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Abstract

Background Earlier studies suggest that probiotics have protective effects in the prevention of respiratory tract infections
(RTIs). Whether such benefits apply to RTIs of viral origin and mechanisms supporting the effect remain unclear.

Aim To determine the role of gut microbiota modulation on clinical and laboratory outcomes of viral RTIs.

Methods We conducted a systematic review of articles published in Embase and MEDLINE through 20 April 2020 to
identify studies reporting the effect of gut microbiota modulation on viral RTIs in clinical studies and animal models. The
incidence of viral RTISs, clinical manifestations, viral load and immunological outcomes was evaluated.

Results We included 58 studies (9 randomized controlled trials; 49 animal studies). Six of eight clinical trials consisting of
726 patients showed that probiotics administration was associated with a reduced risk of viral RTIs. Most commonly used
probiotics were Lactobacillus followed by Bifidobacterium and Lactococcus. In animal models, treatment with probiotics
before viral challenge had beneficial effects against influenza virus infection by improving infection-induced survival (20/22
studies), mitigating symptoms (21/21 studies) and decreasing viral load (23/25 studies). Probiotics and commensal gut
microbiota exerted their beneficial effects through strengthening host immunity.

Conclusion Modulation of gut microbiota represents a promising approach against viral RTIs via host innate and adaptive
immunity regulation. Further research should focus on next generation probiotics specific to viral types in prevention and
treatment of emerging viral RTIs.
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RR Rate ratio

RSV Respiratory syncytial virus

RTIs Respiratory tract infections

SARS-CoV  Severe acute respiratory syndrome
coronavirus

SCFAs Short-chain fatty acids

Thl T helper type 1

Th2 T helper type 2

TNF Tumor necrosis factor

Introduction

Viral respiratory tract infections (RTIs) are major global
public health challenges because they are the most common
causes of infectious diseases resulting in work and produc-
tivity loss [1, 2]. Effective antiviral drugs and vaccinations
are lacking for non-influenza respiratory viruses [1, 3]. The
outbreak of novel viruses causing high mortality, including
severe acute respiratory syndrome coronavirus (SARS-CoV)
in 2003, influenza A (H5N1) in 2005, Middle East respira-
tory syndrome coronavirus (MERS-CoV) in 2012, and influ-
enza A (H7N9) in 2013 [4] and more recently, SARS-CoV-2
leading to novel coronavirus disease 2019 (COVID-19)
has resulted in catastrophic outcomes. As of 30 Jan 2021,
COVID-19 has infected over 102.6 million people and led
to more than 2.2 million deaths worldwide. Given the chal-
lenges on both of the prevention and treatment of viral RTIs,
it is important to identify effective and safe measures to pro-
tect against emerging infectious diseases.

Gut microbiota plays pivotal roles in establishing intes-
tinal mucosal barrier function [5], shaping nutrient absorp-
tion and metabolism [6], and modulating host immunity [7].
Maintenance of microbiota homeostasis has been implicated
to be crucial for creating colonization resistance to foreign
pathogens [8]. Particularly, microbiota-mediated trigger-
ing, calibrating and functioning of both innate and adaptive
immunity assist in facilitating protection against exogenous
viruses [9, 10]. In contrast, a dysregulated microbiota com-
position which loses elasticity and diversity is more likely
to provoke impaired immune responses [11].

Previous systematic reviews have identified the protective
effects of oral probiotics and prebiotics in the prevention of
RTIs [12-16]. However, very few studies included in these
systematic reviews included virological tests whereas the
majority studies defined RTIs according to subjective or
indirect measures, such as self-reported symptoms, visits
to general practitioners, antibiotics use, or even school loss,
through which viral and non-viral infections were unable
to be differentiated [12—16]. The effects of gut microbiota
modulation on tackling viral RTIs remain unclear. Therefore,
we performed a systematic review focusing on viral RTIs
whereby etiologies were confirmed by virology tests.
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The aims of this systematic review were to (i) determine
the efficacy of gut microbiota modulation using probiot-
ics on outcomes of viral RTIs in clinical studies; and (ii)
delineate the role of probiotics and the importance of com-
mensal gut microbiota in protecting the host against viral
RTIs in animal models.

Methods
Search strategy

This study was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Anal-
yses guidelines [17]. An electronic literature search was
performed on Embase and Ovid MEDLINE using the
following keyword combinations: (‘virus’ or ‘Coronavi-
rus’) and ‘infection’ and (‘microbiota’ or ‘microbiome’
or ‘probiotic’ or ‘prebiotic’ or ‘synbiotic’). The search
was implemented without a starting date being applied
but until 20 April 2020. The detailed searching strategy is
provided in Additional file 1. Reference lists of original
articles and relevant reviews were manually searched to
identify additional studies for inclusion. After removal of
duplicated references, initial screening of article titles and
abstracts was undertaken by two independent investigators
(HYS and XZ). Potential relevant articles were obtained
in full text and reviewed independently. Disagreements
were resolved through consensus and discussion with a
third investigator JWYM). Predefined criteria were used
to determine eligibility for inclusion.

