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Two of the most salient phenotypes of aging are cognitive decline and loss of motor
function, both of which are controlled by the nervous system. Cognition and muscle
contraction require that neuronal synapses develop and maintain proper structure and
function. We review the literature on how normal physiological aging disrupts central
and peripheral synapse function including the degradation of structure and/or control of
neurotransmission. Here we also attempt to connect the work done on the epigenetics of
aging to the growing literature of how epigenetic mechanisms control synapse structure
and function. Lastly, we address possible roles of epigenetic mechanisms to explain why
the basal rates of age-related dysfunction vary so widely across individuals.
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Introduction

Synapses are the functional unit that processes signals between neurons, and between an
innervating motor neuron and its target muscle. Neurotransmitter release at the synapse is
required for planning and executive function, memory formation and recall, motor behavior,
hormone release, and virtually every organismal function that feeds back into the central nervous
system. Modulation of synaptic strength is heavily implicated in the persistence of memory and
general cognitive functions. The synapse is a particularly interesting target for the effects of aging
on nervous system function. The structure of the synapse is complex and many synapses must be
maintained throughout the life of the animal. Additionally, the composition of ion channels at
both pre- and post synaptic terminals is highly heterogeneous, crucial for function, and may cause
synapse malfunction if altered. Lastly, synaptic dysfunction could affect neuroendocrine signaling.
Coordination of synaptic vesicle release requires the neuron to maintain proper synaptic structure,
membrane excitability and neurotransmission, as well as integrate retrograde signals from the
post-synaptic terminal. Defects in these complex processes have been implicated in many diseases
including Alzheimer’s disease (AD), and Parkinson’s disease (PD), which both feature a strong
aging-associated risk component (Hebert et al., 2001; Levy et al., 2002).

Here we review the growing literature on the contribution of one hallmark of cellular
aging—epigenetic alterations- on neuronal aging, with a strict focus on synaptic structure
and function during non-pathological aging. The effects of adult onset neurodegenerative
disease on synapse function have been extensively reviewed elsewhere (Wishart et al., 2006;
Gillingwater and Wishart, 2013). We use ‘‘epigenetics’’ broadly referring to stable and
heritable changes in gene expression that can be transmitted across cell divisions without
DNA mutations. Major mechanisms of epigenetic control include DNA CpG methylation,
histone modifications (acetylation and methylation), deposition of alternative histones, and RNA
silencing. Aging organisms undergo genome-wide DNA CpG demethylation across their tissues,
leading to wide transcriptional induction. Histone methylation and acetylation have also been
reported to change with age (Calvanese et al., 2009). These changes are associated with various
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disease states, such as a cancer (Esteller et al., 2001). Proper
synaptic function requires tight co-regulation of many genes,
making epigenetic dysfunction an attractive candidate to explain
age-associated declines in the nervous system. The growing
recognition of neuroepigenetics has been previously reviewed
(Sweatt, 2013). Here we will attempt to link what is known about
epigenetic regulation in the nucleus, to non-pathological aging-
related dysfunction of the synaptic terminal.

Synaptic Structure and Aging : Central and
Sensory Synapses

Central Synapse Structure is Altered by Aging
A substantial body of evidence supports the idea that aging
disrupts synaptic connections in the central nervous system.
Synapses may be completely lost in some contexts and the
evidence strongly points at synaptic loss being a key feature
of general brain aging as well as a hallmark of AD pathology
(DeKosky and Scheff, 1990; Cabalka et al., 1992; Masliah et al.,
1993; Scheff and Price, 2001; Coleman and Yao, 2003). In
humans, there is support for an association between age related
mild-cognitive impairment and loss of synapses and there is
evidence in rodents as well (Coggan et al., 2004; Scheff et al.,
2006; Canas et al., 2009; Richard et al., 2010). In some tissues,
loss of postsynaptic dendritic spines has been implicated as the
primary mechanism of synapse loss (Feldman and Dowd, 1975;
Geinisman et al., 1992; de Brabander et al., 1998). Changes in
synaptic structure and synapse loss with age by neuroanatomical
region have been thoroughly reviewed (Petralia et al., 2014)
and the evidence is robust. A recent study found that age-
dependent declines in cognition and memory may best be
explained as a decline in synaptic stability (Grillo et al., 2013).
Grillo and colleagues used two-photon microscopy and semi-
automated image processing to analyze synapse structure across
age. They found that as age increases, there is a loss of ‘‘synaptic
tenacity’’ driven by increases in the rate of bouton loss and
remodeling.

