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Machine learning provides novel 
neurophysiological features that 
predict performance to inhibit 
automated responses
Amirali Vahid1, Moritz Mückschel1, Andres Neuhaus2, Ann-Kathrin Stock   1 & Christian Beste1

Neurophysiological features like event-related potentials (ERPs) have long been used to identify 
different cognitive sub-processes that may contribute to task performance. It has however remained 
unclear whether “classical” ERPs are truly the best reflection or even causal to observable variations 
in behavior. Here, we used a data-driven strategy to extract features from neurophysiological data 
of n = 240 healthy young individuals who performed a Go/Nogo task and used machine learning 
methods in combination with source localization to identify the best predictors of inter-individual 
performance variations. Both Nogo-N2 and Nogo-P3 yielded predictions close to chance level, but 
a feature in between those two processes, associated with motor cortex activity (BA4), predicted 
group membership with up to ~68%. We further found two Nogo-associated features in the theta and 
alpha bands, that predicted behavioral performance with up to ~78%. Notably, the theta band feature 
contributed most to the prediction and occurred at the same time as the predictive ERP feature. Our 
approach provides a rigorous test for established neurophysiological correlates of response inhibition 
and suggests that other processes, which occur in between the Nogo-N2 and P3, might be of equal, if 
not even greater, importance.

Neurophysiological features such as event-related potentials (ERPs) correlate with behavioral performance in a 
wide range of different tasks and have therefore been used to identify different cognitive sub-processes that con-
tribute to task performance. Yet still, it has remained largely unclear whether “classical” ERPs are truly the best 
reflection or even causal to observable variations in behavior. While there is a lot of literature that helps to inter-
pret one’s findings1, most of the investigated differences / ERPs are defined by minima, maxima, or pre-defined 
time windows in the course of the neurophysiological times series. This excludes a wealth of data “in between” the 
typically quantified neurophysiological features. This bias is especially dramatic given that any given EEG signal is 
composed of different signals, which do not only vary in latency, but also stem from different neuronal generators 
within the human brain2–6. To address this issue, many recent studies have applied complex signal decomposition 
approaches2,7–9, but even those approaches usually limit themselves to minima and maxima of the different iden-
tified components and have therefore also remained correlational.

Fortunately, the recent rise in machine learning approaches and methods has equipped us with a new and 
powerful tool that can expediently and objectively identify differences in the entire EEG signal. It may further-
more help to identify neurophysiological features that allow to predict behavioral performance, instead of just 
correlating with it. In fact, it has recently been argued that machine learning approaches may foster theoretical 
achievements and improve our understanding of the brain dynamics underlying cognitive functions10. To achieve 
this objective, it is important to move beyond ERP components in EEG research10. While a few studies have 
used ERP data to predict behavioral performance with the help of support vector machines (SVMs)11–13, such 
approaches are still not widely used. Moreover, these approaches are often strongly influenced by assumptions 
about the functional relevance of specific ERP-components and therefore based on a biased selection of potential 
features11–13. This means that neurophysiological features currently used for behavioral predictions with SVM 
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approaches have often been pre-selected to represent certain neurophysiological characteristics, such as specific 
ERP peaks for which correlational differences have previously been observed. Even though these approaches can 
predict (i.e. classify) the difference between experimental conditions or correctly and incorrectly answered trials 
above chance level, classification performance is often not very high12,13. For a critical discussion of this issue, 
see14. In this context, please note that throughout the entire manuscript, the term prediction will be strictly used 
in the context provided by machine learning approaches. This is, how well can individuals with “good” or “bad” 
behavioral performance be distinguished with the help of a given neurophysiological feature?

One possible reason for the rather low predictability may relate to the a-priori and literature-based selection 
of ERP features (as also done in a previous publication of our work group13,). While the pre-existing literature 
may help to interpret findings, it might also impede the discovery of novel neurophysiological features, especially 
“outside” of traditional ERP time windows and / or topographies. Yet, those might still be important to consider 
when trying to obtain a more comprehensive understanding of neural mechanisms that allow to predict behav-
ioral performance.

To tackle this issue, we chose to investigate motor inhibition (i.e. the capability to interrupt an automated 
response tendency), as it has already been investigated for decades and is known to reliably produce two different 
ERPs that closely correlate with behavioral performance, i.e. the frontal-midline Nogo-N2 and the Nogo-P32. 
While the Nogo-N2 ERP component is assumed to represent pre-motor processes like conflict monitoring, the 
Nogo-P3 component may reflect the inhibitory process itself or an evaluation process thereof 2,15–18.

Yet still, ERPs reflect a mixture of different neuronal sources as well as oscillations from various frequency 
bands19,20, but not all of these frequencies are equally important for the investigated cognitive process21. This 
might have important implications for the prediction of behavioral performance. In this context, oscillations in 
the theta frequency band could be particularly important as they are considered to play a pivotal role in cognitive 
control and executive functions22–26, including the ability to inhibit prepotent motor responses27,28. In line with 
this, it has been shown that response inhibition-related processes are associated with oscillations in the theta fre-
quency band2,15,29–32. Yet, the alpha frequency band may also be relevant for inhibitory control33–37 because oscil-
lations in this frequency band seem to coordinate top-down control processes34,38. Furthermore, alpha oscillations 
may reflect inhibitory mechanisms which control access to task-relevant information36; i.e. updating processes of 
internal task-sets being used35. Against this background, it is conceivable that time-frequency (TF) decomposed 
data may provide a better prediction of response inhibition performance than regular ERP data, as the latter also 
contains signals from less relevant frequency bands, like beta oscillations. Until now it has however not been 
directly tested whether theta, beta, or alpha frequency oscillations allow for a better prediction of behavioral 
response inhibition performance than regular ERPs, which comprise a combination of all of these oscillations. If 
we found that one of these frequency bands was most predictive for behavioral performance, this would suggest 
that current views and theoretical conceptions about the importance of the other frequency bands, that are con-
sidered to play a role in response inhibition, may need to be refined. Yet, it is also possible that a combination of 
features (i.e. different frequency bands) may show high predictability of motor response inhibition performance. 
This would suggest that current views about the frequency architecture underlying motor response inhibition 
processes, which still often stress the importance of either theta or alpha oscillations, are too simplified

