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CONSPECTUS:Microkinetic modeling based on density functional theory (DFT) energies plays an essential role in heterogeneous
catalysis because it reveals the fundamental chemistry for catalytic reactions and bridges the microscopic understanding from
theoretical calculations and experimental observations. Microkinetic modeling requires building a set of ordinary differential
equations (ODEs) based on the calculation results of thermodynamic properties of adsorbates and kinetic parameters for the
reaction elementary steps. Solving a microkinetic model can extract information on catalytic chemistry, including critical reaction
intermediates, reaction pathways, the surface species distribution, activity, and selectivity, thus providing vital guidelines for altering
catalysts.
However, the quantitative reliability of traditional microkinetic models is often insufficient to conclusively extrapolate the
mechanistic details of complex reaction systems. This can be attributed to several factors, the most important of which is the
limitation of obtaining an accurate estimation of the energy inputs via traditional calculation methods. These limitations include the
difficulty of using static DFT methods to calculate reaction energies of adsorption/desorption processes, often rate-controlling or
selectivity-determining steps, and the inadequate consideration of surface coverage effects. In addition, the robust microkinetic
software is rare, which also complicates the resolution of complex catalytic systems.
In this Account, we review our recent works toward refining the predictions of microkinetic modeling in heterogeneous catalysis and
achieving theory−experiment parity for activity and selectivity. First, we introduce CATKINAS, a microkinetic software developed in
our group, and show how it disentangles the problem that traditional microkinetic software has and how it can now be applied to
obtain kinetic results for more sophisticated reaction systems. Second, we describe a molecular dynamics method developed recently
to obtain the free-energy changes for the adsorption/desorption process to fill in the missing energy inputs. Third, we show that a
rigorous consideration of surface coverage effects is pivotal for building more realistic models and obtaining accurate kinetic results.
Following a series of studies on acetylene hydrogenation reactions on Pd catalysts, we demonstrate how this new approach can
provide an improved quantitative understanding of the mechanism, active site, and intrinsic structural sensitivity. Finally, we
conclude with a brief outlook and the remaining challenges in this field.
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kinetic analysis of multiscale catalytic systems with desired
functions such as surface coverage determination and degree
of rate control.

• Guo, C.; Wang, Z.; Wang, D.; Wang, H. F.; Hu, P. First-
Principles Determination of CO Adsorption and
Desorption on Pt(111) in the Free Energy Landscape.
J. Phys. Chem. C 2018, 122, 21478−21483.2 In this work,
an MD simulation-based f ree-energy approach was
developed to investigate the adsorption/desorption process
of CO on Pt(111) in order to resolve the controversy
between experimental observations and the traditional
calculation method. This is a robust approach to calculating
the f ree-energy changes in the adsorption/desorption
process.

• Guo, C.; Mao, Y.; Yao, Z.; Chen, J.; Hu, P. Examination
of the Key Issues in Microkinetics: CO Oxidation on
Rh(1 1 1). J. Catal. 2019, 379, 52−59.3 In this work, we
demonstrated that accurate kinetic results could be achieved
via microkinetic modeling that includes a rigorous
consideration of coverage ef fects on both adsorbates and
transition states.

• Xie, W.; Xu, J.; Ding, Y.; Hu, P.Quantitative Studies of
the Key Aspects in Selective Acetylene Hydrogenation
on Pd(111) by Microkinetic Modeling with Coverage
Effects and Molecular Dynamics. ACS Catal. 2021,
11(111), 4094−4106.4 In this work, a coverage-consistent
microkinetic modeling approach that combined DFT
calculation and AIMD with umbrella sampling was
developed and utilized to elucidate full characterization of
the reaction kinetics of acetylene hydrogenation on Pd(111)
quantitatively.

1. WHY DO WE DO MICROKINETIC MODELING?
Microkinetic modeling made its appearance by being able to
reveal quantitatively the fundamental surface chemistry that
controls catalyst performance.5−7 Quantum chemistry calcu-
lations have shown several unique advantages in studying
heterogeneous catalytic reaction mechanisms at the atomic
level, such as providing detailed information on the surface
geometries, electronic structures, and energy barriers for
elementary reactions steps. Among this atomic-scale informa-
tion, direct comparisons of the reaction barriers are often used
in explaining catalytic behavior, but the sheer quantity of this
information is not enough on its own to solve the more
significant problem of formulating a rational understanding of
the reaction mechanism. This information alone cannot be
compared with experimental observables, such as the reaction
rates, turnover frequency (TOF), and selectivity.
Microkinetic modeling, using energies obtained by density

