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Abstract
The human solute carrier (SLC) superfamily of transporters is comprised of over 400 membrane-bound proteins, and plays 
essential roles in a multitude of physiological and pharmacological processes. In addition, perturbation of SLC transporter 
function underlies numerous human diseases, which renders SLC transporters attractive drug targets. Common genetic 
polymorphisms in SLC genes have been associated with inter-individual differences in drug efficacy and toxicity. However, 
despite their tremendous clinical relevance, epidemiological data of these variants are mostly derived from heterogeneous 
cohorts of small sample size and the genetic SLC landscape beyond these common variants has not been comprehensively 
assessed. In this study, we analyzed Next-Generation Sequencing data from 141,456 individuals from seven major human 
populations to evaluate genetic variability, its functional consequences, and ethnogeographic patterns across the entire SLC 
superfamily of transporters. Importantly, of the 204,287 exonic single-nucleotide variants (SNVs) which we identified, 
99.8% were present in less than 1% of analyzed alleles. Comprehensive computational analyses using 13 partially orthogonal 
algorithms that predict the functional impact of genetic variations based on sequence information, evolutionary conserva-
tion, structural considerations, and functional genomics data revealed that each individual genome harbors 29.7 variants 
with putative functional effects, of which rare variants account for 18%. Inter-ethnic variability was found to be extensive, 
and 83% of deleterious SLC variants were only identified in a single population. Interestingly, population-specific carrier 
frequencies of loss-of-function variants in SLC genes associated with recessive Mendelian disease recapitulated the eth-
nogeographic variation of the corresponding disorders, including cystinuria in Jewish individuals, type II citrullinemia in 
East Asians, and lysinuric protein intolerance in Finns, thus providing a powerful resource for clinical geneticists to inform 
about population-specific prevalence and allelic composition of Mendelian SLC diseases. In summary, we present the most 
comprehensive data set of SLC variability published to date, which can provide insights into inter-individual differences in 
SLC transporter function and guide the optimization of population-specific genotyping strategies in the bourgeoning fields 
of personalized medicine and precision public health.

Introduction

The solute carrier (SLC) gene superfamily is one of two 
major human gene families encoding transporters of endog-
enous and exogenous compounds. SLCs constitute the 
second-largest family of membrane proteins in the human 

genome with over 400 proteins classified into 65 subfami-
lies based on sequence similarity (Fredriksson et al. 2008; 
Höglund et al. 2011; Schlessinger et al. 2013). Substrate 
specificity differs substantially across the various subfami-
lies. While some subfamilies, such as the carbohydrate and 
long chain fatty acid transporters of the SLC2 and SLC27 
subfamilies, transport only few physicochemically homog-
enous substrates (Anderson and Stahl 2013; Mueckler and 
Thorens 2013), transporters of the SLC22 family mediate the 
translocation of various dissimilar ions, including organic 
cations, anions, and zwitterions (Koepsell 2013). Most SLC 
transporters are equilibrative, making use of electrochemi-
cal and concentration gradients to facilitate the uptake of 
their substrates into cells. Transport mechanisms can differ 
within subfamilies, however, as seen in the secondary active 
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symporters and antiporters of the SLC4 bicarbonate trans-
porter family (Romero et al. 2013).

Due to their essential roles in the transport of a plethora 
of essential organic and inorganic substrates and the high 
number (> 100) of SLC transporters that have been asso-
ciated with human genetic disorders, SLC transporters are 
being increasingly investigated as potential drug targets. 
One prominent example is the development of blockbuster 
SGLT2 (encoded by SLC5A2) inhibitors for the treatment of 
diabetic hyperglycaemia, which was inspired by associations 
between SLC5A2 mutations and familial renal glucosuria 
(OMIM identifier 233100). Besides their role as drug targets, 
SLC transporters play fundamental roles in the disposition 
of numerous drugs, including various chemotherapeutics, 
antidiabetics, and diuretics. Given the extensive genomic 
coverage and the critical role that SLC transporters play in 
mediating drug pharmacokinetics and -dynamics (PK/PD), 
the genetic variability of SLC genes is of considerable inter-
est for human genetics, as well as for drug discovery and 
development programs.

In the last decade, seminal studies have contributed sub-
stantially to our understanding of the link between SLC vari-
ability and drug response. Prominent examples include the 
association between variants in SLC22A1, encoding OCT1, 
and pharmacokinetics and response to metformin (Dujic 
et al. 2015; Sundelin et al. 2017) and variations in SLC19A1, 
encoding the reduced folate transporter RFT, with toxicity 
of antifolate metabolites (Bohanec Grabar et al. 2012; Cor-
rigan et al. 2014; Lima et al. 2014). However, these stud-
ies were only powered to detect associations with common 
variations. Importantly, recent population-scale sequencing 
projects revealed that rare variations with minor allele fre-
quencies (MAF) < 1% greatly outnumber common variants 
in genes involved in drug absorption, distribution, metabo-
lism, and excretion (ADME) (Bush et al. 2016; Kozyra et al. 
2017; Wright et al. 2018; Zhou and Lauschke 2018). Rare 
variations are enriched in variants with functional conse-
quences and commonly have increased effect sizes compared 
to common variants when analyzed in relation to disease 
(Ingelman-Sundberg et  al. 2018; Manolio et  al. 2009). 
While the extent and functional importance of rare variants 
is becoming increasingly appreciated, SLC transporters are 
understudied (César-Razquin et al. 2015) and their genetic 
landscape remains to be systematically analyzed.

