementation on humans based on results
gathered from in vivo trials. A total of 96 healthy subjects ran-
ging from 45 to 64 years of age, with self-reported complaints
of age-related forgetfulness, were recruited for a randomized,
double-blind, placebo-controlled human trial. Itwas discovered
that AST supplementation, either in the 6 µg d−1 or 12 µg d−1

group, improved the performance of individuals to a greater
degree than the placebo group [103]. Scores in memory and
thinking were administered by the CogHealth tests while the
executive function was tested using the Groton Maze Learning
test, a maze learning paradigm. Repeated trials allowed for the
assessment of learning and revealed that the nutraceutical
improved cognitive function in aged individuals who had no
underlying conditions and participants made fewer errors in
the maze test. Subjects who were designated under the high-
dose category expressed faster reaction times in the computer-
ized, card-based design test. The efficacy of AST in improving
cognitive function was demonstrated in an open-label trial
with male participants aged 50–69with symptoms of mild cog-
nitive deficiencieswhowere treatedwith doses of 20 mg d−1 for
12 weeks [104]. The CogHealth test battery was used to assess
neurocognitive functioningwhile the P300was used tomeasure
recognition and selective attention in the context of decision
making [105]. Results showed an increase in brain function—
cognition, attention, memory, information processing—com-
pared to baseline values (figure 3). Dietary supplementation
with AST has been shown to improve psychomotor speed,
which is an indication of mental and physical coordination,
comprehension and ability to perform complex tasks efficiently
and accurately [106,107].

Elevated lipid oxidation [108,109] and phospholipid hydro-
peroxide (PLOOH) are present in abnormally high levels in
erythrocytes of AD patients. However, in a double-blind
human trial with participants 50–69 years of age, it was
noted that after a 12-week AST diet, plasma and erythrocyte
concentrations of PLOOH decreased compared to the control
group, which confirms that AST improves antioxidant levels
in cells [110]. OS influences the pathogenesis of neuronal loss
in neurodegenerative diseases, especially AD, and, as a
result, the neuroprotective capability of this substance is of
value for co-treatment in the prevention of these diseases [111].
3.3. Superoxide dismutase
As previously mentioned, O2

− is the most common ROS
[26,112]. SOD is a metalloenzyme that forms the first-line
antioxidant defense mechanism and is one of the major enzy-
matic components to detoxify superoxide radicals [113]. ROS
production is a cascade effect that initially begins with the
production of O2

− but can be neutralized by SOD as means
of protecting the cells [114]. This renders the potentially
harmful O2

− less hazardous [115–117]. By removing O2
−,
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SODs decrease the risk of OH• formation via the Haber–
Weiss-type reaction which has a 10 000-fold faster rate than
spontaneous dismutation [119] and instead, reacts in the pres-
ence of Fe2+ through the Fenton reaction to form hydrogen
peroxide (H2O2) and oxygen (O2). This enzyme is unique in
that its activity determines the concentrations of O2

−

and H2O2, the two Haber–Weiss reaction substrates, and is
therefore likely to be central in the antioxidant defence mech-
anism [118,120]. SOD can eliminate O2

− rapidly due to its
ability to convert a second-order reaction to a first-order reac-
tion [121,122]. However, if the concentration of free radicals
overwhelms the capacity of the enzyme, the O2

− can combine
with NO to form peroxy-nitrite or undergo the Fenton reac-
tion to form OH• radicals [123], which is a stronger oxidant
and far more damaging than O2

−.
SOD consists of three types of isoforms that are found in

mammalian cells: copper/zinc SOD (CuZn-SOD), which is a
cytoplasmic enzyme; manganese SOD (Mn-SOD, SOD2),
which is a mitochondrial matrix enzyme; and extracellular
SOD (EC-SOD, SOD3) [124]. Converging evidence confirms
that most of the proteins associated in the pathogenesis of
AD have direct involvement with mitochondrial enzyme
SOD–MnSOD [125]. Observations from studies have shown
that SOD knockout mice accelerate Aβ plaque deposition
[126], increase tau phosphorylation [127] and worsen behav-
ioural deficits [128], all suggesting that SOD plays a pivotal
role in human ageing and AD. Unfortunately, it has been
found that the SOD molecule is deactivated and does not
become bioavailable as it passes through the GI tract once
it encounters acids and enzymes [129,130]. As a result, scien-
tists have worked around this problem by having SOD
coupled with a protective protein derived from wheat,
which can then sustain the gastric acids and be delivered in
full form and absorbed into the bloodstream, thus effectively
enhancing the body’s own primary defence system [131,132].
Research has shown that oral SOD is linked with the induc-
tion of endogenous antioxidant enzymes’ expression of
CAT, GPX and further SOD [133,134]. These specific enzymes
decrease in concentration and the production of free radicals
increases with age [135], and it has been shown that this sup-
plement could increase and strengthen the body’s endogenous
supply, increase the activities of all three enzymes and
establish a reduction in neuronal damage in AD patients.