functional theory (DFT) calculations, is often employed to
bridge the gap, providing insights into the underlying
mechanisms of heterogeneous catalytic reactions. Such micro-
kinetic calculations are in principle entirely ab initio, which
grants them the ability to mimic and predict macroscopic
reaction kinetic results under experiment conditions while
providing comprehensive and quantitative conclusions regard-
ing reaction mechanisms. Early works by Norskov and co-
workers have shown that insights from microkinetic modeling
can serve as the basis for identifying new material compositions
and atomic-scale architectures with improved catalytic activity
and selectivity.8−12 To build a reliable microscopic kinetic
model, an accurate estimation of the energy inputs is required.

However, there are several major caveats of the traditional
approaches to energy calculations, causing a lack of
quantitative accuracy vis-a-̀vis experimentally obtained reaction
kinetics: (i) To improve the model prediction, it is imperative
to have a comprehensive and accurate set of energy inputs.
However, the traditional calculation method has certain
limitations. For example, it is difficult to accurately calculate
the energetics of the adsorption/desorption process, which
may be the rate-determining step or the key to elucidating
product selectivity. (ii) Experimentally measurable reaction
rates and TOF values are also closely related to surface
coverages. Previous works by Li and co-workers and Norskov
and co-workers have proven that a lack of consideration of
surface environment effects, i.e, adsorbate-induced coverage
effects, fails to describe the complex catalytic reactions.11,13−15

The resulting model predictions often show a mismatch of
several orders of magnitude when compared to experimental
data.3,4,16,17 Hence, a more comprehensive consideration of
coverage is desired to align the model more closely to
experimental conditions. Furthermore, there is still room for
improvement in the current microkinetic modeling package
when dealing with multiscale or complex systems.1,18,19

In this Account, we summarize our recent works on
achieving theory−experiment parity in heterogeneous catalysis
via mean-field microkinetic modeling. Specifically, we
introduce a robust multiscale microkinetic modeling software,
CATKINAS, developed by our group, which is a free-energy-
based framework for obtaining free-energy barriers of the
adsorption/desorption process, and a simply approach to
incorporating a coverage effect to yield kinetic results with a
more physically accurate description of catalytic systems.
Subsequently, we show how to develop a generic strategy for
building detail-rich microkinetic models. We present the
general ideas and working principles of this strategy and
demonstrate it with an inclusive example of selective acetylene
hydrogenation on Pd(111). We demonstrate that good
agreement can be achieved with the experiments regarding
activity and selectivity. Furthermore, we explore the
application of this approach to a quantitative understanding
of the mechanism, active site, and intrinsic structural sensitivity
of acetylene hydrogenation over Pd catalysts. Drawing on these
examples, we strive to convey the advantages of a systematic
and integrated approach that combines coverage-dependent
DFT calculations, ab initio molecular dynamics (AIMD)
simulations, and microkinetic modeling to incrementally
improve the atomic-scale picture of important heterogeneous
catalytic reactions.

2. CATKINAS: MULTISCALE CATALYTIC
MICROKINETIC ANALYSIS SOFTWARE

One of our research foci has been developing next-generation
microkinetic analysis software. In the early stage, microkinetic
models were built in a case-by-case fashion, and numerical
methods were utilized to solve specific problems.20,21 Recently,
several microkinetic modeling programs were developed to
break the limitations, including CatMAP, mkmcxx, and
Micki.22−24 Each of these programs has its own attributes
and has proven useful in many systems. However, concerns
such as the stiffness problem of solving ordinary differential
equations (ODEs) in more complex systems remain
challenging.18,19

