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In the past decade, studies of innate immune activity against HIV-1 and other retrovi-
ruses have revealed a powerful array of host factors that can attack the virus at various 
stages of its life cycle in human and primate cells, raising the prospect that these antiviral 
factors could be manipulated in immunotherapeutic strategies for HIV infection. This has 
not proved straightforward: while HIV accessory genes encode proteins that subvert or 
destroy many of these restriction factors, others, such as human TRIM5α show limited 
potency against HIV-1. However, HIV-1 is much more susceptible to simian versions of 
TRIM5α: could this information be translated into the development of an effective gene 
therapy for HIV infection? Reigniting research into the restriction factor TRIM5α in the 
era of superior gene editing technology such as CRISPR-Cas9 presents an exciting 
opportunity to revisit this prospect.
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iNtrODUctiON

The HIV/AIDS epidemic continues to present a humanitarian crisis for the world’s most disadvantaged 
communities. Today, 36.9 million people are living with HIV, 70% of whom reside in sub-Saharan 
Africa. Antiretroviral therapy (ART) confers near-normal life expectancy on those adherent to the 
lifelong drug regimen. However, social and economic barriers to accessing care persist, and viral 
latency, drug toxicity and resistance contribute to long-term concerns for those on treatment. This 
means that there is a pressing need to achieve sustained virological remission in infected individuals.

TRIM5α restricts retroviral infection at an early post-entry stage in a species-specific manner 
through interaction of its PRYSPRY/B30.2 domain with the viral capsid (1). Human TRIM5α 
(huTRIM5α) has limited efficacy against HIV-1 in  vivo, whereas the rhesus macaque TRIM5α 
and TRIM5-CypA fusion are highly effective against primate lentiviruses (2). huTRIM5α potently 
restricts another retrovirus, N-tropic murine leukemia virus (N-MLV) and appears to moderate 
HIV-2 infection, potentially contributing to an attenuated disease course (3, 4).

CRISPR-Cas9 technology is a powerful tool for editing small regions of the genome. It has proven 
superior to existing technologies exploiting targeted initiation of double-strand breaks including 
zinc finger nucleases (ZFNs), and transcription activator-like effector nucleases due to comparatively 
low levels of off-target mutagenesis and fast results (5, 6). Preclinical studies in humanized mouse 
models have shown that delivery of lentiviral vectors bearing hybrid TRIM5α isoforms leads to 
effective HIV-1 restriction; however, engineering HIV-1 resistance without the need for vectors that 
carry risks of immunogenicity and insertional mutagenesis would be a major advantage (7, 8).

triM5α
TRIM5α is an interferon-inducible restriction factor of the tripartite motif family of proteins, which 
comprise over 70 members involved in various antiviral roles. The TRIMs feature a conserved set 
of domains: a RING domain, one or two B-boxes and a coiled-coil domain. They are most variable 
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taBle 1 | TRIM5 polymorphisms and HIV disease associations.

Genotype triM5α domain affected cohort population Hiv disease association reference

1 H43Y RING Central and South American Diminished ability of TRIM5α to restrict HIV replication (25)
2 43Y homozygote RING Hans and Dai Chinese Allele appears paradoxically to protect against HIV infection (26)
3 G249D Linker 2 region between coiled-

coil and PRYSPRY domains
Japanese and Indian Associated with increased susceptibility to HIV-1 infection (27)

4 R136Q Coiled coil Kenyan Protects against infection (28)
5 R136Q Coiled coil European Americans More frequent in HIV-infected population (29)
6 H43-136Q haplotype RING and coiled coil North-East Brazil Increased frequency in HIV uninfected controls (30)
7 G110R B-box Japanese Increased susceptibility to HIV infection (31)
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at the C-terminus responsible for viral capsid recognition, where 
24 members possess a PRY/SPRY (SPRY) domain (9). TRIM5α 
is the most closely studied member of this family owing to the 
discovery of its antiretroviral role through expression screens of 
cDNA libraries from rhesus macaque cells (1). RNAi knockdown 
of peptidyl–prolyl cis–trans isomerase cyclophilin A in owl 
monkey cells yielded the discovery of another TRIM5 isoform 
that could potently restrict HIV-1, TRIMCyp-A (10). TRIM5α 
orthologs show significant interspecies variation in retroviral 
restrictive ability, which is thought to limit transmission of ret-
roviral diseases between primates. Rhesus TRIM5α (rhTRIM5α) 
restricts HIV-1 and HIV-2 but does not restrict the closely related 
SIVmac, while huTRIM5α has a limited ability to restrict HIV-1 
and SIVmac, but partially controls HIV-2 and potently restricts 
the gammavirus N-MLV (11).