3.3.1. SOD: In vivo studies

Themost abundant ROS in cells influencing synaptic plasticity,
memory function and neuronal death is the superoxide radical
[136]. SOD plays a protective role in neurodegeneration and
has been shown to protect the ageing brain against human
APP (hAPP)/Aβ-induced impairments after learning that inac-
tivating one SOD allele in human hAPP transgenic mice led to
a depletion of microtubule-associated protein 2 (neuronal den-
dritic marker) in the hippocampus and neocortex, decreased
astrocytosis, promoted cerebrovascular amyloid gliosis and
plaque-dependent neuritic dystrophy. In regard to behavioural
issues, the lack of one SOD allele led to alterations in behaviour
with lower anxiety levels and reduced disinhibition. Previous
work conducted on mice with SOD deficiency in Tg2576 AD
hastened the process of Aβ aggregation [137]. Other studies
revealed that mice overexpressing SOD showed a reduction
in plaque production and less memory impairments [138].
SOD supplementation was able to contrast the observed
exacerbation of all AD-like features as well as counteract the
manifestation of cognitive impairments by effectively respond-
ing to oxidative injuries [139,140]. OS affects AβPP processing
at least in part by upregulating β-site AβPP cleavage enzyme
BACE1 (beta-site APP cleaving enzyme 1) [141]. SOD treat-
ment significantly downregulated the BACE1 enzyme in
Tg19959 mice and brain levels of Aβ were decreased. SOD
mimetics given to ageing mice for 6 months resulted in
decreased lipid peroxidation, nucleic oxidation and ROS
levels, and improved age-related decline in performance
during fear conditioning tasks [142]. This study showed
that age-dependent OS increases resulted in learning and
memory deficits due to damage to the hippocampus and
amygdala and could be significantly reduced by chronic treat-
ment of SOD, indicating that it is oxidative load in aged mice
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that accounts for 50–60% of the variance in learning ability
[56,143]. Antioxidant treatment, especially EUK-207, which is
a SOD mimetic, inhibited the progression of tau phosphoryl-
ation and, in effect, decreased the disease symptoms in
3X-Tg-AD, an aggressive mouse model of AD [144].
publishing.org/journal/rsob
Open

Biol.11:210013
3.3.2. Implication of SOD in clinical studies

Information from animal studies has been applied to clinical
studies and similar outcomes have been seen in humans. A
randomized clinical study of 20 healthy volunteers was
exposed to pure oxygen (2.5 absolute atmospheres) for
60 min to induce cellular OS. They were then orally treated
with Gliosidin (SOD supplement) and their SOD enzymatic
activities were analysed in erythrocytes. It was found that
SOD played a critical role in protecting DNA from cellular
damage due to hyperbaric oxygen [131]. A double-blind,
placebo-controlled pilot study was conducted using the
melon juice concentrate, 10 mg Extramel (140 IU SOD per
capsule) in 70 healthy volunteers between the ages of 30
and 55 years (mean = 40.26 years) with a BMI from 17 to
42, who felt daily stress and fatigue. Participants reported
a reduction of stress and physical fatigue, as well as a signifi-
cant improvement in cognitive performance on psychometric
scales: Ferreri Anxiety Rating Diagram ( p = 0.032), Cohen
Perceived Stress scale ( p = 0.01), 12-Item Short Form Survey
( p = 0.049) after four weeks of oral supplementation [145].
A similar study was carried out by Carillon et al. [133], show-
ing that three months of Extramel treatment improved the
score on the Stroop test (27.9%; p < 0.001) which is used to
measure cognitive flexibility, processing speed and overall
executive function.
4. Testing the hypothesis
Oxidative damage is not just a by-product or end product of
AD but is the direct initiation in the process of neurodegenera-
tion [146]. Accumulation of amyloid in AD changes the
expression of antioxidant genes, which further adds to the oxi-
dative damage, free radicals and neuronal dysfunction [147].
Although the aetiology of AD is multifactorial, the combi-
nation of genetic and environmental factors, which includes
nutrition, plays a central role in the onset and progression of
the disease. Nutritional intervention can present a relevant
route to achieve beneficial effects in AD treatment, at least in
combination with pharmaceutical therapy. The administration
of exogenous antioxidants is beneficial in treating the side
effects of OS by compensating the inefficacy of the endogenous
defense systems through inhibiting the intricate network of
oxidative damage pathways and enhancing the systemic
antioxidant response [20]. AST acts through exogenous
antioxidant mechanisms as well as stimulating endogenous
anti-oxidative enzymes [148,149,153], which is of importance
given that, with age, the concentration of endogenous antioxi-
dant enzymes decreases along with the efficiency and activity
of these enzymes. Previous studies have shown that oral sup-
plementation of SOD was found to promote the circulation,
in blood and brain, of endogenous enzymes such as SOD
and CAT [154]. This promoting effect will go on to combat
the OS occurring in the cell and serve as neuroprotection. Sub-
stantial evidence discussed above suggests that the two
nutraceutical molecules, AST and SOD, can synergistically
work together as each plays a role in the exogenous and
endogenous antioxidant system. Thus, it is predicted that
AST and SOD will exhibit stronger anti-oxidative activity and
provide pleiotropic functions than AST or SOD alone in
improving learning and memory abilities in different degrees
across AD patients. However, to date no experimental trials
have been conducted to verify this dual combination. Future
trials should consider administering combinations rather
than single antioxidants to facilitate redox cycling as well
as maximize bioavailability efficiency to different cellular
compartments and establish the regimens for practical
interventions at each stage of AD.