Selection criteria

We included interventional studies reporting the role of
gut microbiota modulation on viral RTIs: (1) clinical
studies on probiotics application in viral RTIs; (2) animal
studies investigating the effects of gut microbiota manip-
ulation on viral RTIs. Studies with clinical, virological,
pathological or immunological outcomes were included.
Studies were excluded if: (1) infecting organisms were not
identified; (2) respiratory tract injury was caused by sys-
temic viral infection (i.e. human immunodeficiency virus
infection); (3) we were unable to separate viral RTIs from
viral infections of other sites (i.e. gastrointestinal tract);
(4) none of the outcomes (rate of RTIs, symptoms, viral
load, respiratory pathology, virus-specific antibodies) were
presented; (5) paper was published as conference abstract,
review, letter, note, lecture, comment or editorial; (6) full
texts were unavailable; (7) the paper was not in English
language.
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Data extraction

Two investigators (HYS and XZ) extracted data and entered
it into a spreadsheet independently. A third investigator
(WLL) evaluated the accuracy of this process. The collected
data included the first author, country, study type, virus,
subjects, sample size, age, sex, methodology of gut micro-
biota manipulation (details of strains used for intervention,
administration form, administration dose, treatment dura-
tion, follow-up duration), outcomes and immune response.

Risk of bias assessment

All included clinical trials were independently assessed for
bias using the Cochrane Handbook for Systematic Review
of Interventions [18] by 2 investigators (HYS and XZ), with
disagreements resolved by a third investigator JWYM). Bias
was assessed on selection (randomization, allocation con-
cealment), performance (blinding of participants and person-
nel), detection (blinding of outcome assessment), attrition
(incomplete outcome data), reporting (selective reporting),
and other bias (e.g., funding).

Results
Study selection

Overall, 1719 records were retrieved, and an additional six
records were identified from reference lists of the related
articles. After removal of 70 duplicates, 1655 records were
screened according to the general criteria. Based on titles
and abstracts, 1555 citations were rejected during the initial
screen. Full texts of the remaining 100 articles were further
reviewed for eligibility, and an additional 41 articles were
excluded. Finally, our systematic review included 59 articles
from 58 studies (Figs. 1 and 2).

Human trials

Nine randomized controlled trials (RCTs) [19-28] involving
1240 healthy individuals assessed the efficacy of probiotics
or prebiotics in preventing viral RTIs (Table 1). The nine tri-
als reported the results of probiotics in individuals of differ-
ent age groups: five [19, 20, 22, 24, 26, 27] focused on adults
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Fig. 1 Literature search and selection of included studies in this systematic review. * Fifty-nine articles from 58 studies
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Fig.2 Categorization of included studies. * Fifty-nine articles from 58 studies

(n=675), two [21, 28] on elderly subjects (n=303), one on
children [23] (n=194) and one on preterm infants (n=68)
[25]. Lactobacillus was the most commonly used probiotics
[19, 21-25, 27, 28], followed by Bifidobacterium [20, 24]
and Lactococcus [26]. One trial also evaluated the efficacy
of prebiotics (galacto-oligosaccharide and polydextrose) in
preventing viral RTIs [25].

Effect of probiotics in reducing risk of infection

Of the eight studies with viral infection rate reported, the
protective effects of probiotics in reducing the infection
risk were noted in six studies [20-22, 24, 25, 27], although
statistical significance was not observed in four of them
[20-22, 27]. In a small study, there was less frequent occur-
ance of picornaviruses (mainly rhinovirus) infection after
three months of probiotics (Lactobacillus rhamnosus GG and
Bifidobacterium animalis ssp. lactis BB-12) intake (5/13 vs.
15/17 of control group, p=0.0069) among military recruits
[24]. Another study found that among preterm infants, the
rate of viral RTIs was reduced in infants with administra-
tion of probiotic (Lactobacillus rhamonosus GG) (52.4%)
than those on placebo (83.3%) during a 12-month follow-up
[25]. Frequent (> 3 episodes) viral RTIs were less commonly
found in probiotic group (9.5%) than placebo group (33.3%).
The risk of rhinovirus infection was decreased in probiotic
group (rate ratio [RR] 0.49; p=0.051), compared with pla-
cebo group. In sensitivity analysis assuming that missing
subjects remained healthy throughout the study period, the
incidence of rhinovirus-induced episodes was significantly
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lower in probiotic group, compared with that in placebo
group (RR 0.43; p=0.041).