CATKINAS (Catalytic Microkinetic Analysis Software,
accessible at https://www.catkinas.com), as shown in Figure
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1a, is multiscale catalytic microkinetic modeling software
designed for automated reaction mechanism analysis and
catalyst screening. Developed by our group, it has already
demonstrated its power in building complex microkinetic
simulations of catalytic reactions, and it satisfies the need for
robustness and accuracy. Here we present a succinct
introduction of CATKINAS’s advantages, including the
following. (i) It possesses a multilevel solver in the core
module of CATKINAS, which integrates multiple novel root-
finding algorithms (SSIA,18 PNEWCS, and RIM19) and
invokes these methods in a sequence to ensure the accuracy
and speed of solving ODEs to achieve steady-state results. The
SSIA algorithm developed by our group disentangles the
problems associated with microkinetic software based on a
modified Newton method, which rely excessively on initial
guesses and often fail to converge for complex systems, or a
pure ODE time-integration method, which is extremely
memory-intensive and time-consuming because of the small
step size.18 The efficiency of SSIA is benchmarked against
Newton’s method in Figure 1b, where the convergence ability
of both methods was tested with 1000 linear and 1000
exponential initial coverages for the CO oxidation reaction,
and Figure 1c, where the solution time of both methods was
tested with 100 sets of initial coverages from ammonia
synthesis. (ii) The embodied result analysis function in
CATKINAS, a variety of sensitivity analyses such as DRC,25

can be performed from multiple perspectives to identify which
step, coverage of the adsorbants, and reaction conditions have
the most impact on the total reaction rate, providing a
direction for the optimization of the catalyst’s performance.

(iii) It is user-friendly. CATKANS is out-of-the-box-style
software with instant usability that only requires users to adjust
the input file to describe their reaction of interest. In addition,
automatic data visualization, including the reaction rate,
surface coverage distribution, reversibility, reaction network,
and energy profile, provides a better understanding of the
microkinetic process and results.1

Our group has used CATKINAS to elucidate many vital
catalytic reactions including photocatalysis,26,27 electrocatal-
ysis,28,29 heterogeneous catalysis,3,4,16,17 and advancing catal-
ysis theory and to provide more in-depth insights into
experimental observations.

3. KEY ISSUES IN IMPROVING THE ACCURACY OF
MICROKINETIC MODEL PREDICTIONS

Reactions in heterogeneous catalysis can be generalized to
adsorption, surface reaction, and desorption, as shown in
Figure 2. The key to formulating a conclusive microkinetic
model is to obtain accurate first-principles energy inputs
including adsorption/desorption energies and reaction barriers.
Thus, improving the microkinetic model predictions requires
more quantitative details from the elementary steps to achieve
theory−experiment parity. In this Account, two recent works
from our group, which are vital to adding more details to the
microkinetic model and providing a better understanding of
heterogeneous catalysis, are discussed below. The first one is
the determination of adsorption/desorption barriers in a free-
energy landscape, and the second one refers to how to better
incorporate the coverage effect to restore a more realistic

Figure 1. (a) Introduction of CATKINAS, including the multilevel solver that ensures quick and high-reliability convergence. (b) Convergence
probabilities of the traditional damped Newton method and the SSIA method starting from linear initial solutions and exponential initial
solutions.18 (c) Average time used and successful rate for solving the ammonia synthesis system by the traditional damped Newton method and the
SSIA.18 Adapted with permission from ref 18. Copyright 2021 AIP Publishing.
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surface model and yield a quantitative description of reaction
energies under realistic conditions.
3.1. First-Principles Determination of Adsorption and
Desorption Processes

For traditional first-principles calculations, it is difficult to
determine the reaction energy barrier of the adsorption/
desorption process because entropies play an important role in
the barrier. The traditional way of using the total energy with
thermodynamic correction is based on approximations that
ignore translational motions on the surfaces and can cause
considerable errors.2 The Hertz−Knudesn equation based on
collision theory was also adapted to approximate the
adsorption/desorption barrier;30 however, the sticking coef-
ficient from the equation needs to be determined exper-
imentally for different surfaces and is highly temperature-
dependent, which makes it difficult for general use. Because of
the challenging nature of this problem, the adsorption process
was habitually treated as an equilibrium31,32 and the desorption
barrier was approximated as the chemisorption energy,33 which
could lead to unpredictable errors, especially when the product
selectivity was on the table because the desorption barrier
often directly links to the selectivity analysis.
Our recent study illustrated the adsorption/desorption

processes in the free-energy landscape using AIMD with
umbrella sampling.2 Using the CO adsorption on Pt(111) as
an example, we found that the results from the traditional total

energy calculations might be substantially different from those
from the free-energy-based simulations. Although CO
adsorption on Pt(111) is one of the most studied catalytic
systems and is the rate-determining step in a number of key
reactions systems, there is still a long-standing debate on the
adsorption structure. The traditional DFT calculation
indicated that the adsorption energy on the hollow site is
stronger than that on the top site, which is inconsistent with
the experimental results. This is known as the “CO puzzle”.34