The antiretroviral mechanisms of TRIM5α have not been fully 
characterized; however, multiple studies describe two steps. In 
the first step, TRIM5α specifically recognizes and assembles onto 
the viral capsid lattice in hexagonal nets (11, 12). Following this, 
TRIM5α induces abortive disassembly of the viral capsid core 
by accelerating the uncoating process before reverse transcrip-
tion is complete, causing accumulation of reverse transcriptase 
products. This second step is dependent upon the RING domain 
E3 ubiquitin-ligase activity as the capsid-TRIM5α complex is 
targeted for proteasomal degradation (13, 14). TRIM5α also acts 
as a pattern-recognition receptor, and the restrictive ability of 
TRIM5α has been shown to be dependent on its ability to activate 
TAK-1-dependent innate immune signaling (11, 15). The capac-
ity for TRIM5α to restrict HIV-1 appears to be dependent on cell 
type, TRIM5α restricts HIV-1 infection in Langerhans cells but 
not in other dendritic cells (16).

triM5α evOlUtiON

The SPRY domain has been the subject of positive selection and 
insertions/deletions associated with the divergence of New World 
monkeys from Old World monkeys and hominids (17). This is 
evident in the significant rates of nonsynonymous to synonymous 
change at this locus across 17 primate genomes encompassing 
33 million years of evolution. Isolating the last 23 million years 
of primate evolution led to the identification of five residues 
within the protein under positive selection, falling within an 
11–13 amino acid (aa) segment of the SPRY domain (the 13-aa 
“patch”) predicted to lie in coils at the protein–protein interface 
(17). Construction of chimeric proteins of human and rhesus 

orthologs showed that this patch was necessary and sufficient to 
confer measurable HIV-1 restriction, although not as effective 
as rhTRIM5α (17). Alteration of arginine 332 to proline or any 
uncharged residue (R332P) as the sole change in huTRIM5α was 
shown to potentiate restriction of HIV-1 (18, 19). The Pan troglo-
dytes endogenous retrovirus (PtERV1), active 3–4 million years 
ago, was shown to be one of the likely culprits for this change 
as efficient restriction of chimeric PtERV was abrogated in the 
presence of a hominid R332Q mutation but restriction of HIV-1 
was improved (20). Taken together, this points to a situation of 
evolutionary “trade-off,” where fixation of R332 in the human 
lineage conferred resistance to PtERV1 but in combination with 
other antiretroviral factors rendered us poorly suited to the chal-
lenge of HIV infection.

triM5α aND Hiv-1 Disease 
assOciatiON stUDies

Given the evolutionary history of TRIM5α, it was hypothesized 
that present-day variation in huTRIM5α proteins might underlie 
the spectrum of resistance to retroviral infection across the popu-
lation (21). Results from several studies evaluating the effects of 
TRIM5 polymorphisms are summarized in Table  1. Much of 
the published literature describes the relationship between HIV 
susceptibility and TRIM5, with less attention paid to the effects on 
disease outcomes in infected individuals. At least one large study 
has shown that in HIV-1 infection, TRIM5 genotype has little to 
no impact on disease progression (22). The results described in 
Table 1 are often inconsistent. This probably represents the com-
plementary effects of SNPs in TRIM5, linkage disequilibrium, and 
variation in regulatory regions (21). Furthermore, none of the 
described studies included the prevalence of HIV-1 capsid vari-
ants, such as the H87Q mutation, which may play an important 
role in determining disease outcomes (23). The importance of 
capsid sequences in determining sensitivity to TRIM5α has been 
further demonstrated by the increased sensitivity of gag associated 
CD8+ T cell escape mutants to TRIM5α, indicating cooperation 
between the innate and adaptive immune response (24).

triM5α aND Hiv-2 as a MODel  
OF elite cONtrOl

While HIV-1 infection is globally distributed and continues to 
increase in numbers, HIV-2 is endemic to West Africa and appears 
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to be declining in prevalence across the region. Intriguingly, for 
many infected people HIV-2 has an attenuated clinical course 
when compared to HIV-1. Approximately 35–40% of individu-
als infected with HIV-2 do not progress to AIDS and display a 
prolonged asymptomatic stage with low/undetectable viremia 
compatible with a normal lifespan (32). Could this “elite control” 
be attributed to enhanced retroviral restriction by TRIM5α?