Effect of probiotics on respiratory viral load

Three studies evaluated the impact of probiotics on viral
load [19, 20, 25]. Two of these studies performed intranasal
rhinovirus inoculation on healthy adults after 3 to 4 weeks
of probiotics administration [19, 20]. The larger study with
115 subjects showed that pretreatment with 4 weeks of Bifi-
dobacterium was associated with a significant reduction
in nasal lavage virus titers (p=0.03) and the proportion of
subjects with virus shedding in nasal secretion was lower
in the probiotic than placebo group (76% vs. 91%; p=0.04)
[20]. A separate small study showed a tendency towards
a lower viral load in subjects pretreated with 3 weeks of
Lactobacillus [19]. Among preterm infants, there were no
significant differences on rhinovirus load between the Lac-
tobacillus rhamonosus GG and placebo groups [25]. During
symptomatic rhinovirus episodes, the median time for virus
eradication was 10—15 days in the probiotic group, whereas
it was more than 15 days in the placebo group, although the
difference did not reach a statistical significance [25].

Effect of probiotics on clinical symptoms of viral
infections

Four studies investigated the effect of probiotics on clinical
symptoms caused by viral RTIs in a total of 441 subjects
[20, 22, 23, 25]. One study showed a trend towards improved
symptoms during the five days following rhinovirus
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inoculation in probiotic group [22], the overall results of the

g £ % n four studies failed to identify a significant protective effect
L= ~ of probiotics on alleviating the severity of viral infection-
?é induced RTI symptoms.
§ Effect of prebiotics in the prevention of viral
- infections
&
E ug % 2 Only one study investigated the effects of prebiotics (galacto-
oligosaccharide and polydextrose) in the prevention of viral
8 o RTIs [25]. Among preterm infants, prebiotics significantly
E % < reduced the risk of viral RTIs (39.1% vs. 83.3%, p=0.005)
- % and frequent viral RTIs (0% vs. 33.3%, p=0.005), compared
with placebo during a 12-month follow-up. The incidence
é g of rhinovirus infection was significantly lower in prebiotic
g 5 E group than that in placebo group (RR 0.31, p=0.003).
E 3 S In sensitivity analysis, assuming that missing subjects

remained healthy throughout the study period, the incidence
of rhinovirus-induced episodes was significantly lower in
prebiotic group, compared with placebo group (RR 0.29,
p=0.010). There was no significant difference on rhinovi-
rus load between the prebiotic and placebo groups. Among
symptomatic patients, the median time for virus eradication

Administra-

tion form

Milk for-
mula

.% _% § § was shorte'tr in the prebiotic group (10-15 days) than th.at
% % O 2 (15 days) in the placebo group, although the difference did
25 3 ?’_g not reach a statistical significance. The severity of clinical
& & - g symptoms was not significantly different between the prebi-
5 . 8 % otic and placebo groups.
2% S 3 2
% § § § § e Risk of bias assessment
£e S 2]
P z Summary of the risk of bias for the clinical studies was dem-
é § < . E onstrated in Table 2. There were 4 studies (5 articles) [19,
> £ = Z g 22,23, 26, 27] at unclear risk for selection bias (did not
- é o g describe the methods used to generate random sequence or
B % . 5 g g g g é 2 § 2 conceal the allocation sequence in sufficient details). The
8 3 ~Q 555253 E =l 3 g risk of performance bias was high in one study [27] (lack
=5 = § of identical placebo). For 7 studies (8 articles) [19-25, 28],
2 = ] there was unclear risk of attribution bias (missing data on the
E S E main outcome, no formal sample size calculation or unmet
;g 3 w predefined sample size). There were 7 studies (8 articles)
Z E 2 E [19, 21-23, 25-28] at unclear risk of other bias because the
é E studies were funded by of the probiotic manufacturer or dis-
E g ©35 g tributor, or the authors were employed by the provider of the
E % Q= E study product.
N - % . Animal studies
3| £ g £ 5
é é E % %5 Probiotics and outcomes of viral RTls in animal models
§ g . = E
~ 28 s £ 3 A total of 36 studies investigated the effects of oral admin-
- [l 2. s 5 . . . . . .
23 £E . Ex - istration of probiotics F)n.outcomes of V.1ra1 RTIs.m ann.nal
£ 25 |2 B » models (Table 3). Probiotics were administered prior to viral
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Table 2 Risk of bias summary for the randomized controlled trials in humans