4.1. Limitations
The need to find and develop innovative delivery systems is of
necessity when it comes to AST, due to its low bioavailability,
poor water solubility and susceptibility to heat stress
[150–152]. There have been some promising suggestions to
address this drawback and, recently, AST has been formulated
with lipid-based carriers such as oil-loaded solid lipid nano-
particles, constructed lipid carriers and cyclodextrin. These
novel delivery systems have been shown to increase its stability
and thus potentiate its antioxidant capacity [150,155,156].
Unfortunately, more experimentation is required to develop
an appropriate and potent delivery system to precisely
study AST’s multi-target neuroprotective effects [157]. Other
challenges include developing standardized, precise and
definitive biomarkers of OS that can be used as early detec-
tion for AD [158,159]. From there, experiments need to
be examined to validate if a causal relationship exists and
whether those markers respond to antioxidant intervention
[160]. Further studies should be conducted in order to deter-
mine whether the simultaneous ingestion of nutraceuticals
contributes to an overall practical and beneficial healthcare
strategy in the treatment of AD. Importantly, an optimum
combination of SOD and AST in terms of doses is an area
that still needs to be analysed, as the removal of many ROS
by supplementation of antioxidants may cause ‘anti-oxidative
stress’, which can be detrimental to neuron physiology by dis-
rupting cell signalling pathways in the brain andworsening the
disease [161–163].

4.2. Translational concerns
Despite clear implications that oxidative damage is a key factor
in the pathophysiology of AD and literature suggesting the
therapeutic nature of AST and SOD in targeting ROS/antioxi-
dant imbalance, there seems to be a translational problem.
Improper design of human intervention studies [164,165]
such as a low number of recruited participants [145], short dur-
ation of treatment and analysis of end points, which are related
to pharmacokinetic and pharmacodynamic constraints, can all
prevent the possibility to detect potential improvements in cog-
nitive function in these patients. The lack of efficient animal
models to mimic the overall pathophysiological conditions in
the pathogenesis of AD in humans could also be a reason for
low clinical applications [166]. There is also a concern to deter-
mine different doses depending on gender, age, underlying
health issues in accordance with AD, previous drug use,
social habits, baseline nutritional levels of patients, genotype
and biochemical status, which could explain inter-individual
differences in terms of bioavailability [167]. Decreased rates
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of success in clinical trials could be the result of supplements
being administered in patients with advanced stages of AD,
while most of the in vivo studies have been performed at earlier
stages, and therefore a very large time gap exists, possibly
decades, from pre-clinical signs to the clinical onset of AD
[168,169]. Therefore, these supplements should be tested in
earlier phases of the disease to uncover their therapeutic
potential. Lastly, the most crucial factor is the brain’s complex-
ity. OS causes neuronal dysfunction inducing compensatory
responses and a change in neural circuitry [170]. This scenario
complicates the efficacy of antioxidant therapy due to the
regeneration of the lost neuronal network that is found in the
ageing brain.
Open
Biol.11:210013
5. Conclusion
The prevalence and high mortality of AD presents medical
and financial burdens on society, specifically the patients’
caregivers. An important feature of ageing is the weakening
of the biological antioxidant system defence system such as
the loss of endogenous antioxidant enzymes like SOD, as
well as the increasing levels of ROS, creating a state of OS
in the brain. Many AD histopathological studies confirm dis-
ruption of the redox homeostasis in the brain as playing a
fundamental role in amyloid plaque formation and hyper-
phosphorylation of tau protein [171], which contribute to
impairments in cognition [172]. Focusing on the development
and utilization of antioxidant therapies can assist in reducing
toxic depositions. Various clinical and basic research studies
have provided support for antioxidant treatment in AD,
and it is likely that a single antioxidant may not be suffi-
ciently resistant to oxidative damage given that OS is
modulated by a complex system of endogenous and exogen-
ous antioxidants [78]. The integrated approach of AST and
SOD antioxidant therapy, along with first-line synthetic
drugs, is suggested to provide a promising natural treatment
alternative in delaying the progression of AD. Future research
can elucidate the role of both these compounds, which can
provide insight into providing safe and potent neuroprotec-
tive agents that could improve the quality of life and life
expectancy of these patients.
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