Here, we systematically mapped the genetic variability 
of the human SLC transporter superfamily by analyzing 
consolidated whole-exome and whole-genome sequencing 
data (WES and WGS, respectively) from 141,456 individu-
als across seven major populations. We profiled the SLC 
genetic variability, its functional consequences, and ethno-
geographic distribution using 13 partly orthogonal compu-
tational predictors, as well as structural mapping approaches 
using experimental high-resolution crystal structures. The 

obtained data set constitutes the most comprehensive analy-
sis of genetic SLC variability published to date and provides 
valuable insights into inter-individual and inter-ethnic dif-
ferences in transporter function with important implica-
tions for drug disposition, efficacy, and toxicity, as well as 
population-specific prevalence of Mendelian SLC diseases.

Materials and methods

Data collection and annotation

Genetic variability data of 401 genes comprising the human 
SLC superfamily were collected from the Genome Aggrega-
tion Database (gnomAD) version 2.1 (Lek et al. 2016). The 
use of these data did not require separate ethical approval, as 
the data are released under the Fort Lauderdale Agreement. 
In total, we analyzed sequencing data of 141,456 unrelated 
individuals spanning seven worldwide populations (64,603 
Non-Finnish Europeans, 12,562 Finns, 12,487 Africans, 
9977 East Asians, 15,308 South Asians, 17,720 Latinos, 
5185 Ashkenazi Jews, and 3614 from other populations). 
Variants with low confidence calls were removed. Rare 
and common genetic SNVs were defined as variants with 
MAF < 1% and MAF ≥ 1%, respectively. Copy-number vari-
ants’ (CNVs) data from 59,451 individuals were obtained 
from the Exome Aggregation Consortium and analyzed as 
previously described (Santos et al. 2018). Linkage analy-
sis was performed using LDLink (Machiela and Chanock 
2015). Disease associations for the relevant SLC genes were 
obtained from the Online Mendelian Inheritance in Man 
(OMIM) database. Deleterious variants in disease-associated 
genes were filtered for benign variants using ClinVar Miner 
(Henrie et al. 2018).

Computational functionality predictions

Missense variants were analyzed using an array of partly 
orthogonal algorithms that predict the functional impact of 
genetic variations based on sequence information, evolution-
ary conservation, structural considerations, and functional 
genomics data. Specifically, we used SIFT (Ng and Henikoff 
2001), Polyphen-2 (Adzhubei et al. 2010), Likelihood Ratio 
Tests (Chun and Fay 2009), MutationAssessor (Reva et al. 
2011), FATHMM (Shihab et al. 2012), PROVEAN (Choi 
et al. 2012), VEST3 (Carter et al. 2013), CADD (Kircher 
et al. 2014), DANN (Quang et al. 2015), FATHMM-mkl 
(Shihab et al. 2015), MetaSVM (Dong et al. 2015), MetaLR 
(Dong et al. 2015), and GERP++ (Davydov et al. 2010). 
We considered all variants that resulted in the gain of a stop 
codon, the loss of the start codon, that caused frameshifts 
or that disrupted canonical splice sites as loss-of-function 
variants.
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Structural modeling

The secondary structures of GLUT1 (SLC2A1) and ENT1 
(SLC29A1) were obtained from UniProt (UniProt IDs 4PYP 
and 6OB6, respectively). The structure of OCT1 (SLC22A1) 
was predicted using Phyre2 (Kelley et al. 2015) as no high-
resolution crystal structure for this transporter was avail-
able. Confidence and coverage scores were ≥ 100% and 80%, 
respectively. Structures were modeled using PyMOL version 
2.3.

Results

Overview of the genetic variability of the human 
SLC superfamily

Across 141,456 unrelated individuals, we identified a total of 
204,287 exonic single-nucleotide variants (SNVs) and indels 
(Fig. 1a). In addition, the data set contained 118,597 intronic 
variations; however, as these were not systematically cov-
ered, they were excluded in our further analyses. The major-
ity of exonic variants resulted in amino acid exchanges of the 
encoded polypeptide (n = 116,300; 57% of all exonic vari-
ants). The remaining SNVs included synonymous variants 
(n = 56,685; 28%) and variants in the untranslated regions 
(n = 9507; 5% in the 5’ UTRs and n = 7400; 4% in the 3’ 
UTRs). Furthermore, we identified a multitude of variants 
that result in putative loss-of-function of the gene product, 
such as frameshifts (n = 5086), stop-gain variants (n = 3384), 
and variations in canonical splice sites (n = 3050). In addi-
tion to SNVs, we found 3688 copy-number variations 
(CNVs), comprised of 2532 duplications and 1156 deletions 
(Fig. 1a). Strikingly, of the 204,287 total exonic variants, 
203,968 (99.8%) were identified as rare, with MAFs < 1% 
(Fig. 1b).

