
Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Seizure detection by convolutional neural network-based analysis of scalp
electroencephalography plot images
Ali Emamia, Naoto Kuniib, Takeshi Matsuoc, Takashi Shinozakid, Kensuke Kawaie,⁎⁎,
Hirokazu Takahashia,⁎

a Research Center for Advanced Science and Technology, The University of Tokyo, Japan
bDepartment of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Japan
c Tokyo Metropolitan Neurological Hospital, Japan
d CiNet, National Institute of Information and Communications Technology, Japan
e Department of Neurosurgery, Jichi Medical University, Japan

A R T I C L E I N F O

Keywords:
Convolutional neural networks
Seizure detection
Deep learning
Scalp electroencephalogram
Epileptic seizure

A B S T R A C T

We hypothesized that expert epileptologists can detect seizures directly by visually analyzing EEG plot images,
unlike automated methods that analyze spectro-temporal features or complex, non-stationary features of EEG
signals. If so, seizure detection could benefit from convolutional neural networks because their visual recognition
ability is comparable to that of humans. We explored image-based seizure detection by applying convolutional
neural networks to long-term EEG that included epileptic seizures. After filtering, EEG data were divided into
short segments based on a given time window and converted into plot EEG images, each of which was classified
by convolutional neural networks as ‘seizure’ or ‘non-seizure’. These resultant labels were then used to design a
clinically practical index for seizure detection. The best true positive rate was obtained using a 1-s time window.
The median true positive rate of convolutional neural networks labelling by seconds was 74%, which was higher
than that of commercially available seizure detection software (20% by BESA and 31% by Persyst). For practical
use, the median of detected seizure rate by minutes was 100% by convolutional neural networks, which was
higher than the 73.3% by BESA and 81.7% by Persyst. The false alarm of convolutional neural networks' seizure
detection was issued at 0.2 per hour, which appears acceptable for clinical practice. Moreover, we demonstrated
that seizure detection improved when training was performed using EEG patterns similar to those of testing data,
suggesting that adding a variety of seizure patterns to the training dataset will improve our method. Thus,
artificial visual recognition by convolutional neural networks allows for seizure detection, which otherwise
currently relies on skillful visual inspection by expert epileptologists during clinical diagnosis.

1. Introduction

Scalp electroencephalogram (EEG) has played a major role in the
diagnosis of patients with epilepsy (PWE) since it was first attempted by
Gibbs in 1935 (Gibbs et al., 1935; Smith, 2005). More recently, the use
of digital EEG monitoring systems with extensive memory has allowed
the establishment of long-term video-EEG monitoring as routine clinical
care for PWE in classifying epilepsy and determining the appropriate

therapeutic strategy (Aminoff, 2012; Cascino, 2002). The average
amount of time needed for successful clinically relevant long-term
monitoring ranges between 4.8 and 7.6 days (Velis et al., 2007). Sei-
zures are identified by epileptologists who read extensive EEGs, which
is a time-consuming task requiring experience (Benbadis, 2010). Au-
tomatic seizure detection is therefore a key technology to save time and
effort associated with EEG reading. Furthermore, automatic seizure
detection may open a new therapeutic avenue for future treatments of
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epilepsy such as on-demand neurostimulation (Theodore and Fisher,
2004) and drug delivery (Stein et al., 2000).

