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Accumulating evidences support that amino acids direct the fate decision of immune cells.
Glycine is a simple structural amino acid acting as an inhibitory neurotransmitter. Besides,
glycine receptors as well as glycine transporters are found in macrophages, indicating that
glycine alters the functions of macrophages besides as an inhibitory neurotransmitter.
Mechanistically, glycine shapes macrophage polarization via cellular signaling pathways
(e.g., NF-kB, NRF2, and Akt) and microRNAs. Moreover, glycine has beneficial effects in
preventing and/or treating macrophage-associated diseases such as colitis, NAFLD and
ischemia-reperfusion injury. Collectively, this review highlights the conceivable role of
glycinergic signaling for macrophage polarization and indicates the potential application of
glycine supplementation as an adjuvant therapy in macrophage-associated diseases.
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INTRODUCTION

Macrophages are found in almost all tissues such as Kupffer cells in hepatocyte (1) and microglia in
central nervous system (2). These macrophages engulf cellular debris, microbes, death cells and
foreign substances by stretching filopodia (3, 4). Although the polarizations of macrophages are
multiple, they are roughly polarized to two distinct subsets: classically activated (M1) phenotype and
alternatively activated (M2) phenotype (5, 6). Macrophages polarize into M1 phenotype to perform
their pathogen-scavenging function when exposed to T-helper 1 (Th 1) type cytokines or
inflammatory mediators, such as interferon gamma (IFN-g) and lipopolysaccharide (LPS) (7), or
M2 phenotype to perform their anti-inflammatory effects, including wound healing and anti-tumor
ability under conditions of exposure to Th 2 cytokines like IL-4 and IL-10 (8). Indeed, various
contributors are related to the fate of macrophages. Notably, metabolism pathways and metabolites
are the best examples for directing macrophage growth and survival by providing energy
and substrates, and instructing functions of macrophages (9, 10). For example, altered
amino acid metabolism [e.g., arginine metabolism (11)] is a well-accepted character to define
macrophage polarization.
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Traditionally, amino acids are simply divided into two
categories: essential amino acids and non-essential amino acids
(12). However, many traditionally considered non-essential
amino acids are not only used as substrates for protein and
peptide synthesis, but also involved in regulating metabolism,
signal transduction and immune responses (13). Glycine consists
of one carbon (C) atom, two hydrogen (H) atom, one carboxyl-
group (COOH) and one amino-group (NH2) (14). Of note,
recent studies have shown that glycine affects functions of
macrophage (15, 16). In this review, we will summarize
glycinergic system in macrophages, discuss how glycine
contributes to the polarization of macrophages, and list some
examples that glycine mediates macrophage-associated diseases.
GLYCINERGIC SYSTEM IN
MACROPHAGES

Glycine Receptors in Macrophages
Glycine is an inhibitory neurotransmitter (17), which exerts
inhibitory effect by binding to glycine receptors (GlyRs) (18–
20). GlyRs consist of a subunits (48kDa), b subunits (58kDa)
and a 93 kDa subunit anchoring protein gephyrin (21). GlyRs
also present in non-neuron cell membrane, such as macrophages
(20, 22). For example, the subunits of GlyRs are found in rat
Kupffer cells, splenic macrophages and alveolar macrophages,
and the sequences of the cloned fragment for the GlyRs b subunit
in macrophages are more than 95% homologous with the GlyRs
from the spinal cord (22). It should be noted that the GlyRs
subunits differ in various types of macrophages. For example,
Kupffer cells have a1-subunit, a4-subunit and b-subunit, while
a2-subunit, a4-subunit and b-subunit are found in splenic and
alveolar macrophages, as well as only a1 subunit in the
peritoneal macrophages in rats (22, 23). The reasons for these
differences might result from the origins of macrophages (24)
(embryonic origin and monocyte derivation), species of animals
and even culture condition of isolated macrophages. It is also
intriguing to know whether such difference presents in mouse or
human macrophages. Although GlyRs have been identified on
macrophages, no studies have investigated the effects of GlyRs
subunits in macrophage fate decision. Notably, blocking the
receptor with strychnine (25, 26) alleviates glycine-induced
intracellular Ca2+ decrease in LPS-stimulated macrophages
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(25, 27, 28), suggesting the receptor highly shapes the fate
decision of macrophages. To fully illustrate the function of
GlyRs in macrophages, the comparative analysis towards
expression and location of GlyRs in macrophages from different
tissues and subsets (e.g., resting macrophages vs.M1 phenotype or
M2 phenotype) should be performed. Then the function of GlyRs
subunits in macrophage fate decision can be explored with
chemical ablation or genetic manipulation.