Next, we focused specifically on variants that affected the 
amino acid sequence of the encoded gene product. Among 
the subfamilies, variability was highest in the cholesterol 
transporter family SLC65 with a median of 809 variants per 
gene (n = 2 genes), followed by SLC12 chloride cotransport-
ers (604 variants per gene; n = 9) and the bicarbonate trans-
porter family SLC4 (556 variants per gene; n = 10; Fig. 1c). 
By contrast, four subfamilies harbored less than 100 vari-
ants per gene (SLC31, SLC48, SLC54, and SLC57). When 
stratifying SLC genes by substrate, variability was highest in 
genes coding for inorganic ion transporters (718 ± 228 s.d. 
variants per gene) and fatty acids (646 ± 187 variants per 
gene), whereas pyruvate transporters (230 ± 213 variants 
per gene) and metal transporters (433 ± 150) harbored sub-
stantially fewer variants (Fig. 1d). Loss-of-function variants 
were depleted in transporters of neurotransmitters, hor-
mones, choline, inorganic ions, and metals with 19–25% of 

genes being classified as haploinsufficient, suggesting high 
evolutionary constraints and reduced functional redun-
dancy in these gene families (Fig. 1e). In contrast, none of 
the genes encoding transporters of cofactors, carboxylates, 
fatty acids, protons, oligopeptides, and urea cycle metabo-
lites were found to be haploinsufficient.

Population‑specific frequencies of clinically 
important SLC variants and haplotypes

SLC transporters mediate the transport of a plethora of 
drugs, and multiple SLC variants can impact disposition, 
efficacy, or toxicity of various medications (Table 1 and 
Supplementary Table 1). Here, we analyzed the population-
specific frequencies of 31 SLC variants with clinically rele-
vant pharmacogenomic associations, mostly to antidiabetics, 
analgesics, anticoagulants, and various chemotherapeutics. 
Importantly, variant prevalence was highly population-spe-
cific and 42% of these variants (n = 13/31) differed more than 
fivefold between populations. Common variants in SLC22A1 
have been repeatedly linked to altered drug disposition and 
efficacy of metformin (Todd and Florez 2014), imatinib 
(Watkins et al. 2015), and various opioids (Tzvetkov 2017). 
Multiple variations with functional consequences, includ-
ing M420del (SLC22A1*2), R61C (SLC22A1*3), G401S 
(SLC22A1*4), and G465R (SLC22A1*5), are absent in East 
Asians, whereas they can reach frequencies up to 21.9% in 
other populations (Table 1). In contrast, L160F, which is 
associated with altered imatinib pharmacokinetics and an 
increased risk of resistance to imatinib (Cargnin et al. 2018; 
Di Paolo et al. 2014; Makhtar et al. 2018), is common in 
East Asians (MAF = 14.2%) but lowest in Africans (3.8%).

While pharmacogenetically important polymorphisms in 
the nucleoside transporter genes SLC28A1 and SLC28A2 
were common worldwide, their frequencies differed drasti-
cally between populations. Rs2242046 in SLC28A1, as well 
as the highly linked variants rs1060896 and rs11854484 
in SLC28A2 (R2 = 0.9), were least common in East Asian 
and African populations (MAF = 7.6–17.6%), whereas they 
were consistently more prevalent in all other populations 
(MAF = 20.8–65.4%). In contrast, Africans and East Asians 
were among the populations with the highest frequency of 
rs56350726, a variant in SLC28A3 implicated in improved 
outcomes and reduced toxicity of antiviral hepatitis C virus 
(HCV) therapy (Doehring et al. 2011; Rau et al. 2013), sug-
gesting potentially important implications for toxicity risk 
of nucleoside analogs used in the treatment of viral infec-
tions and various cancers. Pronounced tenfold differences 
between populations were furthermore observed for the mis-
sense variant rs17235409 in SLC11A1 that is implicated in 
treatment failure of patients with pulmonary tuberculosis to 
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isoniazid, rifampicin, pyrazinamide, and ethambutol com-
bination therapy (Salinas-Delgado et al. 2015).

The variant rs1529927 in the renal sodium and chloride 
reabsorption transporter SLC12A3 (NCC) is associated with 
increased efficacy of diuretics (Vormfelde et al. 2007) and 

was common in Europeans (MAF = 3.1–3.6%), but rare in 
all other populations studied. Similar population specificity 
was observed for the reduced function variant rs11568482 
in SLC22A8 (OAT3), which was exclusively found in 
East Asians with frequencies of 5.9%, with important 
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implications for the renal clearance of the OAT3 substrate 
cefotaxime (Yee et al. 2013). Moreover, rs16889462 in 
SLC30A8, a variant associated with increased response to 
repaglinide (Huang et al. 2010), was common in Africans 
(MAF = 10.5%) and East Asians (MAF = 8%), but rare in all 
other populations analyzed (MAF < 1%).