A number of EEG signal features have been considered to represent
seizures (Ahmedt-Aristizabal et al., 2017; Baldassano et al., 2017;
Orosco et al., 2013; Venkataraman et al., 2014); e.g., time-frequency
analysis (Anusha et al., 2012; Gao et al., 2017; Li et al., 2018), wavelet
transform (Adeli et al., 2003, 2007; Adeli and Ghosh-Dastidar, 2010;
Ayoubian et al., 2013; Faust et al., 2015; Sharma et al., 2014; Yuan
et al., 2018), and nonlinear analysis (Ghosh-Dastidar et al., 2007;
Takahashi et al., 2012). The detection accuracy has also improved with
advances in machine learning algorithms such as the support vector
machine (Satapathy et al., 2016), logistic regression (Lam et al., 2016),
and neural networks (Adeli and Ghosh-Dastidar, 2010; Ghosh-Dastidar
et al., 2008; Ghosh-Dastidar and Adeli, 2007, 2009; Juárez-Guerra
et al., 2015). However, because the actual patterns of epileptic EEG
differ from patient to patient, the efficacy of most of these traditional
methods is patient-specific. Furthermore, because the amount of data in
seizure states is very limited (i.e., seizures are typically observed only
for a few min in 24 h during EEG monitoring) and because EEG contains
noise and artifacts, seizure detection by EEG remains challenging. For
example, Varsavsky et al. compared four commercially available sei-
zure detection algorithms–Monitor (Gotman, 1990), CNet (Gabor,
1998), Reveal (Wilson et al., 2004), and Saab (Saab and Gotman,
2005)–using the same dataset and showed that the true positive rate
ranged from 71 to 76% with a false positive rate of 9.65 to 2.24 alarms
per hour, which is not acceptable for clinical applications (Varsavsky
et al., 2016). Thus, no existing hand-crafted features appear universally
applicable so far.

To overcome these difficulties, deep learning technology has
emerged, by which relevant features are automatically learnt in a su-
pervised learning framework (Lecun et al., 2015). A number of recent
studies demonstrated the efficacy of deep learning in the classification
of EEG signals (AliMardani et al., 2016; Dvey-Aharon et al., 2017;
Jirayucharoensak et al., 2014; Ma et al., 2015; Schirrmeister et al.,
2017). Yet, the performance of seizure detection by deep learning still
requires improvement (Acharya et al., 2018; Ahmedt-Aristizabal et al.,
2017, 2018; Thodoroff et al., 2016) compared to the level of human
performance in certain visual recognition tasks (Dodge and Karam,
2017; Esteva et al., 2017).

Here, we hypothesized that expert epileptologists detect seizure
states directly by visually analyzing EEG plot images, rather than em-
ploying automatic seizure detection based on spectro-temporal features
or complex, non-stationary features in EEG signals. If so, seizure de-
tection could benefit from convolutional neural networks (CNNs) that
show performance comparable to that of human experts in visual re-
cognition (Litjens et al., 2017). In the present study, we demonstrated
the efficacy of image-based seizure detection for scalp EEG, in which
EEG data were converted into a series of plot images, analyzed by
epileptologists, then the CNN was used to classify each image as seizure
or non-seizure.

2. Methods

We attempted image-based seizure detection by applying CNN to
long-term EEG that included epileptic seizure states as shown in
Fig. 1A. After filtering, EEG data were divided into short segments using
a given time window and converted into plot images of EEG, each of
which was classified by CNN as ‘seizure’ or ‘non-seizure’. These re-
sultant labels were then used to make a clinically practical index for
seizure detection.

2.1. Subjects

Long-term video-EEG monitoring was carried out as part of a phase
one evaluation of PWE in the NTT Medical Center Tokyo (eight sub-
jects) and the University of Tokyo Hospital (16 subjects). Written

informed consent was obtained from all patients for research use of the
EEG data. Research use of EEG data for this study was approved by the
local ethics committee.

EEG was obtained with 19 channels based on the 10–20 system with
two additional zygomatic electrodes (Rzyg and Lzyg) (Manzano et al.,
1986) (except for subject #14) and one channel for electrocardiography
(ECG). The sampling rate was 1000Hz for the patients from the NTT
Medical Center Tokyo and 500 Hz for the University of Tokyo Hospital.
The EEG data were filtered with 0.3-Hz high-pass, 60-Hz low-pass and
50-Hz notch filters.