First author, year Random Allocation Blinding of Blinding of out-  Incomplete Selective report-  Other bias
of publication sequence gen- concealment participants and  come assessment outcome data ing (reporting
eration (selection (selection bias)  personnel (per- (detection bias)  (attrition bias) bias)
bias) formance bias)

Yamamoto, 2019 L L L L U L U
(28]

Wang, 2018 [21] L L L L U L U

Shida, 2017 [27] U U H L L L U

Turner, 2017 [20] L L L L U L L

Tapiovaara, 2016 L U L L U L U
[19]

Kumpu, 2015 L U L L U L U
[22]

Sugimura, 2015 L U L L L L 6]
[26]

Lehtoranta, 2014 L L L L U L L
[24]

Luoto, 2014 [25] L L L L U L U

Kumpu, 2013 L U L L U L U
[23]

L, low risk; H, high risk; U, unclear risk

infection in all of the studies. The majority of the studies
(n=28) used Lactobacillus [9, 29-55], followed by Bifido-
bacterium [56-58], Enterococcus [59-61] or Lactococcus
[62, 63]. Thirty-one studies investigated the outcome of pro-
biotics in influenza virus [9, 29, 32-49, 51-53, 55-61, 63],
four studies targeted respiratory syncytial virus (RSV) [30,
31, 36, 54], whilst the remaining studies focused on parain-
fluenza virus [62] and avian influenza virus [50].

Probiotics improved outcomes of mice infected
with influenza virus

Twenty-two studies reported the effect of probiotics on sur-
vival after virus challenge [9, 32, 33, 35, 37, 42-49, 51, 53,
56-61, 63]. Amongst the 22 studies, 20 showed decreased
mortality rates [35, 37, 42, 46-49, 51, 53, 56-61, 63] or pro-
longed survival time [33, 43—45] in mice, which were given
probiotics. Five studies revealed a dose-dependent manner
of Lactobacillus in improving survival [35, 44, 45, 47, 49].
One study found that live Lactobacillus spp. were superior
to the inactivated ones in increasing survival rate [35].
Twenty-one studies evaluated the impact of probiotics on
infection-induced symptoms [9, 29, 32-34, 37-42, 47-49,
53, 55-57, 59, 60, 63]. Being the most commonly reported
symptom, weight loss was significantly mitigated in mice
treated with probiotics in 18 studies [29, 32-34, 37, 39-42,
47-49, 55-57, 59, 60, 63]. Eleven studies scaled the symp-
toms using clinical scores based on fur appearance, eyelid,
behavior or other indices, such as breath and body tem-
perature, and all of these studies demonstrated significant

@ Springer

improvement in mice given probiotics [9, 29, 34, 37-39,
41, 53, 55-57].

Twenty-five studies investigated the effect of probiotics
on influenza viral load. Virus titers were lower in 23 studies
tested in lungs [9, 33, 35-42, 44, 45, 47-49, 55, 56, 59, 63],
bronchoalveolar lavage fluid (BALF) [40, 46, 47, 57], and
nasal washings [52, 53] of mice pretreated with Lactobacil-
lus[9, 32, 33, 35-49, 52, 53, 551, Bifidobacterium [56, 57],
Enterococcus [59] or Lactococcus [63]. A dose-dependent
manner of Lactobacillus was also observed in suppressing
viral replication in lungs [40, 44, 49].

Immune responses underlying the effects of probiotics
on mice infected with influenza virus

Seventeen studies discussed the intimate involvement of
immune cells in probiotic-mediated protection against influ-
enza virus infection [27, 29, 31, 33, 39, 46, 48, 52, 53, 55,
57, 58, 62, 64—67]. In particular, studies reported increased
natural killer (NK) cell activities [27, 39, 46, 52, 53, 57, 64,
67], or decreased infiltrating macrophages and neutrophils
in BALF [33] upon probiotic administration. Meanwhile,
two studies with Lactobacillus or Lactococcus administra-
tion dramatically increased the recruitment of dendritic cells
(DCs) [29, 62].

Twelve studies reported the contribution of interferon-
o/p (IFN-o/p) to immune defenses against viral infections
triggered by probiotic administration [9, 26, 30, 34, 45, 54,
57,62, 68-71]. Of these, studies regard to Lactobacillus [9,
30, 34, 45, 541, Lactococcus [26, 62], Bifidobacterium [57],
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or Enterococcus [71] administration showed increased pro-
duction of either IFN-a or IFN-f. Sixteen studies addressed
the alteration of IFN-y in respiratory virus infected mice
administered with probiotics [26, 33, 39, 48, 51, 52, 54-58,
69, 71-74]. There are 12 studies declared the increase of
IFN-y after administration of probiotic Lactobacillus [30,
32,33, 39, 48, 51, 52, 54, 551, Bifidobacterium [57, 58], or
Bifico [73] (a probiotic mixture consisting Bifidobacterium,
Lactobacillus acidophilus, and Enterococcus). Seven studies
indicated the roles of TNF-« in assisting immune defense
against influenza virus infection [33, 36, 45, 48, 51, 52, 57].
Only one study detected increased production of TNF-a by
nasal lymphocytes with administration of Lactobacillus [52].
Conversely, 6 of the studies consistently reported decreased
TNF-a level, with 4 of them were being administered with
Lactobacillus [33, 48, 74], 2 of them with Enterococcus [61,
71], while one of them with Bifidobacterium [57].