Genetic variants in human SLC genes are predicted 
to substantially contribute to inter‑individual 
differences in transporter function

To gauge the functional effects arising from the observed 
genetic variability beyond variants with known pharma-
cogenetic associations, we employed an array of 13 partly 
orthogonal computational algorithms. Of the 116,300 identi-
fied missense variants, 53,642 (46%) were predicted to alter 
the functionality of the respective gene product (Fig. 2a). 
Furthermore, we considered all 14,157 variants that caused 
frameshifts, the loss of a start or the premature gain of a 
stop codon or variants affecting canonical splice sites as 
putative loss-of-function variants. The highest median num-
bers of functional variants were identified in transporters 
of inorganic ions (239 variants), fatty acids (238 variants), 
and oligopeptides (216 variants; Fig. 2b). Per gene, most 
putatively deleterious variants were found in SLC12A4 (577 
variants), SLC12A3 (544 variants), and SLC65A2 (531 vari-
ants), whereas less than 25 variants were found in pyruvate 
transporters.

Each individual was found to harbor on average 6.2 
and 5.8 variants with functional effects in organic ion and 
amino acid transporters, respectively (Fig. 2c). In contrast, 

the average diploid human genome contained less than 0.1 
variants in transporters of bile acids, oligopeptides, choline, 
protons, heme, pyruvate, and various cofactors. The contri-
bution of rare variants differed considerably between sub-
strate classes. While rare variants accounted for 6%, 12%, 
and 12% of the genetically encoded functional variability 
in urea cycle, organic ion, and amino acid transporters, no 
common variants with functional effects were identified in 
transporters of pyruvate, heme, or various other substrates 
and, thus, rare genetic variants were the only cause of 
genetically encoded functional effects in these transporters 
(Fig. 2c). SLC26A11, SLC10A2, and SLC26A10 harbored 
most rare functional variants per individual, whereas least 
were found in SLC54A1, SLC54A2, and SLC51B. When inte-
grating rare and common variant data, most deleterious vari-
ants were identified in the putative ammonium transporter 
SLC42A2 (RhBG; 3 deleterious variants per individual), the 
poorly understood ion transporter SLC22A10 (OAT5; 2 vari-
ants per individual), and the highly clinically relevant drug 
transporter SLC22A1 (OCT1; 1.3 variants per individual; 
Fig. 2d). In contrast, less than 1 in 2000 individuals harbored 
a deleterious variant in SLC54A3 (0), SLC38A3 (0.0001), 
SLC54A1 (0.0005), SLC51B (0.0007), SLC25A51 (0.0007), 
and SLC30A1 (0.0009). Strikingly, when aggregating infor-
mation about genetically encoded functional variability 
across the entire SLC superfamily of genes, each individual 
was found to harbor on average 29.7 variants with putative 
functional consequences in SLC transporters of which rare 
variants accounted for 18% (5.4 rare variants per individual; 
Fig. 2e).

Genetic variability in SLC genes is highly 
population specific with important consequences 
for the predisposition to Mendelian disease

When we stratified the identified SLC variants that were pre-
dicted to affect transporter function by ancestry, we found 
that the distribution varied drastically between populations, 
with 83% of variants (n = 56,273) restricted to a single pop-
ulation (Fig. 3a). Most population-specific variants were 
identified in Europeans, whereas the lowest numbers were 
found in Finns and Ashkenazi Jews, at least in part due to 
unequal cohort sizes. Interestingly, after adjusting for cohort 
size, we found that East Asians had the largest number of 
population-specific variants with predicted functional con-
sequence, suggesting that this population might benefit most 
from population-adjusted genotyping strategies (Fig. 3b). In 
contrast, overall genetically encoded functional variability 
differed only moderately between populations with individu-
als of African (34.6 variants/ individual) and European (28.6 
variants/ individual) ancestry carrying on average the most 
and least deleterious variants, respectively (Fig. 3c).

Fig. 1   The landscape of genetic variability within the human SLC 
gene superfamily. a Overview of genetic variants across 401 SLC 
genes based on the Next-Generation Sequencing data of 141,456 
individuals from seven major populations. Of the 204,287 identi-
fied exonic SNVs, the majority resulted in amino acid exchanges. In 
addition, we identified 3688 copy-number variations (CNVs) of SLC 
genes. b 99.8% of all exonic SLC variants were rare with minor allele 
frequencies < 1% and 57.6% were only found in a single individual. 
c Box and whisker plot depicting the number of variants that affect 
the amino acid sequence of the respective gene product (missense, 
frameshift, start-lost, stop-gain, indels, and splicing variants). Note 
that the number of such variants differs drastically between genes and 
SLC subfamilies. The middle line depicts the median and the edges 
of the boxes depict the 25th and 75th percentiles. d Violin plot of 
total exonic SLC variants per gene, classified by endogenous trans-
porter substrate. White dots represent the median number of variants 
per gene, with the ends of the white boxes indicating the 25th and 
75th percentiles. Polygons represent density estimates of the data 
and extend to extreme values. e Stacked bar plot showing the frac-
tion of genes under high evolutionary constraint, with genes classi-
fied by protein substrate. Evolutionary constraint was estimated using 
the pLI score (Lek et al. 2016), with scores < 0.5 defined as little con-
straint (“Null”), scores 0.5 ≤ x ≤ 0.9 for genes for which homozygous 
loss-of-function results in a deleterious phenotype (“Recessive”), and 
scores > 0.9 defined for haploinsufficient genes