In previous works, the puzzle was solved when using a hybrid
functional such as PBE035 or adapting the random phase
approximation (RPA)34 or the GGA+U approach.36 It is worth
mentioning that these methods for obtaining the correct
adsorption site are still static calculations performed at 0 K, but
in a real system, all of the atoms are constantly vibrating, even
at 0 K. Therefore, it is important to include surface atomic
motion and enthalpy data in order to achieve more reliable
results.37 The key characteristic of the AIMD with umbrella
sampling method is that by including the atom motions it can
directly give rise to the free energy at each reaction coordinate
along the adsorption process, and it takes statistical
fluctuations into consideration. One of the advantages of the
MD simulation-based approach is that the temperature effect is
naturally incorporated; we can map out the energy change in
the free-energy landscape and thus obtain the adsorption/
desorption energy instead of using a static calculation with

Figure 2. Schematic representation of the reaction steps in a general reaction in heterogeneous catalysis and the three key approaches our group
adapted (green) in building a microkinetic model, including solving the issues of reaction barriers in the adsorption/desorption steps and coverage
effect in surface reaction steps. Some microkinetic results from different approaches are listed.
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thermodynamic adjustments. Furthermore, the results allow us
to calculate the energy barrier of the adsorption/desorption
from the detailed changes in free energy. In the CO adsorption
example, the free-energy analysis reveals that CO prefers to
adsorb on the top site (−1.14 eV free chemisorption energy)
rather than on the hollow site (−1.00 eV), which is consistent
with experimental observations as shown in Figure 3. Notably,

this new method of obtaining the barriers can be easily applied
to other systems, especially to those involving the liquid
phase.38−40 In addition, we will elaborate more on how this
method was used to help achieve theory−experiment parity for
the C2H4 selectivity in the example of C2H2 hydrogenation on
Pd in Section 4.
3.2. Surface Coverage Effect

The other challenge to improving the microkinetic prediction
is to obtain accurate DFT energy inputs for surface reaction
steps, as shown in Figure 2. Energy calculations conducted on

a clean surface with only a partial or no surface environment
considered may not fully capture the complexity of the real
reaction.41−43 Although the resulting microkinetic model can
have sound qualitative predictability, it is only a half-way
solution to obtaining theory−experiment parity because of its
intrinsic limitation. The fundamental issue of the surface
coverage effect was examined for the example of the CO
oxidation reaction on Rh(111).3 The TOF calculated in the
previous theoretical study was around 10−1 s−1 using
microkinetic modeling without considering the coverage effect,
which is a few orders of magnitude lower than the
experimental results of 102−103 s−1.44 In this work, the
coverage effect was thoroughly studied, and the self- and cross-
adsorbate−adsorbate interactions were calculated for both the
adsorbates and transition states. In general, for each coverage
and each type of interaction, all possible configurations were
calculated, and the structure with the lowest energy will be
used to establish the linear relationship between the coverage
effect and chemisorption energies. An example of the self-
adsorbate−adsorbate interaction of O is illustrated in Figure 4.

Furthermore, to achieve qualitative reconciliation, we have
included several energy corrections: (i) energies derived from
DFT calculations are at 0 K in temperature, and a
thermodynamic correction need to be included to meet the
experimental conditions;45,46 (ii) VASP DFT-PBE calculations
do not perform well for gas-phase energies;36,47 therefore, all of
the gas-phase molecules are calculated using Gaussian with

Figure 3. (a) “CO puzzle”, the controversy between the
experimentally observed CO adsorption site (top site) of Pt(111)
and the hollow site suggested by conventional DFT predictions. (b)
Free energies of CO adsorption and desorption from the Pt top site
(purple) and the hollow site (green) at a temperature of 300 K. (c)
Comparison of the adsorption energies calculated from traditional
DFT with thermodynamic adjustment and the free-energy simulation.
The results from the newly developed AIMD method match the
experimental observation. Adapted with permission from ref 2.
Copyright 2018 American Chemical Society.