Seventeen studies reported the roles of dominant interleu-
kins (ILs) in protective immune responses [9, 29, 33, 36, 48,
51, 53-59, 61, 71, 73, 74]. Four studies demonstrated that
administration of Lactobacillus led to immune regulatory
responses by upregulating IL-10 [36, 54, 55, 74]. Eight of
the studies reported decrease in IL-6 after administration of
Lactobacillus [33, 48], Bifidobacterium [56-58], Enterococ-
cus [59, 71], or Bifico [73]. More specifically, strain-specific
effects were observed in animal studies conducted using Lac-
tobacillus rhamnosus M21 and CRL1505, respectively [51,
54], as Lactobacillus rhamnosus M21 mainly induces IL-12
increase while Lactobacillus rhamnosus CRL1505 promotes
secretion of anti-inflammatory cytokine IL-10.

Eight studies [9, 32, 34, 40, 42, 44, 46, 58] tested the
levels of virus-specific antibodies. Five of them reported
increased influenza virus-specific immunoglobulin A (IgA)
levels in the BALF [34, 40, 44, 46], and immunoglobulin
G (IgG) titers in BALF [40, 44, 46] and serum [40, 44, 58]
were elevated in the probiotic (Lactobacillus or Bifidobac-
terium) group, compared with non-probiotic group. Probi-
otic feeding stimulated not only the production of influenza
virus-specific IgA and IgG titers, but also accelerate their
neutralization activities in serum and BALF in mice treated
with oseltamivir [32]. One study revealed a dose-dependent
manner of probiotics in stimulating influenza virus-specific
IgA and IgG production [44].

Probiotics improved outcomes of mice infected with RSV

All of the four studies [30, 31, 36, 54] focused on RSV
infection showed that Lactobacillus protected mice against
RSV infection with alleviated body weight loss [30, 54],
suppressed pulmonary RSV load [30, 36, 54], and milder
pathological changes in lungs [31, 54]. Live probiotics were
superior to inactivated probiotics in reducing pulmonary his-
topathological inflammation [31].

Commensal gut microbiota and the outcomes of viral RTls
in animal models

A total of thirteen studies investigated the influence of
commensal gut microbiota on the outcomes of viral RTIs
in animal models (Table 4). Of these studies, ten focused on
influenza virus [8, 65, 66, 68, 73, 75-79], and the remaining
studies were on RSV [80], parainfluenza virus [64] and avian
influenza virus [81].

All of the ten studies focused on influenza virus dem-
onstrated beneficial effects of commensal gut microbiota
against viral infection [8, 65, 66, 68, 73, 75-79]. In one
study, natural gut microbiota from wild mice protected the
recipient laboratory mice against influenza virus infection,
manifested as reductions in mortality, weight loss, lung
viral titers and respiratory immune-mediated pathology
[8]. Depletion of intestinal commensal bacteria resulted in
increased mortality [65, 79], greater weight loss [65, 75, 79],
higher virus load [65, 66, 68, 75, 76, 78, 79] and more severe
inflammation in lungs [65, 73, 78] of animals encountering
viral challenge. In particular, antibiotic treatment by either
cocktail (ampicillin, gentamicin, metronidazole, neomycin,
vancomycin) [65, 66] or single antibiotic neomycin [66] both
reduced CD4% or CD8* T cells. On the contrary, restoration
of gut microbiota by probiotics (Bifico) supplementation
[73], fecal microbiota transplantation (FMT) [79] or even
commensal fungi (Candida albicans or Saccharomyces cer-
evisiae) colonization [77] was able to alleviate the severity
of viral infection deteriorated by gut dysbiosis.