Glycine Transporters in Macrophages
In the central nervous system (CNS), glycine is transported into
cells by neutral-amino-acid transporters (NAATs, Table 1) (29,
30); however, the presence of NAATs in macrophages remains to
fully explore. Interestingly, rat M1 macrophages are sensitive to
NAATs substrate 2-aminoisobutyric acid (AIB) (23) and the
application of methylamino-AIB inhibits glycine-induced
inward currents in microglia (31), suggesting that NAATs
might be expressed in macrophages. As expected, it has been
demonstrated that rat peritoneal macrophages express at least
one of NAATs, especially glycine transporter-1 (GlyT1) (23).
Further investigations are needed to examine the expression of
NAATs in mice and human macrophages.
GLYCINE METABOLISM IN
MACROPHAGES

In mammals, glycine can be synthesized from serine, choline,
threonine and hydroxyproline by different metabolic pathways
(32). Since serine and glycine are biosynthetically linked (33),
serine and its precursors can generate glycine. The conversion of
serine to glycine catalyzed by serine hydroxymethyltransferase
(SHMT) is the main way for glycine synthesis (34, 35). When
glycine deficiency occurs, such as intrinsic glycine uptake
capacity limitation or environmental glycine deprivation,
SHMT can support glycine synthesis (36).

In addition to participating in protein synthesis, glycine is a
precursor of peptides, nucleic acids as well as methyl donors.
Upon LPS stimulation, the levels of intracellular glycine and
glycine metabolites such as glutathione (GSH) and S-
adenosylmethionine (SAM) increased (37–39). Interestingly,
adding glycine to the serine-deprived medium failed to rescue
IL-1b secretion in macrophages upon LPS stimulation (38).
October 2021 | Volume 12 | Article 762564
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TABLE 1 | Neutral-amino-acid transporters which transport glycine.

System Gene Transporters (Full name and abbreviation)

Sodium dependent NAATs
A SLC38A1 Serine acetyltransferase 1 (SAT1)

SLC38A2 SAT2
SLC38A4 SAT3

Gly SLC6A9 Glycine transporter 1 (GlyT1)
SLC6A5 GlyT2

Sodium independent NAATs
asc SLC7A10 Asc Type Amino Acid Transporter 1/2 (ASC1/2)
imino SLC36A1 Proton-coupled amino acid transporter 1 (PAT1

SLC36A2 Proton-coupled amino acid transporter 2 (PAT2)
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Besides this, lack of glycine cannot affect the polarization of
macrophages (39). Thus, extracellular glycine may not influence
macrophage metabolism. U-[13C]-labeling shows that glycine is
mainly converted from glucose and serine, and it can be
subsequently converted to ADP, ATP, GSH and SAM (38).
Strikingly, U-[13C]-glycine revealed a remarkable attenuation
of extracellular glycine-derived GSH compared to serine
(synthesis from glycine)-derived GSH (38). Moreover,
supplementary glycine in serine deprived medium failed to
rescue intracellular GSH in macrophage. These phenomena
indicate that glycine utilization in macrophages is mainly
through intracellular conversion of serine, not via exogenous
glycine supply.
GLYCINE REGULATES SIGNALING
PATHWAYS IN MACROPHAGES

The functions of macrophages are highly responsive to their
micro-environmental stimuli. Upon the activation of Toll-like
receptor (TLR) or interferon signaling, M1 macrophages arise in
inflammatory to eliminate pathogens (40–42). Whereas M2
macrophages, usually found in Th2-dominated responses, can
mediate helminth immunity, asthma, and allergy (43).