Mutations in the HIV-2 capsid determine vulnerability to 
TRIM5α: this has been mapped to residues 119 or 120 of the capsid 
(p26), where the presence of proline confers increased sensitivity 
to huTRIM5α and alanine or glutamine increases resistance (4). 
Confirming the significance of P119 in virus–host interaction, 
individuals in a West African HIV-2 cohort with this variant 
showed better disease control evidenced by lower viral load.  
A pattern demonstrating the cumulative effects of P119, P159, 
and P178 conferring superior viral restriction was evident and 
was predicted to reduce p26 dimer binding energies resulting 
in a less stable viral core (33). This contributes to more efficient 
epitope production and presentation, leading to stronger gag-
specific cytotoxic T  lymphocyte responses (34). Reciprocally, 
the amino acid sequence TFP found at positions 339–341 in 
rhTRIM5α confers HIV-2 restrictive activity even in the absence 
of P119 or P120 (35).

triM5α: a GOOD caNDiDate FOr 
crisPr GeNe tHeraPY?

Preclinical studies In Vitro
Several studies have demonstrated superior retroviral restriction 
by human cells transduced with rhTRIM5α (36), but precise 
manipulation of key residues that confer anti-HIV-1 properties 
is still highly effective and less immunogenic. Simultaneously tar-
geting CCR5 and TRIM5α has produced HIV-resistant CD133+ 
hematopoietic stem cells (HSCs) by shRNA silencing CCR5 and 
TRIM5α site-directed mutagenesis (37). Macrophages derived 
from these transgenic HSCs restricted R5 and dual-tropic HIV-1. 
A library of TRIM5α variants generated by PCR-based random 
mutagenesis showed R332–R335 double mutants have restrictive 
efficacy superior to R332, which restricts HIV-1 in the order of 
10- to 30-fold (19, 38). It was then reported that R332–R335 
mutants restricted a wide variety of HIV-1 subtypes, including 
CTL escape variants, with high efficacy. This was observed under 
the influence of a weak promoter, reducing the risk of off-target 
mutagenesis (39).

Humanized Mouse Models
Humanized mice have to some extent met the need for animal 
models that faithfully reproduce HIV biology in vivo, overcom-
ing some of the limitations of SIV strains used in research, which 
are problematic when considering the species-specific restric-
tion afforded by TRIM5α. In SCID-hu mouse model engrafted 
with HSCs expressing a human-rhesus TRIM5α ortholog, it 
was shown that transgenic cells differentiated into macrophages 
resistant to HIV-1 infection. Mature, developmentally normal 
T-cells harvested from thymic grafts injected with transduced 
HSCs displayed eightfold restriction of an X4-tropic strain 

of HIV-1 ex vivo. These cells had a survival advantage in a 
mixed population in culture. Greater than 99% expressed the 
transgene, suggesting therapeutic reconstitution of the T  cell 
repertoire with only HIV-1 resistant cells by competition might 
be possible (40).

In the most recent study of this kind, humanized mice were 
engrafted with HSCs transduced with a third-generation self-
inactivating lentiviral vector expressing three anti-HIV genes: 
chimeric TRIM5α, a CCR5 shRNA and a trans-activation res-
ponse decoy to broaden anti-HIV coverage. The HSCs engrafted 
at a rate of 17.5% without notable cytotoxic effects and induced 
downregulation of CCR5 expression with modest expansion 
when challenged with R5 and X4-tropic viruses. Gene-modified 
cells showed a selective survival advantage when challenged with 
R5 and X4-tropic strains in vivo. The mechanism was proposed 
to be HIV-1 exerting selective pressure on the mixed population 
of HSCs and the killing of infected unprotected HSCs. While 
plasma viremia in all mice was still established through unpro-
tected infected cells, normal CD4+ levels were maintained. The 
authors state that in future stem-cell therapies, reconstitution 
of the immune system with HSCs protected against HIV-1 (41) 
would rely on such a protocol being optimized with regards to 
transduction efficiency and in  vivo engraftment of transgenic 
stem cells (42).

HOW cOUlD triM5α BecOMe a 
realistic tHeraPeUtic tarGet  
iN liGHt OF GeNe eDitiNG?