The information relevant to the subjects enrolled in this study is
summarized in Table 1. The patients diagnosed as having focal seizures
based on long-term video-EEG with acceptable recording quality were
included in this study. For six patients, long-term video-EEG failed to
localize seizure focus due to multiregional or widespread abnormalities
on EEG scans. The total recording time of EEG analyzed in this study
was of 1124.3 h during which 97 seizures were recorded. The total
seizure state duration was 6950 s. For each subject, seizures were

Fig. 1. Seizure detection by image-based CNN of scalp EEG. (A) The flow of
seizure detection. The raw EEG was pre-processed with 0.3-Hz high-cut, 60-Hz
low-cut, and 50-Hz notch filters. EEG signals were segmented using a given time
window (i.e., 0.5 s, 1 s, 2 s, 5 s, and 10 s), and converted to a time series of
images. CNN then classified each image into ‘seizure’ or ‘non-seizure’. (B) CNN
architecture. VGG-16 model was modified in this study. (C) Testing methods. In
leave-one-out testing, a CNN was constructed with EEG data from 23 out of 24
subjects and tested with EEG data from the last remaining subject. In pairwise
testing, a CNN was constructed with a single subject's data, and tested with one
of other subjects.
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identified based on the agreement among at least two expert epi-
leptologists, and the patterns of seizure onset were categorized into one
of the following five categories (Tanaka et al., 2017): (i) rhythmic slow
activity (RSA), i.e., sinusoidal activity at< 13Hz; (ii) paroxysmal fast
activity (PFA), i.e., sinusoidal activity at ≥13Hz; (iii) repetitive epi-
leptiform discharge (RED), i.e., spike-and-wave or sharp-and-wave ac-
tivity or repetitive spikes at< 13Hz without any visible sinusoidal
activity; (iv) suppression (Sup), i.e., suppression of background activity

to ≤10 μV; and (v) artifact: no visible EEG pattern because of artifacts
at seizure onset.

2.2. CNN for seizure detection

EEG data were segmented using a given time window and converted
into a series of plot EEG images with 224× 224 pixels. The time
window served as a parameter, ranging from 0.5 s to 10 s (0.5, 1, 2, 5,
and 10 s). Assuming normal printing resolution with 300 dots per inch
(DPI), 0.5, 1, 2, 5, and 10 s time windows corresponded to the time
bases of 38, 19, 9.5, 3.8 and 1.9mm/s, respectively. When the size of
the time window was ≤1 s, EEG data were segmented without overlaps;
otherwise, data were segmented every second with overlaps with pre-
vious segments, e.g., a 9-s overlap for a 10-s segment.

A chainer v.1.24, that provides a flexible Python-based deep
learning framework, was used for programming. VGG-16 was used as a
CNN architecture (Simonyan and Zisserman, 2014) because very small
(3× 3) convolution filters efficiently detect small EEG waves. The
original model of VGG-16 was pre-trained using an ImageNet database
to differentiate 1000 classes, and classification errors were 7.4% in
ILSVRC-2014 (Russakovsky et al., 2015). Because the original VGG-16
was designed to differentiate among 1000 classes, the last two layers
had 4096 and 1000 dimensional vectors. We modified these last two
layers as having 32 and two dimensional vectors, respectively, because
we had only two target classes, i.e., seizure and non-seizure (Fig. 1B).
The initial weights of the first 14 layers were the same as the pre-
trained VGG-16, and those of the last two layers were independent and
identically distributed random variables with a mean of zero. For the
training optimizer, the Adam algorithm (Kingma and Ba, 2014) was
used with an alpha (step size) of 10−5, a beta1 (exponential decay rate
of the first order moment) of 0.9, and a beta2 (exponential decay rate of
the second order moment) of 0.999 because this algorithm was com-
putationally efficient and handled non-stationary objectives. The model
was trained using a mini-batch of 40 images for 50 epochs, and the
model of the best epoch with minimal loss was used for testing. One
epoch served as a complete presentation of the training data set to be
learned by the CNN model. The training time depended on the number
of training data images; for reference example, 58,418 images from 23
subjects were used for training to construct a model for testing subject
#2, resulting in 1461 mini-batches on each epoch. The total training
time for 50 epochs was approximately 11 h with GPU of GeForce GTX
1080 Ti (Nvidia Corp., Santa Clara, CA). We also confirmed that the
validation accuracy increased with reduced training loss, when the
validation data had a seizure/non-seizure ratio of one to one (Fig. 3).