Age-dependent changes to synapse structure have been
studied in other model organisms as well. In C. elegans, animals
show an age-dependent increase in a number of dendritic
defects of sensory neurons, including ectopic branch points,
which is predicted to alter synaptic connectivity (Toth et al.,
2012). Intriguingly, in Drosophila sensory neurons the change is
opposite of that seen in C. elegans, with fewer branch points as
age increases (Corfas and Dudai, 1991). Thus the synapse may be
an Achilles’ heel that is vulnerable to aging across all metazoan
taxa.

Histone Acetylation and Central Synapse
Structure
New evidence suggests that epigenetic alterations during aging
may be driving central synapse loss and alterations in structure.
Modulating the expression level of histone deacetylase 2
(HDAC2) has been shown to cause changes in synaptic structure
of the CA1 pyramidal neurons of the mouse hippocampus (Guan
et al., 2009). Overexpression of HDAC2 led to a reduction in the
number of spines as seen through Golgi staining and decreased

synaptophysin staining, whereas HDAC2 knockout showed an
increase in both. HDAC2 is a class 1 (NAD-independent)
histone deacetylase, which generally acts as a transcriptional
silencer in concert with YY1 (Yang et al., 1996) and DNA
methyl transferase 1 (DMNT1; Rountree et al., 2000). Chromatin
immunoprecipitation from whole mouse brains of HDAC2 and
HDAC1 both showed enrichment for cell cycle genes, but
HDAC2 also showed higher enrichment of genes involved in
synaptic formation and plasticity (e.g., Nrxn3 and Synapsin2).
This report strongly supports the involvement of HDAC2 in
structural synaptic maintenance.

Synaptic Structure and Aging:
Neuromuscular Junction

Neuromuscular Junction Synapse Structure is
Altered by Aging
Motor decline is one the most predictive biomarkers of mortality
risk in humans (Buchman et al., 2007). Age-related pathologies
in the neuromuscular junction (NMJ) have been studied in
rodents since the early 1970’s (Gutmann et al., 1971; Banker
et al., 1983; Cardasis and LaFontaine, 1987). More recently,
live imaging of SOD1 knock-out mice sternomastoid muscles
revealed a pronounced retraction of the NMJ with over two-
thirds of NMJs denervated, recapitulating the aging phenotype
in an accelerated fashion (Jang et al., 2010). Conversely, caloric
restriction (a conserved pathway known to slow aging rates)
was found to also abrogate the denervation of mouse NMJs
(Valdez et al., 2010). Nonetheless, aging does not seem to
affect all motor neurons equally, as brainstem motor neurons
are at least partially resistant to age-dependent denervation
(Valdez et al., 2012). Synapse morphology may also be altered
in response to muscle fiber loss and regeneration (Li et al.,
2011). It is possible that fiber loss is followed by improper
synapse innervations due to compromised synaptogenesis in
aged neurons.

The NMJ synapses in both larval and adult Drosophila
have been characterized with development and aging as well.
Initial imaging studies in the longitudinal abdominal muscle
of adult flies showed several age-dependent structural changes,
including enlarged bouton area, decreased branch length and
‘‘naked boutons’’ directly facing the extracellular basal lamina
(Beramendi et al., 2007). In the same study, the authors also
showed a significant increase in synaptic vesicle size, as well
as changes in mitochondrial structure and area. Together with
mammalian studies, this supports that alterations to the NMJ
structure are a conserved aging phenotype.