◂
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Next, we focused specifically on genes for which loss-of-
function mutations are associated with Mendelian disorders. 
Notably, the cohorts which we analyzed were sampled from 
the general population and individuals with severe congeni-
tal diseases were excluded. However, we hypothesized that 
quantification of loss-of-function carrier frequencies in the 
general population could be used as a proxy for Mendelian 
disease risk with recessive mode of inheritance. To this end, 
we aggregated frequencies of frameshifts and stop-gain vari-
ations, as well as variants affecting canonical splice sites 
removed variants previously reported to not cause disease 
(see “Materials and methods”). Overall, 109 out of 401 
human SLC genes were found to have known associations 
with genetic diseases, of which 84 were autosomal recessive 
(Supplementary Table 2).

As expected, the frequency of loss-of-function variants 
was substantially lower in disease-associated SLC genes 
compared to SLC genes that were not associated with genetic 
disease (Fig. 3d, e). To evaluate whether this approach was 
indeed suitable to identify population-specific disease risk, 
we focused on Mendelian disorders with well-established 
ethnogeographic variation. Loss-of-function of the amino 
acid transporter SLC3A1 has been associated with cystinuria 
(OMIM 220100). The disease has a worldwide prevalence 
of around 1 in 7000 neonates and has been reported to be 
most common among Jews with frequencies up to 1:2500 
individuals in certain subpopulations (Eggermann et al. 
2012). Interestingly, we found highest loss-of-function fre-
quencies of SLC3A1 in Ashkenazi Jews (0.9%), in agree-
ment with previous reports (Pras et al. 1995). Accordingly, 
one in 12,345 Ashkenazim individuals can be expected to 
be homozygous for an SLC3A1 loss-of-function variant. 
Carrier rates in other populations were > tenfold lower. 
Similarly, variability profiles of the aspartate transporter 
SLC25A13 recapitulated increased prevalence of type II cit-
rullinemia (OMIM 605814) in East Asians (Lu et al. 2005), 
with aggregated loss-of-function frequencies of 0.8%, cor-
responding to 1 in 15,625 homozygous East Asian carriers.

Lysinuric protein intolerance (OMIM 222700) is most 
prevalent in the Finnish population and has been associated 
with mutations in SLC7A7 (Torrents et al. 1999). Impor-
tantly, loss-of-function frequencies of SLC7A7 in Finns 
were more than fivefold higher than in other populations. 
Similarly, our data aligned with reported population dif-
ferences in the genetic basis of Pendred syndrome (OMIM 
274600), the most common form of syndromic genetic deaf-
ness. While genetic variation in SLC26A4 is a major cause 
of these disorders in Asia, mutations in different genes have 
been reported to be the most important factors in Western 
populations (Park et al. 2003). In agreement with these 
genetic roots, frequencies of SLC26A4 loss-of-function vari-
ants in East Asian populations were approximately sixfold 
higher than in Europeans. Based on the results, we conclude 

that the analysis of loss-of-function frequencies in the gen-
eral population can be a powerful resource to inform about 
disease risk and population-specific genetic complexity 
underlying recessive Mendelian diseases.

Structural consequences of SLC variability

To obtain mechanistic insights into the effects of SLC vari-
ability, we mapped the genetic variants to the corresponding 
3D structures of the transporter proteins. To this end, we 
focused on transporters with important roles in human physi-
ology and pharmacology for which high-resolution crystal 
structures were either available or could be modeled with 
high confidence.

The glucose transporter GLUT1 encoded by SLC2A1 
facilitates glucose uptake into erythrocytes and is the major 
glucose transporter in the human blood–brain barrier. Varia-
tions in GLUT1 can cause GLUT1 deficiency syndrome with 
an autosomal dominant inheritance pattern, which presents 
as neurological problems, developmental delays, complex 
movement disorders, and, occasionally, hemolytic anemia (De 
Giorgis and Veggiotti 2013). GLUT1 belongs to the major 
facilitator superfamily (MFS) of transporters and consists of 
two discretely folded domains, termed N- and C-domain, each 
consisting of six transmembrane helices, that are connected 
by an intracellular helical bundle (ICH) (Deng et al. 2014). 
To translocate glucose, GLUT1 undergoes structural changes 
and alternates between inwards and outwards facing confir-
mations and the ICH has been shown to play essential roles 
in this process (Yan 2013). The ICH interacts with multiple 
transmembrane domains (TMDs) of GLUT1, thereby acting 
as a latch that, in the absence of a ligand, stabilizes GLUT1 
in the outward facing confirmation (Deng et al. 2014). Upon 
ligand binding, interactions between the N and C domains are 
altered, resulting in a transition towards the inward-open state.