Discussion

To the best of our knowledge, this work is the first system-
atic review to report the role of gut microbiota manipulation
on the risk and outcomes of viral RTIs. We found that modu-
lation of gut microbiota may prevent viral RTIs in humans.
Animal studies showed that treatments with probiotics
before viral challenge were effective in improving the out-
comes of viral RTIs, in terms of reducing infection-induced
mortality, mitigating symptoms, decreasing viral load and
boosting host immunity against viral infection. Disturbance
of gut microbiota deteriorated in viral RTIs, which could be
reversed by microbiota restoration. Furthermore, we have
provided a data-driven explanation on the mechanisms by
which gut microbiota modulation could impact viral RTIs.
Probiotics have been widely used to normalize perturbed
gut microbiota and confer health benefits on hosts [82]. To
focus on viral infections, we only included studies with posi-
tive virological tests or specific respiratory virus inoculation.
Among the 8 RCTs in humans reporting virus infection rate,
6 showed decreased rates of RTIs in the probiotic group,
suggesting probiotics are potentially promising agents to
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prevent viral RTIs. However, heterogeneity in studies had
hindered direct comparison of individual study. Although
current clinical studies did not show a significantly milder
viral-induced symptoms in subjects on probiotics, animal
studies illustrated a protective effect of Lactobacillus [9,
29-49, 51-54], Bifidobacterium [56-58], Enterococcus
[59-61] and Lactococcus [62, 63] in alleviating the sever-
ity of viral infections. Mechanistically, probiotics could
elicit protective responses against viral RTIs by induc-
ing cytokine/chemokine production which further engage
immune cells to modulate antiviral immunity, strengthening
mucosal barrier through increasing mucin and tight junction
molecules, etc. [83]. Probiotic-induced IFN-y have functions
in regulating both innate and adaptive immunity, making it
powerful in macrophages activation and wide-spectrum anti-
viral defenses [84]. Also, majority of probiotics strengthen
host immunity by utilizing IL-4, IL-10, IL-12, IL-18 as
immune-response mediators while producing IL-1a/f, IL-6,
and TNFa as pro-inflammatory factors, which in parallel
depicted a preventative cytokine signature for evaluating
probiotics [33, 48, 54, 57, 61, 71]. For example, oral admin-
istration of Bifidobacterium longum MM-2 elicit NK cell
activation through upregulating pulmonary expressions of
IFN-y, IL-2, IL-12 and IL-18, which further result with anti-
influenza virus responses [57], while Enterococcus faecalis
FK-23 oral administration, which exhibited improved sur-
vival rate in mouse model challenged by influenza A virus,
upregulated anti-inflammatory IL-10 in lung tissues [61].
Probiotic boosts adaptive immune response with increased
production of viral-specific IgA and IgG which is benefi-
cial in defending viral RTIs. Besides innate and adaptive
immunity, gut microbiota metabolism regulates inflamma-
tion through specific commensal bacteria that consume non-
digestible dietary fibers and generate metabolites short-chain
fatty acids (SCFAs, notably acetate, propionate, as well as
butyrate) engaging in favoring mucosal barrier functionali-
ties [80, 85—-87]. However, these studies are all based on ani-
mal models. The mechanisms of probiotics in human viral
RTIs need further investigations.

Data from animal studies have been predictive for the out-
comes in subsequent human studies using the same strains.
Oral administration of Lactobacillus delbrueckii bulgaricus
OLL1073R-1 significantly prolonged the survival, reduced
weight loss, decreased viral load and increased the anti-
influenza virus antibodies in mice [32, 46]. Evidence has
shown that consuming yogurt fermented with Lactobacil-
lus delbrueckii bulgaricus OLL1073R-1 may help prevent
influenza A virus subtype H3N2 infection by increasing the
production of H3N2-bound salivary IgA in the elderly [28].
Lactococcus lactis subsp. lactis JCM5805-fed mice showed
a drastic improvement in survival rate, alleviation of infec-
tion related symptoms, and reduction in lung histopathol-
ogy scores in parainfluenza virus infection [62]. A RCT on

healthy adults had shown that Lactococcus lactis subsp.
lactis JCMS5805 intake significantly reduced the cumulative
incidence days of major symptoms of an influenza-like ill-
ness [26]. Mice studies evidenced the effects of different
Lactobacillus plantarum strains in improving the outcomes
of influenza virus infection [33, 35, 40-42, 45, 48, 49].
Oral administration of heat-killed Lactobacillus plantarum
L-137 enhanced protection against influenza virus infection
by stimulating type I interferon production in mice [45]. A
RCT conducted in subjects with high psychological stress
levels showed that the incidence of upper RTI symptoms was
significantly lower in those treated with heat-killed Lacto-
bacillus plantarum L-137 [88]. The mechanistic read-outs
observed in mice could also be reproduced in humans. How-
ever, the overall effects of probiotics were much clearer in
the animal studies than in humans, which may be explained
by the more heterogenous setting including differences in
environmental and host factors that are known to influence
the gut microbiome (e.g. diet, drugs, co-morbidities, follow-
up duration, immune status, etc.) in human studies.