As with central synapses, there is evidence to support the
involvement of epigenetic factors in age-dependent structural
dysfunction of the NMJ. A Drosophila screen for altered synaptic
structure in larvae found that the chromatin insulator bpd
[also known as mod(mdg4)] was necessary for proper NMJ
formation (Gorczyca et al., 1999). Non-lethal mutants of the
gene were found to harbor additional axonal branch points,
and boutons failed to form tight clusters. Bpd is a chromatin
factor that regulates transcriptional silencing by binding DNA
sequences known as gypsy insulators (Gerasimova et al., 1995,
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2000; Chen and Corces, 2001). A screen for memory formation
mutants also identified the gene as well as a later microarray
screen for mushroom body-specific genes (Dubnau et al.,
2003; Kobayashi et al., 2006). Taken together, these results
imply this epigenetic regulator as necessary for proper synaptic
structure formation. Notably, chromatin insulation is thought
to become disrupted with age (Fu et al., 2008). Despite this,
the exact genes regulated by Bpd in a neuronal context remain
unknown.

Epigenetic Factors can Directly Modify Synaptic
Proteins
A series of recent studies on the larval NMJ revealed that
deacetylases may also play non-canonical roles in alterations
of presynaptic active zone morphology. The protein ELP3 is
a histone acetyl-transferase (HAT) that was shown to be able
to acetylate the synaptic t-bar protein Bruchpilot (Brp) and
thereby promote its degradation (Han et al., 2008; Mískiewicz
et al., 2011). Intriguingly, another histone-interacting protein,
histone deacetylase 6 (HDAC6) was also found to regulate
Brp acetylation in opposite fashion to ELP3 (Miskiewicz
et al., 2014). These results imply that proteins involved in
epigenetic regulation may have additional functions at the
presynaptic terminal. Epigenetic changes in the nucleus may
promote the shuttling of these proteins between the nucleus and
cytoplasm. A different epigenetic regulator, HDAC4, changes
its cellular localization in response to neuronal activity (Chawla
et al., 2003). It is currently not known how the intracellular
localization of these chromatin-modifying proteins changes
with age.

Epigenetics of Synaptic Function and
Aging

Plasticity is Altered by Aging
While the structure of the synapse clearly contributes to its
proper function, failure of the neuron to properly maintain and
adjust neurotransmitter release is possibly even more deleterious
and wide-spread. The formation of memories requires synaptic
plasticity in the form of Hebbian (‘‘fire together, wire
together’’) synaptic facilitation, long-term potentiation (LTP),
and long-term depression (LTD). Defects in LTP induction
and maintenance with age have been correlated to declines in
memory and cognitive ability (Penner et al., 2010). The extent
of the effect of aging on the induction of LTP seems to depend
on anatomical region and stimulation paradigm (Rosenzweig
and Barnes, 2003). Maintenance of LTP, on the other hand, has
been robustly shown to decrease with age (Landfield et al., 1978;
Barnes, 2003). Studies have found that the slowing of aging by
caloric restriction also preserved LTP maintenance in aged rats
(Hori et al., 1992; McGahon et al., 1999; Eckles-Smith et al.,
2000). Induction of LDP by low frequency stimulation in CA1
neurons of aged rats was able to reliably and rapidly reverse LTP,
in contrast to what is observed in the neurons of younger rats
(Norris et al., 1996).

Other forms of synaptic plasticity may also become disrupted
with age. Non-Hebbian homeostatic mechanisms are believed to

be required in neural networks to prevent a cascade of positive-
feedback induced hyperactivity (Turrigiano, 2011). Homeostatic
synaptic scaling has not been studied in the context of normal
aging, however there is evidence it is impaired with age from
studies of neurodegenerative disease. For example, in a mouse
model of AD (with a double knock-in of presenilin 1 and amyloid
precursor protein) AMPA receptor particles decreased in old age
(Chang et al., 2006). There was also a downscaling of AMPA
receptor mediated currents after middle age. This in turn led to
defects in LTD and LTP. Despite a lack of change in control mice,
this suggests that there is an age-component to the defects of
homeostatic scaling seen in AD model mice. It is possible that
these changes may mimic homeostatic dysfunctions that happen
at very advanced ages.