To train CNN models, all the segments fully within seizure states
were used to model seizure class, while the segments 8 times longer
than the seizure period were randomly selected from inter-ictal states,
defined based on the separation from the seizure state by> 1 h, to
model non-seizure class during CNN learning.

The trained CNN classified every segment of EEG, i.e., every 0.5 s
for the 0.5-s segment and every second for the remaining segments, as
either seizure or non-seizure. To quantify the performance of the CNN
classification, the seizure/non-seizure labels by CNN were compared
with those assigned by epileptologists. When deriving the true positive
and true negative rates, segments including a seizure period were
considered as seizure states, and those not including seizure periods as
non-seizure states. We evaluated the classification performance either
in leave-one-out testing or pairwise testing (Fig. 1C). In the leave-one-
out testing, a model was trained with EEG data from 23 out of 24
subjects and tested with EEG data from the last remaining subject. In
the pairwise testing, a model was constructed from a single subject's
data and tested with EEG data from each subject individually.

For practical use, we defined a seizure index as the number of sei-
zure labels within 10 s and issued a seizure alarm when the index ex-
ceeded a given discrimination threshold (0−10). Based on a receiver
operating characteristic (ROC) curve, defined as a cumulative

Table 1
Subject information. (A) Individual subjects. (B) Summary of patient demo-
graphics.

(A)

Sb# Age Sex Sz time
(mean), s

# of
Sz

Total
Sz
time, s

Total
rec
time, h

Sz
onset
pattern

Epileptic
focus

Sz
type

1 8 F 93 1 94 88.2 RSA OLE FBTCS
2 18 F 103 6 624 47.7 PFA TLE FIAS
3 34 F 376 5 1889 39.9 RSA TLE FIAS
4 39 M 12 11 153 20.9 PFA PLE FIAS
5 19 M 53 3 163 113.6 RSA OLE FIAS
6 62 F 172 5 866 66.8 RED MF FAS
7 34 M 94 3 287 90.0 PFA MF FIAS
8 37 M 12 4 52 71.3 RSA TLE FIAS
9 20 M 120 1 121 94.8 RSA TLE FIAS
10 30 M 50 1 51 19.6 RSA TLE FIAS
11 24 F 42 15 656 60.1 Sup MF FIAS
12 44 F 51 2 105 59.4 PFA TLE FIAS
13 20 M 29 12 371 38.2 Sup MF FIAS
14 43 F 188 2 378 27.8 RSA TLE FBTCS
15 17 M 40 3 125 16.8 Sup OLE FIAS
16 32 F 41 4 168 20.5 RSA TLE FIAS
17 11 M 27 2 57 21.4 PFA TLE FIAS
18 19 F 48 1 49 41.9 RSA TLE FIAS
19 39 M 69 1 70 5.0 Sup TLE FBTCS
20 30 M 120 2 243 43.4 RSA TLE FIAS
21 18 M 14 3 47 20.9 Sup DMF TS
22 37 M 16 6 106 22.0 PFA FLE FAS
23 49 F 115 1 116 24.5 RSA PLE FIAS
24 34 M 52 3 159 69.8 PFA MF FIAS

(B)

Age (mean ± STD) 30 ± 13
Sex (n) M 14

F 10
Sz Time (s) 81 ± 79
# of Sz 4 ± 3.7
Total Sz time (s) 290 ± 403
Total rec time (h) 46.8 ± 29.4
Sz onset pattern RSA 11