Among various signaling pathways regulating macrophage
inflammation, NF-kB is a main contributor to orchestrate
macrophage polarization (44). Glycine can prevent the
activation of nuclear factor-kB (NF-kB) by inhibiting the
degradation of inhibitor of NF-kB (IkB) in pro-inflammatory
macrophages (Figure 1A) (45). Additionally, glycine affects
inflammasome assembly in pro-inflammatory macrophages
(46). However, given glycine treatment could induce IkB
degradation in resting macrophages (45), we still could not
exclude the possibility that glycine causes stress responses in
resting macrophages. In addition, in the context of glycine
treatment, the decreased phosphorylation of IkB kinase-a
(IKK-a) and IkB kinase-b (IKK-b) is also observed (45, 46)
(Figure 1B). Glycine reduces LPS-induced upregulation of
nucleotide binding domain like receptor protein 3 (NLRP3)
(47). This process can be achieved by up-regulating the
expression of NRF2 and its down-stream signaling pathways to
eliminate reactive oxygen species (ROS) (47) (Figure 1C).

PI3K (phosphatidylinositol 3-kinase) and Akt (protein kinase
B) pathways regulate tremendous signaling pathways, including
NF-kB and mitogen-activated protein kinase (MAPK) signaling
(48) related to macrophage polarization (49). Glycine can up-
regulate Akt by blocking phosphatase and tensin homolog
deleted on chromosome ten (PTEN), then inhibit NF-kB and
hypoxia induced factor-1 a (HIF1-a) in microglia (50) in the
context of ischemia-reperfusion injury. Except for macrophages,
glycine also inhibits PTEN and activates Akt in other tissues or
cells (51, 52) (Figure 1D). Unfortunately, there is still no direct
evidence showing whether glycine can affect proinflammatory
macrophage polarization induced by canonical stimuli (e.g., LPS
and/or IFN-g) through PTEN-Akt pathway. Notably, Akt kinases
have distinct effects in macrophage polarization, with Akt1
Frontiers in Immunology | www.frontiersin.org 3
ablation leading to an M1 phenotype and Akt2 ablation
resulting in an M2 phenotype (53). It has not been studied
which subunit of Akt is regulated by glycine. Therefore, it is
necessary to further explore the connection between glycine and
the Akt signaling pathway in guiding macrophages polarization.
GLYCINE ALTERS microRNAs IN
MACROPHAGES

MicroRNAs (miRNAs) play vital roles in a great deal of
biological processes (54) and could function as crucial
regulators that support macrophage polarization (54, 55). It
has been reported that some miRNAs which associated with
macrophages are related with glycine. For example, glycine
alleviates subarachnoid-hemorrhage (SAH) induced neuron
inflammation, which is mediated by miRNA-26b/PTEN/Akt
signaling pathway in microglia (56) (Figure 2A). Inhibition of
miRNA-26b or activation of PTEN expression suppressed the
protective function of glycine (56). MiR-301a is abundantly
expressed in hypoxic pancreatic cancer cell-derived exosomes
(57, 58), which can promote M2 macrophage polarization
through activating PTEN/PI3K signaling pathway (57).
Interestingly, glycine has been reported to enhance the
expression of miR-301a in the cortical neurons (59). Thus,
miR-301a might be a potential target for glycine to regulate
M2 macrophage functions (Figure 2B).