Although many laboratories have studied the effects of
pathological and non-pathological aging on the functions of
the Drosophila nervous system using behavioral paradigms, the
effects of non-pathological aging on synapse function has not
been thoroughly studied (Jones and Grotewiel, 2011). It is clear
that Drosophila also undergo age-dependent declines in memory
formation and maintenance (Tamura et al., 2003; Simon et al.,
2006). This has been found to occur in a PKA-dependent manner
(Yamazaki et al., 2007). Given that PKA signaling is an important
for changing the post-synaptic membrane channel composition,
it implies that aging is causing central synapse dysfunction in
Drosophila. (Silva et al., 1998) In addition, studies investigating
the propagation of signals through the giant fiber circuit have
demonstrated age-dependent degradation of circuit function that
could be due to changes in neurotransmission (Zhao et al.,
2010).

A new study in the adult Drosophila NMJ found that there
is an age-dependent change in the homeostatic set point of
the innervating neuron (Mahoney et al., 2014). Although the
release properties of the cell are stable across 7 and 35 days of
age, in 42-day-old animals the excitatory post-synaptic potential
and quantal content (measures of synaptic vesicle release)
consistently increases by approximately 70%. This shift was
found to be distinct from canonical homeostatic signaling itself,
as it was also seen in ephexin mutants (in which homeostasis
is inhibited). This implies a change in cell-intrinsic properties
with age-possibly an increase in active voltage-gated calcium
channels or synaptic vesicle fusion proteins. The observed set-
point change also has some potentially negative physiological
consequences, as demonstrated by the enhanced synaptic
depression observed at aged synapses. For an aged fly, this
may cause motor behavior deficits in demanding environmental
circumstances. This study is particularly intriguing because of
the defined window during which there seems to be a shift in
the properties of the innervating cell, potentially indicating wide
changes in gene expression and neuronal identity.

Histone Acetylation and Plasticity
Epigenetics has emerged as a key regulator of long-term memory
formation. A seminal study in the Aplysia snail by the Kandel
laboratory found that by applying a long-term facilitation (a
presynaptic form of synaptic strengthening) inducer and an
LTD inducer at different terminals of a bidirectionally branched
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neuron the response to these inputs was integrated at the nucleus
by the factors CREB1 and CREB2. CREB1 activates the HAT
CPB, whereas CREB2 recruits HDAC5. These two chromatin
remodeling complexes compete at the promoter of the C/EBP
transcription factor which regulates synaptic structure and
strength. In the case studied, LTD was found to epigenetically
dominate facilitation (Guan et al., 2002).

Vertebrate studies have also found that histone modification
is necessary for plasticity. Mice deficient in methyl CpG binding
protein (MBD1) were found to harbor defects in neurogenesis
and LTP (Zhao et al., 2003). A landmark study by Levenson
and colleagues showed that memory formation transiently
increases the acetylation of histone H3, and that LTP induction
can be increased by administering HDAC inhibitors to mice
(Levenson et al., 2004). Other studies have demonstrated the
importance of HATs on LTP and memory (Alarcón et al., 2004;
Korzus et al., 2004). Behavioral assays also implicate a synaptic
role for histone acetylation. In mice, significant age-dependent
declines in fear conditioning and memory were observed and
histone H4K5 acetylation levels were altered more slowly in
old mice. Peleg et al. (2010) and other studies have found
evidence supporting epigenetic dysregulation in cognitive aging.
Knocking out HDAC6 in a mouse model of AD ameliorated
cognitive defects in 8-month old mice (Govindarajan et al.,
2013).