PFA 7
RED 1
Sup 5
Artifact –

Epileptic focus OLE 3
TLE 12
PLE 2
MF 5
DMF 1
FLE 1

Sz type FAS 2
FIAS 18
FBTCS 3
TS 1

Abbreviations: RSA, Rhythmic slow activity; PFA, Paroxysmal fast activity;
RED, Repetitive epileptiform discharge; Sup, Suppression; OLE, Occipital lobe
epilepsy; TLE, Temporal lobe epilepsy; PLE, Parietal lobe epilepsy; MF,
Multifocal; DMF, Diffuse multifocal; FLE, Frontal lobe epilepsy; FBTCS, Focal to
bilateral tonic-clonic seizure; FIAS, Focal impaired awareness seizure; FAS,
Focal aware seizure; TS, Tonic seizure; Sb, Subject; Sz, Seizure; rec, recording;
STD, Standard deviation.
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distribution function of the true positive rate vs. true negative rate at a
given discrimination threshold, the best discrimination threshold for
each subject was identified as a threshold with the minimum false
alarm rate under the best detected seizure rate. The accuracy of the
seizure alarm was then evaluated by minutes: when a given time
window of 1min contained a seizure period with alarms, this window
was labelled as having a true positive alarm; the window with neither
seizure states nor alarms was labelled as true negative; the windows
including either seizure states only or alarms only, were labelled false
negative or false positive, respectively. For comparison, we also used
commercially-available software(BESA (Hopfengärtner et al., 2014)
and Persyst (Wilson, 2004)) and evaluated the accuracy of seizure
alarms as described for our seizure alarm.

3. Results

3.1. Leave-one-out testing

We first evaluated the performance of image-based seizure detection
by CNN in a leave-one-out cross-validation. A CNN model was trained
with EEG data from 23 out of 24 subjects and used to test EEG data from
the last remaining subject, which was completely new data for the
model. Therefore, a total of 24 CNN models were constructed and
tested. The output of CNN was a label of ‘seizure’ or ‘non-seizure’ for a
given test EEG image. The true-positive rates of this classification de-
pended on the length of the time window ranging 0.5–10 s (Fig. 2A;
Kruskal-Wallis test, p < 10−5). The best true positive rate was ob-
tained using a 1-s time window; 0.5-s time window was too short to
identify EEG features of seizure state (0.5 s vs. 1 s: post-hoc Dunn's test,
p < 10−6), while using long segments of 10 s led to a failure to detect
the onset of seizure state, resulting in tendency of deterioration of the
true positive rate (1 s vs. 10 s: post-hoc Dunn's test, p= .083). Based on
these results, the time window was fixed at 1 s hereafter.

For comparison, the performances of BESA and Persyst were also
quantified by seconds (Fig. 2A): As compared to those commercially
available algorithms, our CNN performed better in terms of true posi-
tive rates (Kruskal-Wallis test, p= .0003; post-hoc Dunn's test: CNN vs.

BESA, p= .00006; CNN vs. Persyst, p= .019; BESA vs. Persyst,
p= .096), but worse in terms of true negative rates (Kruskal-Wallis test,
p < 10−6; post-hoc Dunn's test: CNN vs. BESA, p < 10−6; CNN vs.
Persyst, p= .00023; BESA vs. Persyst, p= .006). A poor performance in
true negative rates was highly correlated with the probability of seizure
label throughout all monitoring, which did not correlate with the true
positive rate (Fig. 4A), suggesting that the inter-ictal EEG contained
seizure-like characteristics and was hard to discriminate from a seizure.
Specifically, 6 subjects with the lowest true negative rates were esti-
mated as outliers in terms of seizure label probability (Fig. 4B; Smirnov-

Fig. 2. Leave-one-out testing. (A) Classification accuracy of CNN in leave-one-out testing. True positive and true negative rates are given. For CNN, the length of the
time window served as a parameter (0.5–10 s). For comparison, classification accuracies of existing software, i.e., BESA (B) and Persyst (P), are also indicated. Insets
on the left show classification accuracy in individual subjects. The length of the time window is indicated by symbols. Data from each subject are depicted in a
different color here and hereafter. The right insets depict boxplots of classification accuracy as a function of the length of the time window and software. Each broken
line refers to data from an identical subject. A boxplot depicts the median as the central mark of the box, and the 25th and 75th percentiles as the edges of the box
with the whiskers extending to the most extreme data points. (B) Seizure label around the onset of seizure state. In the upper 3 insets, each line indicates a period with
seizure label from an indicated method. Each row corresponds to a single seizure, and 53 seizures with a duration of 30 s or longer were examined. Different subjects
are indicated by colors. The bottom inset shows the probability of seizure label around the onset of seizure state for each method.