The effects of probiotics are influenced by multiplex fac-
tors. Probiotics confer a health benefit when administered in
adequate amounts [82]. Lactobacillus rhamonosus GG was
the first patented strain belonging to the genus Lactobacillus
with a large number of research data as the basis for its use
in combating against RTIs in humans [89]. For preventing
viral RTIs, Lactobacillus rhamonosus GG at a daily dose of
10° CFU or above appeared to be effective in human trials
[21, 22, 24, 25], whereas a dose of 10® CFU daily did not
show a significantly positive role [23]. The administration
of Lactobacillus spp. was shown to protect against influenza
virus infection in a dose-dependent manner in mice [35, 40,
44, 45, 47, 49]. It had been reported that the incidence and
severity of upper RTIs negatively correlated with the dura-
tion of heat-killed Lactobacillus plantarum L-137 intake
among healthy people [88]. Duration of probiotic treatment
in the prevention of viral RTIs ranged from 33 days [20]
to 28 weeks [23] in humans. However, due to scarcity of
data and different types of formula used, we are unable to
propose a minimal treatment dose and duration to ensure
optimal outcome in fighting against viral RTIs at this stage.
Although the overall safety profile of probiotics is satisfac-
tory, it should be noted that probiotic use could be associated
with a higher risk of infection and/or morbidity in vulnerable
people [90]. There is an increasing interest in non-viable
microorganism-inducible health benefits [91]. Animal stud-
ies demonstrated the beneficial effects of non-viable (mainly
heat-inactivated) probiotics in viral RTIs [9, 33, 37, 39, 40,
42-45, 49, 52, 59, 61, 62], although their effects appeared to
be inferior to the live ones [31, 35]. The effects of probiot-
ics in eliciting cytokine profiles in human cells and stimu-
lating host immune system against viral RTIs in mice are
highly strain-specific [92]. Since the data of strains other
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than Lactobacillus rhamonosus GG were fairly limited in
human studies, comparison of the strain-specific effects
against viral RTIs in humans remains unavailable. Probi-
otic mixtures have been proved to be more effective than
single-strain probiotics in inhibiting pathogen growth, due to
an additive and more synergetic multispecies probiotic con-
sortium [93]. Taking advantage of this finding, FMT, which
transplants the great mixture of healthy gut ecosystem to
recipients, represents the most powerful strategy of restoring
a balanced gut microbiota [94]. However, potential risk of
infections caused by undetected or unmonitored pathogens
remains to be a major concern for its broad applications
[93]. To overcome this problem, Petrof et al. developed a
stool substitute consisting of 33 different purified intesti-
nal bacteria isolated from a healthy donor, and successfully
treated patients with antibiotic-resistant Clostridium difficile
colitis [95]. Accelerated by massively parallel sequencing,
our knowledge of the composition and function of the human
gut microbiota has dramatically extended the range of organ-
isms with potential health benefits. The next-generation pro-
biotics, such as Faecalibacterium prausnitzii, Akkermansia
muciniphila, Bacteroides fragilis and Bacteroides uniformis,
have been identified to exert anti-inflammatory effects in
animal models [93, 96].

Prebiotics are substrates selectively utilised by host
micro-organisms conferring a health benefit [97]. RCTs had
shown that the use of prebiotics in infants could reduce the
risk of RTIs [25, 98-100]. Luoto et al. demonstrated that
both probiotics (Lactobacillus rhamonosus GG) and prebiot-
ics (galacto-oligosaccharides and polydextrose) resulted in
fewer episodes of viral RTIs, compared with placebo [25]. It
is interesting to note that prebiotics tended to perform better
than the probiotic in this trial. One possible reason might
be the pre-existence of bifidobacteria-dominated infant gut
microbiota, which strengthens the effect of “bifidogenic”
prebiotics [99, 101]. A study on mice model had shown
that specific dietary prebiotic oligosaccaharides potentiated
immune response against viral RTI102.