In total, 181 variants in GLUT1 were identified that were 
distributed across all domains of the protein, including the 
ICH (Fig. 4a). Notably, we identified rare variations in R400, 
which participates in stabilization of the interaction between 
the N- and C-terminal domains (Park 2015), as well as in 
R92, R93, R232, and E209, which form a tightly connected 
salt bridge network that controls GLUT1 state transitions 
(Galochkina et  al. 2019). In contrast, no variants were 
observed in the glucose entry pocket (N34, V69, R126, and 
Y292) or in the amino acids lining the central glucose cavity 
(S73, Q279, Q282, Q283, N288, N411, and N415). As the 
analyzed cohort was depleted of patients with congenital 
diseases, these findings suggest that GLUT1 function can be 
permissive to variations that modulate salt bridges involved 
in state transitions, whereas residues directly involved in 
glucose translocation appear more conserved.

ENT1 encoded by SLC29A1 is an essential uptake trans-
porter of nucleosides and nucleoside analogs. As such, 
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ENT1 is of tremendous pharmacological importance for the 
disposition of various antiviral and antineoplastic medica-
tions, and is itself the pharmacological target of multiple 
antiarrhythmic and antihypertensive medications (Boswell-
Casteel and Hays 2017). The organization in N- and C-ter-
minal pseudo-symmetric domains as well as the transport 
cycle of state transitions are overall similar between ENT1 
and GLUT1. However, the C-domain of ENT1 only com-
prises five instead of six TMDs (Wright and Lee 2019). In 
total, our data set contained 263 variants that affected the 
ENT1 amino acid sequence. The only common SLC29A1 
variant was rs45573936, with a frequency of 1.8%, result-
ing in an I216T amino acid substitution in TMD6 that alters 
binding affinity of the adenosine analog inhibitor NBMPR 
and has been implicated in neurological symptoms upon 
alcohol withdrawal (Kim et al. 2011). We identified rare 
variants in multiple critical residues of the central cavity 
of the transporter that likely impact substrate affinity and 
binding kinetics. These include a substitution of the hydro-
phobic methionine M33 that lines the narrowest constric-
tion point at the extracellular side (Wright and Lee 2019) 
with a charged lysine, as well as amino acid exchanges 
affecting various residues that define the intracellular gate, 
such as R111, I304, and T429 (Fig. 4b). Furthermore, mul-
tiple variants affected the residues M89, Q158, and R345 
that have been shown to directly interact with the structur-
ally heterogeneous ENT1 inhibitors dilazep and NBMPR 
(Wright and Lee 2019). We conclude that the genetic vari-
ability in SLC29A1 is extensive and multiple variants are 
highly likely to affect ENT1 pharmacology.

In contrast to GLUT1 and ENT1, no crystal structure 
of human OCT1 has yet been presented. However, struc-
ture–function relationships have been inferred from crystal 
structures of homologous fungal transporters (Pedersen et al. 
2013) and mutagenesis studies using rat OCT1 (Gorbunov 
et al. 2008; Popp et al. 2005). Here, we used the computa-
tional tool Phyre2 (Kelley et al. 2015) to predict the structure 
of human OCT1 based on multiple sequence alignments and 
homologous experimentally determined models. We could 
derive a high confidence model (100% confidence score) 
covering 82% of the human OCT1 protein sequence, which 
aligned well with the putative structure of rat OCT1 (Sup-
plementary Fig. 1).

SLC22A1 harbors eight common variants that affect 
OCT1 amino acid sequence, of which R61C, G401S, and 
G465R resulted in strongly reduced OCT1 function in vitro, 
whereas substrate-specific results have been reported for 
M420del and P341L (Choi and Song 2012; Shu et al. 2003; 
Tzvetkov et al. 2011, 2012). The function of OCT1 isoforms 
carrying V464I, L160F or M408 V was not found to be 
altered in vitro (Shu et al. 2003). Notably, M420del occurs 
exclusively together with M408 V, whereas M408 V can 
occur in isolation (D′ = 1, R2 = 0.061) (Tzvetkov et al. 2014). 
The frequencies of these common variants varied greatly 
across populations (Fig. 4c) with MAFs of the M240del 
variant ranging from 0.09% in East Asians to 21.9% in Lati-
nos and M408 V from 20.2% in Latinos to 45.4% in Finns in 
accordance with previous reports on smaller cohorts (Seitz 
et al. 2015). In total, we identified nine OCT1 variants with 
a global MAF > 0.1%, half of which were localized to TMDs 
(G38D, M420del, M440I, and G465R localized to TM1, 
TM9, TM10, and TM11, respectively) (Fig. 4c). In addition 
to these well-characterized variants, we found 445 additional 
variants that alter OCT1 amino acid sequence (Fig. 4c, d). 
Rare variations were found to affect the mechanistically 
important residues S358, R439, I446, Q447, and C450, 
which are directly involved in the coordination of cationic 
substrates, as well as F485, a residue essential for state tran-
sition during substrate translocation (Gorbunov et al. 2008; 
Pedersen et al. 2013; Volk et al. 2009). Combined, structural 
mapping of the genetic variability in physiologically and 
pharmacologically important SLC transporters supports the 
conclusion that rare, as of yet uncharacterized variants, are 
likely to have important functional impacts on transporter 
structure and function.