Figure 4. Structural illustrations of calculating the adsorbate−
adsorbate self-interaction of O on a (3 × 3) Rh(111) surface at
coverages from 0.11 to 1.00 ML.
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B3LYP and the 6-311G basis set; and (iii) intermolecular
interactions such as the van der Waals forces may need to be
considered.46,48 We have made these adjustments and
examined their effects on the theoretical reaction rates
obtained by the microkinetic modeling compared with the
experimental value, and we have concluded that the coverage
effect is one of the most pivotal issues for obtaining accurate
kinetic results. If both the self- and cross-interactions for
adsorbates/transition states were considered, the TOF of CO
oxidation on Rh(111) was calculated to be 3.2 × 103 s−1, which
is only 1 order of magnitude higher than the experimental
results. With the additional corrections added to the
microkinetic modeling, the TOF was calculated to be 8.2 ×
102 s−1, which is very close to the experimental result of 5.6 ×
102 s−1. This work laid an essential foundation for our
subsequent studies of coverage effects on various complex
reaction systems.

4. CASE STUDY: SELECTIVE ACETYLENE
HYDROGENATION ON PD CATALYSTS

Hydrogenation reactions are among the most important classes
of reactions, of which the hydrogenation of acetylene to
ethylene is an important one with many applications, for
example, in the production of polymers. The reaction occurs
via a Horiuti−Polanyi mechanism, where C2H2 adsorbs first
and is sequentially hydrogenated on metal surfaces. Herein, we
present an overarching example of our approach to quantitively
examine the catalytic performance of Pd catalysts on acetylene
hydrogenation, starting with a coverage-independent model,
progressing to a coverage-dependent model, and calculating
the key desorption steps with AIMD to obtain a microkinetic
model that achieves theory−experiment parity. A schematic

representation of the workflow we used to investigate the
acetylene hydrogenation on Pd(111) is shown in Figure 5.

4.1. Coverage-Dependent Microkinetic Model

For complex reactions, calculations of all of the cross-
interactions between the transition states and different
adsorbates, to consider the coverage effects as thoroughly as
previously mentioned, would require extensive computational
and time costs. However, the microkinetic results are
predominantly affected by the most abundant surface
adsorbates, and once these have been identified, we can
conduct coverage-dependent calculations between all adsor-
bates and major adsorbates for an efficient representation of
the surface coverage effect. One feasible way to identify the
major adsorbates is to perform a coverage-independent
analysis. As seen in Figure 5b, the coverage-independent
microkinetic simulation results in a wholly poisoned surface
and a TOF value that is many magnitudes lower than the
experimental one. This means that the overly adsorbed C2H2
entirely blocks the reaction, suggesting that C2H2 will become
one of the main adsorbates on the surface. From the coverage-
independent energy profile in Figure 5a, C2H3 exhibits a larger
adsorption energy, and the second hydrogenation step is
kinetically hindered, making it a candidate for a major surface
adsorbate. In addition, the H atom, because of its relatively
small atomic size and strong adsorption on the surface, will be
considered to be the last major adsorbate in our coverage-
dependent study, which is also consistent with what was
observed experimentally.49,50

To perform coverage-dependent microkinetic modeling, we
first introduced a two-line model to quantify how the coverage
effect between adsorbates and major adsorbates affects the
chemisorption energies and reaction barriers. The reason for
using the two-line model is the linear nature of the differential

Figure 5. (a) Schematic representation of the workflow adopted in our self-consistent and coverage-dependent microkinetic modeling approach to
achieving theory−experiment parity on selective acetylene hydrogenation on Pd(111). Information from the coverage-independent model was used
to select the major surface adsorbates for calculating coverage-dependent energies. Each self- and cross-interaction between an adsorbate and major
adsorbates was calculated. An iterative approach was used with CATKINAS to reach steady state. The desorption barrier of ethylene, a key reaction
step that is hard to calculate with traditional methods, was determined by AIMD with umbrella sampling, which adds more critical details to our
kinetic model. (b) TOF results of ethylene formation and (c) ethylene selectivity based on the coverage-independent model, coverage-dependent
model, and comparison with the experimental value at 300 K. Adapted with permission from ref 3. Copyright 2021 American Chemical Society.
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chemisorption free-energy-coverage relation11,14 and distinct
impact level in the low- and high-coverage regions.4,16 The two
lines describe the influence of adsorbate−major adsorbate
interactions at different surface coverages. Once all of the
interactions are established using the two-line model, we can
obtain the value of the differential chemisorption energy of the
target adsorbate under any coverage with any arbitrary
distribution of major adsorbates using the following equation
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where θ, θj, i, and j represent the total coverage, the coverage of
adsorbate j, target adsorbate i, and major adsorbates j,
respectively. a and b are the two parameters (slope and
intercept) of the two-line model; a and b are used to describe
the linear relationship in the low-coverage region, and a′ and b′
are for the high-coverage region. ai/j is a measure of the extent
to which the coverage of major adsorbates j affects the
differential chemisorption energy of target adsorbate i if the
coverage of j is increased. θc is the critical point separating the
low coverage from the high coverage.
With the help of CATKINAS, a coverage self-consistent