CpG Methylation and Plasticity
Histone acetylation is not the only epigenetic mechanism that
can affect synapse function. CpG methylation has been heavily
implied in LTP maintenance. In VP16-CREB mice, which
consolidate persistent LTP after weak stimulus, microarray
comparisons to wild types revealed that brain derived
neurotrophic growth factor (BDNF) was a key component
(Barco et al., 2005). A study in rats found a similar result and
also demonstrated that LTP maintenance could be abrogated by
administration of DNMT and HDAC inhibitors (Sui et al., 2012).
BDNF expression has previously been shown to be regulated
by DNA CpG methylation (Martinowich et al., 2003). Recent
studies have found that BDNF methylation is be required for
fear memory consolidation, and can be altered in early life in
mice by events such as early weaning or isolation (Lubin et al.,
2008; Roth et al., 2009). Additionally, a recent study found that
age-dependent changes to BDNF expression could be reversed
by epigenetic manipulation (Zeng et al., 2011).

In aged rats with differential cognitive decline outcomes
(that is, a population of the same age but with individuals of
different cognitive capacities), individuals with less decline in
cognition were shown to use an alternative LTD mechanism that
was NMDA receptor–independent (Lee et al., 2005). Within-
population variability suggests that epigenetic differences
among individuals could play a role in aging outcomes. One
potential source of variation among aged individuals is CpG
methylation, which has been shown to diverge with age, even
in isogenic backgrounds (Fraga et al., 2005; Kaminsky et al.,
2009).

Intrinsic homeostatic plasticity has also been shown to
be epigenetically regulated. Recent work has shown that

phosphorylation of methyl-CpG binding protein 2 (MeCP2) was
required for synaptic scaling in mouse hippocampal neurons
(Zhong et al., 2012). Mutations in MeCP2 had previously
been identified as causing the autism-spectrum disorder Rhett’s
syndrome (Amir et al., 1999). The authors mutated the serine
residues in MeCP2 that were phosphorylation targets to alanine
residues and found that synaptic downscaling induced by
bicuculline was disrupted, but not up scaling by tetrodotoxin
(TTX). Together, these findings support CpG methylation
deregulation as contributing to age-related decline in synaptic
plasticity and homeostasis.

Concluding Remarks

If defects at the synapse are proximally caused by epigenetic
dysregulation of key synaptic genes, then what are the distal
causes that drive neuronal epigenetic dysfunction with age?
One possibility is that changes in epigenetic regulation are
the unavoidable consequence of species-specific noise in global

FIGURE 1 | Model for interactions between epigenetic regulators and
synaptic structure and function during aging.
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transcription. Gene expression is not perfectly regulated and
has large intrinsic stochasticity (Kaern et al., 2005). This
would help explain why genetically identical conspecifics of
the same chronological age can have dramatically different
mortality risk and health. Aging-accumulated changes in
expression of epigenetic regulators may cascade into larger
changes culminating with alterations in cell function and
identity. Synapses would be particularly sensitive to these
disruptions.

Another possibility is that an insult or damage that normally
accumulates with age (e.g., oxidation, advanced age glycation
products, DNA damage, amyloid aggregation, etc.) gradually
interferes with normal epigenetic control. DNA lesions are
a particularly interesting candidate, as their repair requires
histone remodeling and the epigenetic marks may not be fully
reverted to their original state following repair (Polo et al., 2006;
Groth et al., 2007). DNA damage can also create opportunities
for retrotransposon activation (Van Meter et al., 2014) and
insertion, which can potentially disrupt the epigenetic state

of surrounding chromatin (Farkash and Luning Prak, 2006).
Evidence for transposable element activity increasing with age
has been reported in Drosophila neurons (Li et al., 2013) and
more generally in mammalian neurons (Erwin et al., 2014). A
sketch of these possibilities is shown in Figure 1.

Most regulatory hierarchies remain unknown, and the
epigenetic markup of many tissues is still understudied. The
nervous system has received special attention in this regard given
the prerequisite for memory formation on dynamic adjustment
of gene expression. Epigenetic marks and proteins have also
received attention from those working in the aging field, ever
since the discovery that HDACs and sirtuins could modulate
lifespan. We suggest that a more thorough synthesis of the two
fields is warranted.
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