The gut-lung axis has been proposed in the pathogenesis
of certain respiratory diseases [103]. Evidence has implied
a gut-lung crosstalk in viral RTIs. Gut microbiota influences
the susceptibility and severity of viral RTIs. Natural gut
microbiota exhibiting more diverse microbiomes balanced
systemic and local inflammatory responses upon lethal influ-
enza virus challenge, resulting in higher survival rates and a
milder disease course, compared with gut microbiota of lab-
oratory mice from a restrictive environment [8]. Mice with
depletion of commensal gut microbiota had significantly
worse outcomes of viral RTIs [64, 65, 73,75, 78, 79], which
was reversed by restoration of gut microbiota with probiot-
ics [73], EMT [79], and even commensal fungi colonization
[77]. Clinical observational studies have also evidenced the
importance of healthy gut microbiota in protecting against
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viral RTIs. Higher level of butyrate-producing gut bacteria
significantly associated with less development of viral RTIs
among kidney transplant recipients [104], and reduced risk
of viral lower RTTs in patients post-allogeneic hematopoietic
stem cell transplantation (HSCT) [105]. In another study
involving patients underwent allogeneic HSCT and had viral
RTIs post transplantation, the number of antibiotic-days was
associated with progression to lower respiratory tract disease
[106]. On the other hand, viral RTIs lead to gut microbiota
alteration. Both influenza virus and RSV infections result in
significant changes of gut microbiota in mice [72, 107, 108].
Influenza virus infection also resulted in decreased levels of
SCFAs (the metabolic output of the gut microbiota) in both
of the gut and blood in mice [86]. Oral administration of
acetate protected mice against RSV infection [87]. Supple-
mentation of acetate reduced lung pathology and improved
survival rates of mice with influenza virus and Streptococcus
pneumoniae superinfection [86].

COVID-19, caused by SARS-CoV-2, is a major public
health crisis threatening the human world today. This novel
coronavirus, along with the SARS-CoV and the MERS-CoV,
belongs to Betacoronavirus genus [109]. Although patients
typically present with fever and respiratory symptoms, the
viruses can also affect the digestive system [110, 111]. Stud-
ies have reported frequencies of diarrhea ranging from 2.0
to 35.6%, 13.8 to 73.3% and 11.5 to 32.0% among patients
with COVID-19, SARS and MERS, respectively [110].
Gut microbial dysbiosis has been identified in COVID-19
patients, characterized by enrichment of opportunistic path-
ogens and depletion of beneficial commensals [112, 113].
Gut microbiota alterations associated with disease sever-
ity. The severity of COVID-19 was positively correlated
with the baseline abundance of Coprobacillus, Clostridium
ramosum, and Clostridium hathewayi, and inversely cor-
related with that of Faecalibacterium prausnitzii (an anti-
inflammatory bacterium) [112]. Subjects with gut dysbiosis,
such as elderly, immune-compromised patients and patients
with other co-morbidities, tend to have more severe disease
and poorer outcomes of COVID-19 [114]. It implies that
gut microbiota modulation could potentially reduce disease
severity. Most of the studies on gut microbiota modulation
against viral RTIs were carried out on influenza virus as
a prophylactic strategy, and no major evidence was avail-
able on its protective effect towards COVID-19, the impor-
tance of probiotics supplementation in COVID-19 treatment
has been emphasized in the guidance given from China’s
National Health Commission [113]. However, not all pro-
biotics are equivalent for efficacy [115]. A novel and more
targeted approach to modulate gut microbiota as one of the
therapeutic strategies for COVID-19 and its complications is
much needed. In a recent study reported by d’Ettorre et al.,
among COVID-19 patients, oral administration of a probi-
otic mixture significantly reduced the risk of developing
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respiratory failure, and a trend towards reduced rates of
mortality [116]. The Chinese University of Hong Kong
team has developed an oral gut microbiota modulating for-
mulation against COVID-19. In a pilot study, this formula-
tion significantly improved clinical symptoms and reduced
pro-inflammatory immune markers in COVID-19 patients
[117]. Viral infections predispose patients to secondary bac-
terial infections, which often result in a more severe clinical
course [118]. Empirical antibiotics are sometimes used for
the management of viral infection when secondary bacte-
rial infection is a concern. However, Zuo et al. revealed that
antibiotics use led to further loss of salutary symbionts and
exacerbation of gut dysbiosis in COVID-19 patients [112].
Animal studies have also proved the adverse influence of
antibiotics in viral RTIs [64, 65, 79]. These results suggest
clinicians to avoid unnecessary antibiotics use in the treat-
ment of viral RTIs.

Conclusion

In conclusion, previous studies shed a light on the influence
of gut microbiota on the occurrence and outcomes of viral
RTIs. Gut microbiota modification presented a potential pro-
phylactic and therapeutic avenue against viral RTIs through
boosting immunity of hosts. However, research in this field
is still in its infancy. High-quality clinical trials, translational
studies and mechanism investigations are urgently needed.
Unlike animal models, humans are highly heterogeneous in
terms of diet, age, genetic background and gut microbiota
configuration, and therefore may respond differently to
the same intervention. With the development of new tech-
nologies, individualized gut microbiota modification will
become available to address specific consumer needs and
issues. Next-generation probiotics specific to viral strains
and individualized conditions of the hosts may become a
promising therapy in the prevention and treatment of viral
RTIs in the near future.
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