approach was adapted to achieve steady state for the reaction
system. The iteration, shown in Figure 5, starts with a guessed
initial distribution and updates the inputs depending on the
convergence, determined by the difference between input and
calculated coverage. Once all of the coverages have converged
to a defined level, steady state is achieved. Using the self-
consistent microkinetic model, the coverage-dependent TOF
was calculated to be 1.4 s−1 [ln(TOF) = 0.35] at 300 K, which
is very close to the experimental result of 2.66 s−1 [ln(TOF) =
0.98], shown in Figure 5b. The total surface coverage at steady
state was 0.79 ML, containing 0.26 ML of C2H2, 0.34 ML of
C2H3, and 0.19 ML of H, and the coverage of free sites was
0.21 ML, which is a more reasonable result. The microkinetic
analysis also shows that the most abundant adsorbate on
Pd(111) is C2H3 because the chemisorption free energy of
C2H3 is comparatively higher than others under high-coverage
conditions, and the C2H3 hydrogenation is unfavored kineti-
cally.
This example illustrates the importance of incorporating the

adsorbate−adsorbate interactions for adsorption and thor-
oughly calculating the adsorbate−transition state interactions
and using the self-consistent coverage microkinetic model to
bridge theoretical results with experimental data. In this step,
the desorption process has been treated as equilibrium. To
provide more rigorous kinetic results, particularly in terms of
selectivity, an accurate calculation of the free-energy
desorption barrier is critical.
4.2. First-Principles Determination of the C2H4 Desorption
Process

As Studt et al. reported, to achieve the excellent selective
hydrogenation of acetylene, the desorption barrier of ethylene
for an ideal catalyst should be smaller than the hydrogenation
barrier of ethylene.51 In the traditional model, the desorption
process had been treated as occurring at equilibrium or has
been estimated using the chemisorption energy as described in
Section 3.1; however, both attempts lead to unreliable kinetic

results compared to the 87.9% experimental ethylene
selectivity on Pd(111) achieved by Li et al.24 The desorption
barrier is not explicitly included if the process is estimated to
occur at equilibrium, and incorporating this result into the
microkinetic model developed in Section 4.1 leads to very high
ethylene selectivity (99.7%). The second approach approx-
imates the chemisorption energy of ethylene (−1.0 eV) as the
reaction barrier; such a high desorption barrier tends to
drastically shift the overall reaction in the direction of
sequential hydrogenation, resulting in a less than 10% ethylene
selectivity. Therefore, the ethylene desorption barrier is
determined to be key to delivering more rigorous selectivity
results and need to be accurately calculated.
In this work, the desorption barrier of ethylene was

determined by AIMD with umbrella sampling as described in
Section 3.1, which adds more critical details to the micro-
kinetic modeling.39,40,52 A series of MD simulations were
conducted on the Pd(111) surface with the round-up surface
distribution (e.g., on a 4 × 4 surface, two C2H2 molecules are
placed on the surface to achieve a 0.25 ML coverage) obtained
from steady state in Section 4.1. The umbrella sampling with
the weighted histogram analysis was used to determine the free
desorption barrier,2,40,52 and it was calculated to be 0.59 eV at
300 K with a surface coverage of 0.79 ML. After factoring in
the newly obtained desorption barrier of ethylene, the
selectivity result was calculated to be 89% by our microkinetic
model, which is in good agreement with the experimental
result of 87.9% under the same conditions, as shown in Figure
5c.24

Therefore, we have walked through our strategy of
combining static information from the rigorously conducted
coverage-dependent first-principles calculations and dynamic
results derived from AIMD to fully capture reaction details for
quantitative microkinetic analysis and to achieve theory−
experiment parity. Moreover, techniques such as the degree of
rate control and sensitivity analysis can be applied to this
model to reveal significant mechanistic insights. For example,
on the basis of the sensitivity analysis, both the desorption
barrier of ethylene and the further hydrogenation barrier of
C2H4* have significant impacts on the selectivity of ethylene,
but the change in the ethylene desorption barrier was found to
have a more pronounced impact.4