Discussion

SLC transporters play pivotal roles in diverse physi-
ological processes, including the uptake and disposi-
tion of nutrients, maintenance of acid-base homeosta-
sis, neurotransmission, and the elimination of metabolic 

Fig. 2   Rare genetic variants contribute considerably to the genetically 
encoded functional variability of SLC transporters. a Of the 116,300 
identified missense variants, 53,642 were predicted to alter the func-
tionality of the transporter protein. Furthermore, 14,157 variants that 
caused frameshifts, the loss of a start or the premature gain of a stop 
codon, or variants that affecting canonical splice sites were expected 
to result in a loss of protein function. b Box and whisker plot of all 
these deleterious variants (n = 67,799) per gene demonstrates that the 
complexity of genetically encoded functional variability differs dras-
tically between SLC substrate classes. c When aggregating variant 
numbers per individual, most variants were identified in transport-
ers of organic ions and amino acids. Common variants (MAF > 1%) 
are shown in light red, while rare variants (MAF < 1%) are shown in 
dark red. Percentage values within or above stacked columns indicate 
the fraction of the genetically encoded functional variability allotted 
to rare variants. Inlet dot plots depict the total rare deleterious SLC 
variants per individual per gene, with the median represented by the 
dark bar. The gene with the highest number of rare deleterious vari-
ants per substrate class is indicated above the inlet. d The aggregated 
frequency of variants that affect transporter function is plotted for the 
top 10 and bottom 10 SLC genes. Note that differences between the 
most and least variable genes exceed 1000-fold. e Across the entire 
SLC superfamily, each individual was found to harbor 29.7 variants 
that are predicted to affect the functionality of the encoded trans-
porter protein. Of this genetically encoded functional variability, 
18.7% is attributed to rare variants

◂
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products. In addition, they are involved in the disposition 
of a multitude of clinically relevant medications, rang-
ing from chemotherapeutics to antidiuretics. Their bio-
logical importance and pharmacological relevance, as 
well as their roles in numerous human diseases, render 
SLC transporters attractive drug targets. Current clinical 
applications include the targeted treatment of hyperten-
sion (inhibition of SLC12A1/NKCC2 by diuretics), dia-
betes (inhibition of SLC5A2/SGLT2 by gliflozins), gout 

(inhibition of SLC22A12/URAT1 by lesinurad), schizo-
phrenia (inhibition of SLC6A9/GLYT1 by bitopertin), and 
depression (inhibition of SLC6 transporters by serotonin-
selective reuptake inhibitors) (Lin et al. 2015). Our analy-
ses revealed that almost half of all SLC alleles associated 
with altered drug response or toxicity had frequencies that 
differed more than fivefold between populations. These 
findings have important implications for the treatment with 
SLC transporter substrates in an ethnogeographic context, 
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Fig. 3   Genetic SLC transporter variability is highly population-spe-
cific. a Of all putatively deleterious variants (n = 67,799), 83% were 
only detected in a single population. The pie chart depicts the total 
number of deleterious, population-specific variants for each popula-
tion. Values in brackets indicate the size of the cohort for the popu-
lation in question. b The number of population-specific, deleterious 
SLC variants per individual differed considerably across major human 
populations. c In contrast, only minor differences in overall geneti-

cally encoded functional SLC variability per individual were observed 
across populations. d, e Dot plots depicting the cumulative frequency 
of putative loss-of-function (LoF) variants (frameshifts, start-lost, 
and stop-gain variations, as well as variants affecting canonical splice 
sites) per gene for SLC genes associated with Mendelian diseases (d) 
as well as for non-disease-associated genes (e). Note that LoF fre-
quency of disease-associated genes is much lower than of non-dis-
ease-associated genes
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and incentivize the adoption of population-adjusted geno-
typing strategies to optimize patient outcomes.