MiR-19a-3p can suppress LPS/IFN-g-induced M1
macrophage polarization via inhibiting STAT1 (signal
transducer and activator of transcription-1) (60). In addition,
glycine regulates miR-19a-3p/AMPK pathway to alleviate
ischemic stroke injury (61). Therefore, glycine may promote
M1 macrophage polarization by regulating miR-19a-3p
(Figure 2C). Besides influencing M1 macrophages polarization,
miR-19a-3p is capable of suppressing M2 macrophage
polarization by inhibiting STAT3 when overexpressed
(62) (Figure 2D).

Notably, miRNAs can regulate GlyTs function. Human
GlyT1 possesses several miRNAs targeting sites within the
3’UTR (miR-7, miR-30, miR-96, miR-137, miR-141). Among
them, miR-96 and miR-137 negatively regulate GlyT1 under
physiological conditions (63) (Figure 2E). It is intriguing to
investigate whether microRNAs mediate the regulation of
glycinergic system in macrophage polarization.
APPLICATION OF GLYCINE IN
MACROPHAGE-RELATED DISEASES

Obesity and Associated Metabolic
Diseases
The white adipose tissue can produce many adipokines such as
leptin, TNF-a, and interleukins, due to the accumulation of
macrophages (64–66). In adipocytes differentiated 3T3-L1 cells,
applying 10 mM glycine in the medium decreases the expression
October 2021 | Volume 12 | Article 762564
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of IL-6, resistin and TNF-a (67). Similarly, in glutamate-induced
obese mice, the application of glycine reprograms fat metabolism
and decreases the expression level of TNF-a and IL-6 (68).
Serum and liver glycine levels in obese rats are lower than thin
rats (69) and dietary supplementation with glycine lowers
circulating triglycerides in Zucker fatty rats (70). These
Frontiers in Immunology | www.frontiersin.org 4
phenomena were also found in humans. The plasma glycine
level is lower in obese and diabetic patients (71, 72) in
comparison to healthy donor. In clinical application, dietary
supplementation of glycine can improve insulin response and
glucose tolerance (73, 74). Impaired glycine metabolism may
play a causative role in NAFLD, glycine-based treatment
FIGURE 1 | Probable cellular pathways that glycine influences M1 macrophages polarization. (A) Glycine inhibits the degradation of IkB in M1-macrophages.
(B) Glycine inhibits M1-macrophages polarization via inhibiting IKK phosphorylation. (C) Glycine up-regulates NRF-2/HO-1 to blunt NLRP3 in inflammasome in M1-
macrophages. (D) Glycine inhibits NF-kB by blocking PTEN to up-regulate Akt in M1-macrophages. LPS, lipopolysaccharide; TLR4, toll-like receptor 4; MyD88,
myeloid differentiation primary response gene 88; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; IkB, inhibitor of NF-kB; IKK, IkB kinase;
TNF-a, tumor necrosis alpha; TNFR, TNF-a receptor; TRAF, TNFR associated factor; PTEN, phosphatase and tensin homolog deleted on chromosome ten; PIP3,
phosphatidylinositol (3,4,5)-trisphosphate; Akt, protein kinase B.
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stimulating hepatic GSH synthesis in experimental NFLD (75).
These results show that glycine could be helpful for alleviating
inflammatory state in obesity.

Non-alcoholic steatohepatitis (NASH) and non-alcoholic
fatty liver disease (NAFLD) are stubborn illnesses because of
their prevalence, difficulties in diagnosis, complex pathogenesis,
and lack of approved therapies (76). Macrophages are involved
in the development of steatosis, inflammation and fibrosis in
NASH (77). Furthermore, an increase of M1 macrophages in
adipose tissue contribute to NASH due to its secretion of various
proinflammatory signals, and these inflammatory factors move
to hepatic and trigger local macrophages polarization (78). It has
been found that glycine alleviates NASH index in high fat and
high sucrose induced NASH in rats (79). Like obesity patients,
plasma glycine levels are lower in NAFLD patients (80).
Moreover, in a metabolic steatohepatitis mice model, glycine
decreases cytokines level and increases M2/M1 macrophages
ratio (81). These results indicate that glycine may have
potential to treat non-alcoholic hepatic diseases.