The most significant advance in gene editing in recent years has 
been the development of the CRISPR-associated Cas system. 
Homology-directed repair is facilitated by a double-stranded 
DNA targeting construct for precise insertion of a desired 
sequence (43, 44). Screening Cas9 orthologs has yielded a smaller 
Cas9 derived from Staphylococcus aureus suitable for packaging 
in adeno-associated virus vectors along with regulatory ele-
ments, and for paired nickase applications (45, 46). The SaCas9 
endonuclease has undergone evaluation in mice for future in vivo 
applications and did not produce more off-target effects than  
SpCas9 (47).

Using CRISPR-Cas9 with a repair template to effect the 
R332P substitution or other advantageous mutations in HSCs 
would be a first step in developing this strategy (see Figure 1). 
Modeling a TRIM5α gene therapy on the proof-of-concept study 
infusing autologous ZFN-engineered CD4+ T cells homozygous 
for CCR5 Δ32 into HIV-infected patients might be a logical next 
step, as these studies demonstrated selective survival advantage 
of autologous CD4+ T cells detectable at 42 months in one patient 
(48, 49). This would make TRIM5α gene therapy a contemporary 
of several other strategies modifying host factors to endow HIV 
resistance. Recently, multiplex gene engineering using CRISPR-
Cas9 to ablate CCR5 and CXCR4 in primary human CD4+ 
T cells has proven effective in vitro, providing protection against 
switching viral tropism (50). However, it is important to consider 
the risk of neurological complications of West Nile virus in 
CCR5-deficient individuals (51). Using CRISPR-Cas to disrupt 
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FiGUre 1 | A theoretical model of TRIM5α gene therapy for HIV cure. This flow diagram demonstrates a theoretical model for ex vivo gene editing in hematopoietic 
stem cells (HSCs) to effect the R332P substitution using the newly described SaCRISPR-Cas9 system. HSCs harvested from an HIV-positive patient would be 
transduced with an adeno-associated virus (AAV) vector bearing the Cas9 apparatus, sgRNAs targeting TRIM5, and a repair template. A mixed population of HSCs 
would then be reinfused and among them, transgenic long-term repopulating HSCs would engraft, resulting in a durable subset of anti-HIV CD4+ T cells with a 
survival advantage in the face of viral challenge.
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both transcriptionally active and latent virus by targeting the 
HIV-1 long-terminal repeat (LTR), which caps both ends of the 
integrated proviral genome has also been reported but is limited 
by the clustering of escape mutations at the Cas9 cleavage site 
(52, 53). It was recently shown that intravenous administration 
of saCas9/quadruplex sgRNAs in an all-in-one adeno-associated 
viral vector could both excise integrated proviral DNA in 
humanized mice and block active HIV-1 replication in standard 
mice (54).

It has been suggested that translational CRISPR-Cas9 strategies 
may work in concert with existing ART regimens to address the 
latent reservoir when a suitable delivery method for establishing 
stable Cas9 and sgRNA expression is found (55). Profiling the off-
target effects of CRISPR gene editing is already achievable (56) 
and a strategy aimed at reducing the off-target effects that result 
from long-term expression of Cas9 nuclease has been developed; 
delivery of pre-packed Cas9 within lentiviral particles expressing 
sgRNAs that facilitate gene editing in primary T cells offers a safer 
approach for HIV gene therapy, albeit with a 20% reduction in 
gene editing frequency (57). Furthermore, the search for a post-
translational regulator of Cas9 endonuclease has been fruitful 
and an “off switch” derived from bacteriophage proteins has been 
found to prevent unnecessary propagation of CRISPR-Cas9’s 
effects after its work is done (58).