In addition to the previously described SLC alleles, we 
identified a surprising extent of genetic complexity within 
SLC transporters. Importantly, less than 0.2% of all iden-
tified variants were found in more than 1% of alleles and 
more than half of all variants were singletons. To estimate 
the overall contribution of this plethora of rare variants to 
functional SLC variability, we used an array of 13 partly 
orthogonal computational algorithms that leverage sequence 
information, evolutionary conservation, structural consid-
erations, and functional genomics data in the prediction 
process, and have been found to perform reasonably well 
on both disease-associated and pharmacogenomic data sets 
(Li et al. 2018; Zhou et al. 2019). These analyses revealed 
that each individual genome harbors on average 29.7 puta-
tively functional SLC variants, with rare variants accounting 
for 18% of this genetically encoded functional variability. 
Notably, nearly half of all putatively deleterious SLC vari-
ants in an individual affected transporters of amino acids, 
organic ions, and urea cycle intermediates. Structural map-
ping of the portfolio of genetic variants on available crystal 
structures of the encoded proteins revealed that rare variants 
affect multiple residues that have been shown to be essen-
tial for transporter function, thus further corroborating the 
important functional roles of rare genetic variability. Besides 
variations that are directly involved in substrate coordination 
or translocation, a variety of missense variants in SLC trans-
porters are known to affect transporter function by altering 
subcellular trafficking or localization. Prominent examples 
include variants in SLC22A1 (Chen et al. 2010), SLC12A6 
(Salin-Cantegrel et al. 2011) and SLC30A5 (Thornton et al. 
2011). Notably, while these effects are difficult to infer by 
structural mapping, variant effect predictors, such as those 
used in this study, faithfully predicted localization defects 
and even outperformed specialized subcellular localization 
tools (Orioli and Vihinen 2019).

Strikingly, we found that 83% of all variants that were 
predicted to affect SLC function were population-specific. 
This degree of inter-ethnic variability is similar to other 
highly variable pharmacogene families, such as CYPs 
(Fujikura et al. 2015) and UGTs (Kaniwa et al. 2005), as 
well as to the related SLCO family of transporters (Zhang 
and Lauschke 2019). While individuals of African ancestry 
harbored most functional SLC variants in agreement with 
previous findings of greater levels of genetic diversity in 
Africans compared to non-African populations (Campbell 
and Tishkoff 2008; Tishkoff et al. 2009), the largest number 
of population-specific SLC variants was identified in East 
Asians. Interestingly, when focusing on SLC genes asso-
ciated with Mendelian disease, we found that population-
specific carrier frequency in the general population recapitu-
lated the ethnogeographic variation of various Mendelian 

disorders with a recessive mode of inheritance, including 
cystinuria in Jewish individuals, type II citrullinemia in 
East Asians, and lysinuric protein intolerance in Finns. We 
thus conclude, in agreement with previous studies (Fujikura 
2016), that NGS data of the general population can pro-
vide a suitable tool for the analysis of the genetic variability 
underlying inherited disorders. Furthermore, we argue that 
the presented data can serve as a unique large-scale resource 
for clinical geneticists to inform about population-specific 
prevalence and allelic composition of risk alleles associ-
ated with Mendelian diseases of SLC transporters. Impor-
tantly, the approach is likely not suitable for the analyses 
of diseases following a dominant mode of inheritance, as 
individuals with severe congenital diseases were excluded 
from the analyzed cohorts, resulting in an underestimation of 
dominant disease allele frequencies in our data set. Notably, 
the relatively high frequencies of loss-of-function variants 
in SLC28A1, which are associated with autosomal dominant 
uridine-cytidineuria (OMIM 618477), might be explained by 
its putatively benign nature (Wevers et al. 2019).

NGS is already widely and successfully applied in the 
diagnosis of rare monogenic diseases (Boycott et al. 2013; 
Fernandez-Marmiesse et al. 2018). However, while targeted 
sequencing panels that include multiple SLC transporters 
have been developed (Gordon et al. 2016; Gulilat et al. 2019; 
Klein et al. 2019), the incorporation of these genetic data 
into personalized pharmacogenomic recommendations and 
clinical decision-making is lagging behind. In the absence 
of feasible experimental strategies to characterize the func-
tional impact of the plethora of rare SLC variants, com-
putational methods have to be used. While such in silico 
interpretations of pharmacogenetic variants do not yet have 
sufficient accuracy to warrant direct clinical implementation 
(Zhou et al. 2018), these tools can already be used to flag 
patients with suspicious variants in key pharmacogenes for 
closer monitoring to anticipate detrimental drug response 
as early as possible. However, whether NGS coupled with 
computational pharmacogenomic analyses can indeed facili-
tate informed decision-making and provide a cost-effective 
measure to improve patient care, remains to be evaluated in 
prospective trials (Lauschke and Ingelman-Sundberg 2016, 
2018).

In summary, by leveraging consolidated NGS data from 
141,456 individuals, we comprehensively assessed the 
genetic variability of the human SLC transporter superfamily 
on an unprecedented scale. We demonstrate that SLC genes 
are highly variable and each individual genome is estimated 
to contain around 30 variants that affect SLC transporter 
function. The vast majority of variants were rare, and com-
putational analyses based on evolutionary, structural, and 
functional genomics data indicate that these rare variants 
contribute approximately 20% to the genetically encoded 
functional variability of SLC transporters. Thus, these data 
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serve as a powerful resource for the worldwide pattern of 
SLC variability and motivate the integration of comprehen-
sive NGS-based genotyping into personalized predictions 
of SLC substrate disposition and precision public health.
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