Glycine could regulate the intestinal flora and decrease
intestine macrophage infiltration in mice under LPS
Frontiers in Immunology | www.frontiersin.org 5
stimulation (82). Interestingly, pro-inflammatory macrophage
accumulation was found in obesity humans (83). Besides this,
increased pro-inflammatory macrophages were found in the gut
of high fat diet (HFD) fed mice (84). Thus, glycine may potential
to decrease intestinal pro-inflammatory macrophages infiltration
to help alleviating obesity and obesity associated metabolic
diseases. Whether glycine can affect intestinal macrophage by
affecting intestinal flora needs to be further investigation.

Ischemia-Reperfusion Injury
Ischemia-reperfusion injury is a serious problem after visceral
transplantation (85, 86). Glycine significantly increases the
survival rate after ischemia-reperfusion and alleviates the
inflammatory injury from ischemia-reperfusion. Local
perfusion with glycine can alleviate warm ischemia-reperfusion
injury in small intestine of rats (87, 88) and liver of mice (89–91),
as well as renal ischemia reperfusion injury caused by renal
hypothermic (92). Interestingly, there exists a solid connection
between ischemia-reperfusion injury and macrophages. The
activation and migration of macrophages can aggravate
inflammation, apoptosis or other stress in apparatus (93, 94).
FIGURE 2 | Glycine shapes macrophage polarization through micro-RNAs. (A) Glycine up-regulates miR-26b to blunt M1-microglia polarization by suppressing
PTEN and activating Akt. (B) Glycine possibly up-regulates miR-301a to promote M2-macrophages polarization via activating PI3K/Akt. (C, D) Glycine down-
regulates miR-19a-3p. (C) MiR-19a-3p negatively control STAT1 and AMPK to blunt M1-macrophages polarization. (D) MiR-19a-3p negatively control STAT3 to
inhibit M2 macrophage polarization. (E) MiR-96 and miR-137 negatively regulate GlyT1. PTEN, phosphatase and tensin homolog deleted on chromosome ten; Akt,
protein kinase B; STAT, signal transducer and activator of transcription; GlyT, glycine transporter.
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Fortunately, the researchers found that glycine inhibited the
activation of Kupffer cells and their interleukins production
during liver ischemia-reperfusion (89, 90, 95). In short, glycine
is helpful for postoperative recovery after ischemia-reperfusion.

Cancer/Tumor
Tumor associated macrophages (TAMs) are highly prevalent in
many solid tumors (96, 97). Disrupting the malignant interaction
between TAMs and cancer cells may greatly contribute to the
survival of cancer patient. However, current targeted therapies of
TAMs still fail to give a satisfied effect in tumor control because it
is truly difficult to completely clear tumor and simultaneously
avoid the high toxicity to patients. Thus, it is urgent to find
effective and safe targeted TAM therapies.

Regulating TAMs is one of the targets for cancer treatment.
Because of its infinite proliferation ability, cancer cells are highly
dependent on glycine and serine uptake for nucleotide synthesis
and one-carbon metabolism. Silencing SHMT2 and/or depriving
extracellular glycine halts the rapid proliferation of cancer cells, but
is not capable of blocking their proliferation completely (97). This
phenomenon can rescue by the addition of glycine in the medium
(97). Strikingly, glycine is generally consumed by highly
proliferative cancer cells, but released by slow-proliferating cells
(97). Thus, the demands of glycine may be distinct in different
types or different proliferation states of cancer cells. Furthermore,
high glycine concentration in tumor microenvironment can be
consider as a clinical indicator of poor prognosis of tumor (98).
Regulating glycine level in the tumor microenvironment may be an
effective treatment for inhibiting the proliferation of cancer cells.