Fig. 3. Accuracy of validation (green), accuracy of training (red), loss of vali-
dation (orange), and loss of training (blue) during the first 5000 mini-batches
for subject #2. The seizure/non-seizure ratio in training data and validation
data were one to eight and one to one, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)
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Grubbs one-sided (max) test, p < .05), which is why CNN might have
issued too many false alarms in these subjects.

The CNN attributed the seizure label successively following the
onset of seizure state (Fig. 2B), but also accidentally in inter-ictal states.
Because the output of CNN was obtained every second for a given 1-s
time window, the true negative rate of 0.99 (Fig. 2A), i.e., the false
positive rate of 0.01, indicated that false alarms were raised every
100 s. To reduce such frequent false alarms, we defined an index for
seizure detection as the number of seizure labels within 10 s. During
long-term monitoring, the seizure index exhibited a rapid increase se-
lectively at the onset of seizure state in the presence of confusing ar-
tifacts (Figs. 5A and 6A) or during the seizure period (Fig. 5B) in certain
subjects, but was not accurate for others (Figs. 5C and 6B). When the
detection performance was poor, the seizure index often fluctuated
widely during inter-ictal states (e.g., up to 4 in Fig. 5C; Fig. 4).

We then evaluated the quality of seizure alarms, issued when the
seizure index exceeded a given discrimination threshold (0–10). To
identify the best threshold, we obtained a ROC curve of seizure alarm
(Fig. 7A), as a cumulative plot with a true positive rate on the abscissa
vs. a true negative rate on the ordinate at a given discrimination
threshold. To draw this ROC curve, the true positive and true negative
rates were defined by minutes: when a given time window of 1min
contained seizure period with alarms, this window was labelled as
having a true positive alarm; the window with neither seizure states nor
alarms was labelled as true negative; the windows with seizure states
only were labelled as false negative, and those with alarms only as false
positive. Because this seizure alarm led to detection delays (e.g.,
Fig. 5B), the performance was not always consistent with the segment-
based CNN accuracy in Fig. 2A. Consequently, using an optimal

Fig. 4. Classification accuracy vs. probability of seizure label. (A) True negative
rate, but not true positive rate, correlates with the probability of seizure label.
(B) Histogram showing the probability of seizure label. Six subjects were sta-
tistically considered as outliers (light gray), for which the accuracy of classifi-
cation by CNN was low.

(caption on next page)
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discrimination threshold, all seizures were detected without any false
alarms in half of test subjects (Fig. 7B). As compared with BESA and
Persyst, our method performed best in terms of the seizure detection
rate (Kruskal-Wallis test, p= .0054; post-hoc Dunn's test: CNN vs.
BESA, p= .0023; CNN vs. Persyst, p= .01416; BESA vs. Persyst,
p= .55), but in turn, showed higher rates of false alarm than BESA
(Kruskal-Wallis test, p= .0038; post-hoc Dunn's test: CNN vs. BESA,
p= .0035; CNN vs. Persyst, p= .95; BESA vs. Persyst, p= .0043).

3.2. Pairwise testing

The performance of seizure detection by CNN was poor in certain
subjects. Several possibilities underlying these negative results can be
considered. First, the inter-ictal EEG was too aberrant to be differ-
entiated from the seizure state (e.g., Fig. 5B). In such cases, the seizure
index should fluctuate widely during the inter-ictal state, resulting in a
relatively high false-positive rate (Fig. 5C). Second, the seizure pattern
in the test data might be different from those in the training data, re-
sulting in low true-positive rates. In fact, RSA (11 subjects) and PFA
(seven subjects) were more common than Sup (five subjects) and RED
(one subject) in our dataset, and CNN tended to perform better for RSA
and PFA than for Sup and RED (Fig. 8; Kruskal-Wallis test for true
positive rates, p= .104). To overcome the second possibility, a CNN
model should be trained with a wide variety of seizure patterns. If this
was the case, a CNN model based on single subject data should suc-
cessfully detect seizure states in subjects with a similar seizure pattern.
To verify this hypothesis, we attempted a pairwise testing, wherein a
CNN model constructed from single subject data was used to test the
models based on data from other subjects.