4.3. Structural Sensitivity of Pd Catalysts

Another interesting issue in the system is the structural
sensitivity, namely, the catalytic performance of the different
active sites in terms of activity and selectivity.53 The structural
sensitivity of catalysts is one of the most fundamental issues in
heterogeneous catalysis, and the activity/selectivity of the
acetylene hydrogenation reaction is known to be structure-
sensitive. In some cases, Pd was reported to exhibit
considerable selectivity toward ethylene, while other studies
showed that Pd primarily promotes the production of ethane.
This may be a result of surface defects. In the work of Molero
et al.,54 the ethylene selectivity on Pd was about 30%; in the
work of Li et al.,55 the ethylene selectivity was 87.9% on a Pd
surface with 95% Pd(111) and 5% Pd(100). These divergent
performances of Pd-based catalysts suggest that there is
significant room to improve the understanding of the
fundamental factors that control the activity and selectivity
of acetylene hydrogenation.26 However, previous theoretical
studies were still limited to simple comparisons using the
adsorption energy or reaction barrier to determine the
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selectivity of different active sites and were unable to provide
quantitative analysis.
With the confidence achieved by our coverage-dependent

microkinetic modeling approach to the acetylene hydro-
genation reactions on Pd(111) and motivated by the previous
experimental differences, we further studied the structural
sensitivity of Pd catalysts to provide a solid understanding of
the structure effect on selectivity and activity at the atomic
level. A rigorous coverage-dependent calculation was per-
formed to obtain reaction energies, and AIMD was used to
determine the desorption barrier of ethylene on Pd(211). It is
found that both activity and selectivity toward ethylene are
highly structurally dependent; our simulations show that
Pd(211) is much more active than Pd(111), as shown in
Figure 6c. On the other hand, the strong chemisorption energy
limits the selectivity on Pd(211) (Figure 6a,c). After obtaining
the self- and cross adsorbate−adsorbate interactions, TOF
from the coverage-dependent model was calculated to be 3.9
s−1 [ln (TOF) = 1.37], which is higher than both the TOF
from Pd(111) and the experimental results obtained from a Pd
catalyst (which may contain different active sites). The
desorption barrier of ethylene on Pd(211) was calculated to
be 0.57 eV at steady state, although it was smaller than the
desorption barrier (0.59 eV) of ethylene on Pd(111), and the
selectivity toward ethylene (<20%) is much lower on the
Pd(211) surface because of a significantly lowered C2H4* +
H* ↔ C2H5*+* barrier. The microkinetic modeling suggests
an almost inverse correlation between catalytic activity and
selectivity based on the results from different active sites. The
vastly different activity and selectivity results reported in the
literature, even for catalysts that are nominally the same, can be
rationalized as the variation in the active sites distribution
because real catalysts will contain Pd(211)-like and Pd(111)-
like surfaces. In addition, the overall coverage effects on
Pd(211) are less influential than that on Pd(111) because of
the geometric effect of the stepped surface; most adsorbates
adsorb on the step edge on Pd(211), which makes them less
impacted by the coverage effect, as can be seen in Figure 6b.
However, because C2H2 adsorbs on the stepped B5 site, it is
still heavily influenced by the coverage effect; an exclusive
coverage dependence is necessary for obtaining quantitative
results. Overall, this work on Pd(211) via microkinetic
modeling proposed an atomic-level explanation for the
differences in catalytic activity and selectivity reported in
various studies in the literature and provided the opportunity
to improve the performance of Pd-based catalysts, which are
highly structure-dependent.
Using the case of selective acetylene hydrogenation on Pd

catalysts, we demonstrated the strategy of developing a
coverage-dependent microkinetic model formulated in our
group. It speaks to the importance of developing coverage-
dependent microkinetic modeling to decipher the essential
surface chemistry involved in the catalytic reaction. Rigorously
calculating the coverage effect and the adsorption/desorption
process (i) yielded theory−experiment parity through
theoretical and numerical methods and (ii) provided valuable
insights into reaction pathways and determining key kinetic
paraments and structural sensitivity of the reactions systems,
which were critical to the understanding of the experimental
results and reaction mechanism.