POteNtial PitFalls aND strateGies 
tO OvercOMe tHeM

Preclinical studies have identified potent anti-HIV transgenes; 
however, a barrier to translating these findings lies in the genera-
tion of sufficient numbers of transgenic HSCs while maintaining 
their repopulating capacity. To address this, new protocols to 
optimize the process of ex vivo gene editing and expansion of 
HSCs are in development. Selecting CD34+CD38− HSCs spe-
cifically contributing to long-term multilineage hematopoiesis, 
and shortening ex vivo culture time to 24 h has been suggested 
as a technical update for HSC therapies involving long-term 
expression of a transgene (59). Furthermore, the pyrimidoindole 
derivative UM71 was shown to stimulate and maintain the ex 
vivo expansion of HSCs for up to 7  days, potentially allowing 
production of therapeutic volumes of transgenic HSCs (59). 
Recently, it was shown that SCID-X1 mice could undergo 
lymphoid reconstitution with transgenic HSCs generated by 
homology-directed repair-mediated gene editing methods, 
including CRISPR-Cas9, following immunotoxin-based selec-
tive depletion of hematopoietic cells (60). This relatively mild 
conditioning regimen, thought to preserve tissue niches, was 
sufficient for reconstitution when at least 10% of functional 
HSCs engrafted (60). Furthermore, it was recently demonstrated 
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that CRISPR-Cas9-mediated ablation of CCR5 did not impact 
colony-forming potential in transgenic HSCs compared with 
control cells (61). CCR5-deficient long-term repopulating HSCs 
reconstituted multilineage hematopoiesis in mice, and following 
infection with a CCR5-tropic strain of HIV-1, transgenic CD4+ 
T cells showed a survival advantage (61). These proof-of-concept 
studies regarding the suitability of CRISPR-Cas9 for hematopoi-
etic stem-cell therapies may represent a significant step forwards; 
however, it remains to be proven that transgenic HSCs could be 
safely translated to clinical use.

Any strategy aiming to introduce a stably expressed transgene 
in vivo will be beset with problems relating to immunogenicity. 
Several studies have shown efficient immune clearance of gene-
engineered cells in the long term, even in severely immuno-
compromised patients (62–64). A potentially less immunogenic 
strategy might build on the finding that stabilized huTRIM5α 
is capable of HIV-1 restriction in  vitro when expression is 
increased 20- to 30-fold (65). Small-molecule “performance-
enhancing” therapies might present an alternative to gene 
editing with fewer associated risks; endogenous enhancers of 
TRIM5α antiviral activity include IFNα (66). Furthermore, the 
ability of HIV-1 to evade most antiretroviral strategies has been 
well documented in the case of pharmacological therapy (67) 
and it is unsurprising that anti-HIV transgenes have proved no 
exception. Both TRIMCyp- and TRIM5α-mediated restriction 
can be overcome by HIV-1 capsid mutations with little fitness 
cost to the virus (68, 69). However, the combined effect of HIV-1 
capsid mutations, a gag-associated CTL response and TRIM5α 
may pressure capsid sequences to strains with reduced viral 
replicative capacity (70). The flexibility in this response should 
be further investigated and may offer an attractive alternative 
when compared to CCR5 ablation.

Persistence of transcriptionally inactive HIV in replication-
competent latent reservoirs is the main barrier to development 
of a cure. Harbors of latent infection include the gut-associated 
lymphoid tissue and glial cells (71, 72). The “shock and kill” 
approach aims to reverse latency, then use combined ART and 
an engineered host immune response to clear the viral reservoir. 
The latency reversal agent SAHA in combination with ART effec-
tively induced CD8+ T cell-mediated clearance in vitro (73, 74). 
However, there was no significant impact on either HIV DNA 
or quantitative viral outgrowth assay. A potential “shock” agent 
has been identified in the dCas9-synergistic activation mediator 
system for transcriptional activation at specified loci (75). This 
has been adapted for activation of the HIV-1 LTR in latent cells 
by targeting the enhancer of the LTR promoter, to provide the 

necessary “shock” using Cas9 depleted of nuclease activity result-
ing in the production of infectious virions (76–79). It remains to 
be seen whether this strategy can induce sufficient reactivation to 
purge the entirety of the latent reservoir and avoid reconstitution 
of the latent population by clonal expansion of cells harboring 
resistant mutants.

cONclUsiON

Engineering an HIV-resistant immune system is emerging as a 
real possibility in the era of sophisticated gene engineering tech-
nology. Various host factors have been fielded as candidates for 
curative gene therapy but each has associated limitations, not lim-
ited to their multiple roles in immunity, switching viral tropism 
and the unparalleled ability of HIV to evade monotherapies by 
random mutagenesis. Though human versions of TRIM5α have 
very limited efficacy against the virus, simian TRIM5α orthologs 
fully restrict HIV, largely due to positive selection of a small 
number of specific residues localized to the C-terminal PRY/
SPRY B30.2 domain. It is becoming easier to edit small regions 
of the genome to precise specification with minimal off-target 
mutagenesis; harnessing the simian TRIM5α template to confer 
superior HIV restriction capabilities on human cells will make 
TRIM5α a serious contender for the exciting gene therapies borne 
out of the CRISPR era.
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