In pairwise testing, the performance of seizure detection varied
among the subjects as expected (Fig. 9A and Fig. 9B). However, the best
performance in the pairwise testing was comparable or superior to the
performance in leave-one-out testing for all subjects. For each test pair
of subjects, the better true positive rate was defined as a distance among
each pair. The distance of each subject data was then visualized as a
dendrogram in Fig. 9C, which demonstrated that the true positive rate
in leave-one-out testing was high when a seizure was successfully de-
tected by a pairwise testing. On the contrary, when given subject data
were distant from other subject data, i.e., low performance in all sets of
pairwise testing, leave-one-out testing resulted in poor performance.
These results support our hypothesis that the performance of seizure
detection depends on the similarity of seizure patterns between the
training dataset of the CNN model and the test data. Thus, training a
CNN model with a large amount of data containing a variety of seizure
patterns should improve image-based seizure detection and other EEG-
based diagnosis systems.

4. Discussion

To our knowledge, the present study is the first comprehensive at-
tempt to automatically evaluate EEG as plot images. We demonstrated
that artificial visual recognition can achieve a satisfactory level of sei-
zure detection, which currently relies on skillful visual inspection by
expert epileptologists in clinical diagnosis. The median of the true po-
sitive rate of CNN labelling by seconds was 74%, which was higher than
that of commercially available seizure detection software, i.e., 20% for

BESA and 31% for Persyst. For practical use, the median of detected
seizure rate by minutes was 100% for CNN, which was higher than the
73.3% for BESA and 81.7% for Persyst. We also demonstrated that the
best performance in pairwise testing was comparable or superior to the
performance in leave-one-out testing in all subjects, suggesting that
adding new data with a variety of seizure patterns should improve the
performance of our method.

Our dataset included subjects with different backgrounds, which
made automatic seizure detection challenging; for example, the ages of
the subjects ranged from 8 to 62 years; all subjects had focal epilepsy,
which makes it more difficult to detect seizure states than generalized
epilepsy; and each seizure had a different epileptic focus and EEG
patterns. For such a wide range of data, the performance of hand-made
numerical features may not always be satisfactory (Ahmedt-Aristizabal
et al., 2018). To address this problem, some pioneering works have
already reported the first attempt of deep learning with CNN for au-
tomatic seizure detection (Acharya et al., 2018; Thodoroff et al., 2016).
For example, Thodoroff et al. (2016) reported that CNN classifiers were
successful in patient-specific but not in cross-patient seizure detection;
Acharya et al. (2018) achieved 95% accuracy in seizure detection by
CNN, but the data was limited to five subjects, each of which had 300
segments of single-channel EEG signals with a duration of 23.6 s (7080 s
in total). The large amount of data (1124.3-h continuous multichannel
EEG data from 24 subjects) differentiated our work from these previous
studies, and was a key success factor in verifying our hypothesis that
EEG morphology in plot images contains universal features of seizure
state used by epileptologists.

Additionally, visual seizure detection requires experience
(Benbadis, 2010). Inexperienced trainees and traditional seizure de-
tection algorithms sometimes recognize artifacts, e.g., chewing artifacts
with rhythmicity, as pathological discharges (Henry and Sha, 2012;
Saab and Gotman, 2005). CNN could differentiate physiological arti-
facts from pathological discharges (Fig. 6A), suggesting that the em-
pirical criterion for distinguishing physiological and pathological fea-
tures has been achieved through training with large amounts of data.

The false alarm of CNN seizure detection was issued at 0.2 per hour,
i.e., 1 false alarm per 5 h, which was comparable to that of Persyst, but
was 10 times higher than that of BESA. This level of false alarm resulted
in unnecessary review of 1-min EEG in 5 h of recording, which appears
acceptable for practical use. Nevertheless, false alarms in certain sub-
jects were issued too frequently for practical use. In these subjects,
inter-ictal discharges may have appeared similar to ictal EEG of others,
and therefore, seizure labels of CNN output were observed more fre-
quently. In our dataset, as true negative rates deteriorated linearly with
the probability of seizure label, the results by CNN were not reliable
when the probability of seizure label was higher than 0.02 (Fig. 4).