5. PERSPECTIVES AND CONCLUSIONS
We have reviewed our comprehensive apporach that
incorporates surface coverage effects in mcirokentic modedling
to achieve theory-experiment parity. There are still many
unexplored challenges and opportunities in the field of
microkinetic modeling. The methodologies we developed
have only been tested on model surfaces and that there is a
“material gap” between simulations and experiment. The level
of accuracy in the cases studies might not be general, partially
due to error cancellations in the kinetic simulations when
coverage effects are included. However, the mismatch in
microkinetic modeling often vary by many orders of magnitude
from experimental work if the aformentioned corrections like
surface coverage effect and key adsorption/desorption process

Figure 6. (a) Adsorption energies and free adsorption energies of
C2H2 and C2H4 on Pd(211) and Pd(111). (b) Side views of C2H2
and C2H4 adsorption geometries on Pd(211) and Pd(111). (c)
Comparison of the calculated TOF and selectivity results from the
coverage-dependent microkinetic model and the experimental data
from Molero et al.54 of ethylene production from acetylene
hydrogenation over Pd(111) and Pd(211) at 300 K. Adapted with
permission from ref 37. Copyright 2021 Royal Society of Chemistry.
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are not considered. We believe such approach have the
potential to deliver improved quantitative accuracy in
computational catalyst discoveray and reveal important
mechanistic detials influencing catalystic performance. It is
also worth noting that all of the microkinetic models
mentioned in this Account are based on the mean-field
approximation. Other formalisms such as kinetic Monte Carlo
(KMC) simulations can also be adopted.56−59 The total rates
obtained from the microkinetic models are based on the
steady-state approximation, which may be different from the
experimental kinetics that typically represent an integral over
all stationary points of the reactor. Other selected challenges
for further development in mcriokentic modeling are
summarized here:

5.1. Complexed Surfaces

We are constantly trying to develop catalyst models that are
better suited to the actual reaction conditions and obtain more
accurate energy inputs for microkinetic modeling. Our works
mentioned in this Account are primarily on the ideal
monometallic surfaces, which are more conducive for us to
focus on. We have added a few simple bimetallic alloys in our
recent attempts at the direct synthesis of H2O2 over transition
metals.17 Some of the methodologies mentioned here are yet
to be employed in more sophisticated applications. More
specifically, building plausible microkinetic models on metal
oxides, designing single-site/atom catalysts, and constructing
more complex metal−support interfaces (e.g., γ-Al2O3-
supported catalysts)60 and nanoparticles with multiple active
sites are yet to be investigated.

5.2. Improving the Accuracy of Energy Calculations

There are several ways to improve the quality of the involved
first-principles calculations. One way of achieving better
accuracy is by switching to more advanced functionals. Recent
developments in functionals, e.g., vdW-DF2, BEEF-vdW,
HSE06, RPA, etc., enable us to discern our position on
Jacob’s ladder.61−64 Choosing the right one may substantially
contribute to the energy calculations. For energy corrections,
as mentioned in Section 4.2, the traditional quantum-harmonic
approximations of correcting the total energy to the free energy
failed to describe certain key reaction steps and may often
underestimate the entropy of weakly bonded reactants, so
methods such as AIMD can be adopted to obtain the free
energy.52

5.3. Machine Learning

The utilization of machine learning seems to be a promising
way to improve the inputs in microkinetic models.65 For
example, calculations based on ideal surface models are often
unable to represent the compositional variability and the
associated complexity in these distorted amorphous structures.
One possible way to solve surface reconstruction during
reactions is to build potential energy surfaces (PES) via neural
networks. Xu et al. proposed an on-the-fly machine learning
method to accelerate AIMD simulations for adsorption energy
estimations.66 Chen et al. applied the neural network potential
and the genetic algorithm to identify the most stable
configuration of Au@Pt, which is a common electrocatalytic
system.67 Li et al. studied the Pd−Ag−H system for the
acetylene hydrogenation reactions using the global neural
network potential.68 Constructing an accurate PES can be
time-consuming and resource-intensive, but the rapid develop-
ment of machine learning has provided a possible pathway for

building microkinetic models on more complex or amorphous
surfaces.
In this Account, we demonstrated the approach of using

CATKINAS with coverage-dependent energy calculations and
an advanced simulation method such as AIMD; we can unleash
the full potential of microkinetic analysis even on complex
reaction systems. Moreover, by providing a qualitative
determination along with accurate quantitative metrics, this
methodology can percolate into the process of catalyst
screening and can be applied to other systems in heteroge-
neous catalysis to guide the rational design of novel catalysts.
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