Colitis
Colitis is an idiopathic intestinal inflammatory disease involving
the colon, the clinical manifestations are diarrhea, abdominal
pain, and even bloody stools (99, 100). Glycine altered colon
microbiota and serum amino acids concentration, as well as
colon interleukin level in 5% acetic acid induced colitis in mice
(101). Similarly, dietary supplementation of 5% glycine alleviates
colitis induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS)
and dextran sulfate sodium (DSS) in rats (102). Besides this,
glycine supplementation ameliorates C. redentium- induced
colitis and enhancing the abundance of Lactobacillus (103). In
summary, glycine supplementation may a nutritional strategy to
alleviate colitis.
Frontiers in Immunology | www.frontiersin.org 6
Taken together, these findings suggest that glycine has a
certain preventive effect on macrophage-related diseases which
are summarized in Table 2. However, the beneficial effects of
glycine in other macrophage-associated diseases and the
underlying mechanisms still need further investigation.
CONCLUDING REMARKS

In this review, we introduced glycinergic system in macrophages,
and summarized how glycine shapes macrophages polarization.
For glycinergic system, GlyRs could be found in macrophages, and
the subunits of GlyRs are varied in macrophages with different
origins. Though it has been already noted that NAATs exist in
macrophages, it is not clear which type of NAATs is expressed in
macrophages. Glycine is supposed to affect macrophage through
different contributors. Mechanistically, glycine alters macrophage
signaling pathways (e.g., NF-kB, NRF2, and Akt) and miRNAs.
Interestingly, other signaling pathways [e.g., ERK (109)] might
also mediate the functions of glycine. Therefore, it is not surprising
that glycine could influence the progresses of several macrophage-
associated diseases (e.g., colitis and NAFLD).

Indeed, the influences of glycine in macrophage activation are
still worth further investigation. Firstly, it is not clear whether
glycine can affect methylation reaction in macrophages. In one-
carbon metabolism, glycine partly provides the carbon
backbones required for the generation of SAM (110), which is
the main methyl donor for cellular methylation reaction (39,
111). Recent studies have shown that the methylation of histone
(39), DNA (112) or mRNA (113, 114) is closely related to
macrophage polarization. Therefore, glycine is likely to affect
macrophage polarization through methylation modification.
Secondly, there are few studies on the effect of glycine on the
metabolism of macrophages. Macrophage metabolism is highly
related with the function output of macrophages (54).
Considering glycine could impact HIF-1a and mTORC1 that
are related to cellular metabolism (e.g., glycolysis), thus studying
the effect of glycine on macrophage metabolism is meaningful to
reveal the working mechanism of glycine on macrophages
function. Finally, studying the effect of glycine on macrophages
in the tumor microenvironment may reveal a potential target for
cancer therapy. Therefore, it is necessary to find out the
TABLE 2 | Beneficial effects of glycine in other macrophage-associated diseases.

Model Dose Features References

Arthritis (Rat) Dietary supplementation with 5% glycine Pro-inflammatory cytokines ↓ (104, 105)
Acute pancreatitis (AP) (Rat) Intravenous injection of 100/300 mmol glycine Pathological structure ↑; Pro-inflammatory cytokines ↓ (106)

MPO activity ↓

Oral gingival inflammation
(Cultured gingival epithelial cells)

5mM glycine supplemented in culture medium Pro-inflammatory interleukin level ↓ (107)
Nf-kB activation ↓

Endotoxin (LPS) shock (Rat) Dietary supplementation with 5% glycine Survival rate ↑, (108)
Serum pro-inflammatory cytokines level ↓

Colitis (Rat and mice) Dietary supplementation with 5% glycine Macroscopic and histologic scores ↑ (101, 102)
October 2021 | Volume 12 | A
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relationship between glycine, macrophage function and
cancer progression.
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