For classification of plot images in our study, the optimal time
window was 1 s, while epileptologists tend to use 10 s/page (30mm/s)
(Foldvary et al., 2000). This discrepancy was due to several reasons.
First, in the CNN model used in this study, the image size was fixed to
224× 224 pixels, which was too small to plot a 10-s EEG with visible
epileptic discharges. A high-resolution supported CNN could therefore
improve the performance in this condition. Second, although all the
segments fully within the seizure states were used as the training model
for the seizures label, the segments including seizure states were also
partially considered as segments with seizure labels in testing. To re-
cognize seizure portions in those segments, more sophisticated algo-
rithms such as region-based CNN could offer a solution.

The main advantage of CNN is that retraining with new data im-
proves the performance. For example, in subject #6, after left fronto-
temporal craniotomy, irregular slow wave or high amplitude spikes
continuously appeared in the inter-ictal state in the left temporal lobe
(Fig. 6B), and during ictal state, central repetitive slow wave appeared
in the inter-ictal discharges (Fig. 6C). CNN correctly recognized irre-
gular inter-ictal discharges as non-seizures, but could not detect the
ictal state, possibly because our dataset did not contain this type of

Fig. 5. Representative data of long-term monitoring of seizure index. Cross
marks show seizures diagnosed by epileptologists. Circles show seizure labels
given by the available seizure detection algorithms, BESA (orange circles) and
Persyst (red circles). Upper insets show magnification around several seizure
onsets. (A) Seizures for subject #2 were detected without delays by both our
seizure index and the available algorithms. (B) Seizures for subject #13 were
detected by our seizure index with some delays but overlooked by other algo-
rithms. (C) Reliable seizure detection was difficult by both our seizure index
and available algorithms for subject #6.
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Fig. 6. Representative EEG. (A) A seizure in subject #18 occurred during eating. Artifacts due to chewing were observed in the beginning, followed by focal epileptic
discharges at the seizure onset and focal to bilateral tonic-clonic seizure in the end. (B) A seizure in subject #6 (Fig. 5C) was overlooked by CNN. An example of inter-
ictal EEG from the same subject is shown in the bottom inset. The filled period in the green bar below EEG traces was labelled as a seizure by epileptologists, and the
blue by CNN. The unfilled period was labelled as a non-seizure state. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 7. The performance of seizure detection. (A) ROC curve plotting true po-
sitive vs. true negative rates at a given threshold of seizure index ranging from 0
(an empty circle) to 10 (a filled circle). (B) The frequency of false alarms and
the probability of seizure detection at the best threshold of seizure index. The
conventions comply with Fig. 2B.

Fig. 8. The performance of CNN as a function of clinically diagnosed seizure
pattern (Table 1).

Fig. 9. Pairwise testing. (A) True positive rates of CNN trained using data from
an individual subject. A CNN model was trained using data from each subject
on the abscissa and tested using data from other subjects. Of note, the best
classification accuracy in pairwise testing outperformed that in leave-one-out
testing (cross marks). (B) Classification accuracy matrix. CNN models were
trained using data on the abscissa and tested using data on the ordinate. (C) A
similarity of seizure patterns among the subjects as visualized by dendrogram
based on the classification accuracy in pairwise testing. The performance of the
leave-one-out testing (the upper inset) was poor when the distance from any
other subject, based on the classification accuracy in pairwise testing, was large.
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repetitive slow wave pattern in other subjects. Adding EEG data with
similar patterns may improve the performance in this subject. Con-
versely, false-positive EEG images could be used to retrain the CNN
model to have them recognized as non-seizures. Furthermore, identical
datasets could be used to train another CNN with a different montage,
by which some types of seizures would become easier to detect.

EEG images in our analysis were not evaluated as time series, but
temporal information such as subtle changes in pre-ictal period is cri-
tical for epileptologists to detect a seizure onset. For example, in
Fig. 6A, epileptologists first detected a continuing theta oscillation and
checked back to the previous EEG to identify the slower oscillation as
the seizure onset. Such epileptologist-like strategy could be im-
plemented by recurrent neural network combined with our CNN model.
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