In the current study, we employed a data-driven feature extraction strategy in combination with support 
vector machine (SVM) classification approaches to predict inter-individual (i.e. relative, not absolute or catego-
rial) differences in response inhibition performance from objectively identified neurophysiological features, as 
compared to regular Nogo-N2 and P3 ERPs. The main reason for choosing this approach is that these “classical” 
inhibition-related ERPs are usually also used to depict inter-individual differences in inhibitory performance. 
Specifically, we examined which time-frequency features as well as features in the time domain (i.e. ERPs) best 
predict response inhibition performance, as defined by group membership (good vs. bad performers). For the 
ERP data, this was combined with source localization methods to examine which functional neuroanatomical 
structures are associated with these features. Our main reason for using classification instead of regression here 
is that the brain is a nonlinear system. Consequently, the assumption that there is a linear relation between EEG 
signal and behavior is not very likely. Non-linear regression methods however require a-priori knowledge about 
the degree of polynomial function and the nature of the non-linear relationship between the predictor(s) and the 
dependent variable(s). This is however not (yet) the case in this field of research. Therefore, the primary goal of 
this work is to find a nexus between neurophysiology and behavior without any prior assumption. Lastly, results 
from regression analyses are more affected by outliers than SVM-based classification methods. In order to form 
two equally large groups that differ in performance, we formed a behavioral ratio that accounts for the relation 
of speed and accuracy by dividing the number of correct inhibitions in the Nogo condition by the response time 
in Go trials. The reasoning behind this was that previous analyses showed that individuals with low false alarm 
often respond more slowly to Go trials than individuals with high false alarm rates13. Given that slow responses 
leave more time to carry out a motor inhibition39, not accounting for the speed-accuracy-tradeoff would have 
confounded our analyses. As better performance may hence be reflected by better accuracy (i.e. larger accuracy 
values) and/or faster responses (i.e. smaller response time values), the ratio we used becomes larger as behavioral 
performance improves. Based on this, participants with relatively small ratio values may be labeled “bad perform-
ers” while participants with relatively large values may be labeled “good performers”. We hence divided the sample 
into an equal number of good and bad performers (please see methods section for details).

In addition to providing a rigorous evaluation of neurophysiological processes that are important for response 
inhibition, our data-driven approach also confers another advantage, because it may help to generate new hypoth-
eses40. It is therefore possible to derive new, testable hypotheses about the neurophysiological processes and 
associated functional neuroanatomical structures that determine response inhibition performance. If we found 
features that complement the currently investigated Nogo-N2 and P3, this would extend or challenge current 
thinking about the mechanisms underlying the behavioral outcome of response inhibition.
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Results
Behavioral data and group differences.  For the descriptive statistics, the mean and standard error of the 
mean are given. On average, participants responded correctly in 98.75% (±0.10) of Go trials (hits). The average 
reaction time (RT) was 348 ms (±2.73). About 12.12% (±0.69) of Nogo trials were not correctly inhibited (false 
alarms). The mean quotient used for the estimation of behavioral performance (correct inhibition rate divided 
by mean hit RT) was 0.254 (±0.002; Supplementary Fig. 3). Importantly, this transformation accounts for the 
speed-accuracy tradeoff: good performance is characterized by relatively lower values (due to lower false alarm 
rates and/or faster Go responses) while poor or “bad” performance is characterized by relatively larger values (due 
to higher false alarm rates and/or slower Go responses). We used this criterion to form two equally large groups 
(“good” vs. “bad” performers) using a median split (median = 0.257). Despite the fact that this criterion is relative, 
rather than absolute or categorial (like the distinction between false and correct trials), it is the most appropriate 
criterion for our research question, i.e. the mechanisms underlying inter-individual performance variations. The 
reason for this is that the level/quality of an individual’s task performance can only be assessed in relative compar-
ison to others’ performance the same task.

As evidenced by a Mann-Whitney-U test, the two groups significantly differed with respect to their behav-
ioral ratio values (p < 0.001). On average, the low performance group had a ratio of 0.2313 ± 0.0018 while the 
high performance group had a mean behavioral ratio of 0.2757 ± 0.0012. The groups furthermore differed with 
respect to Go hit RTs (low = 365.1 ms ± 3.56; high = 331.9 ms ± 0.49) and Nogo FAs (low = 15.74% ± 0.89; 
high = 8.56% ± 1.91), when tested separately (both p < 0.001). The two performance groups did however not 
differ with respect to sex (χ² = 0.817; p = 0.366), age (p = 0.283), handedness as assessed with the Edinburgh 
Handedness Inventory (p = 0.432)41, or depression symptoms as assessed with Beck’s depression inventory 
(p = 0.959)42.

Standard ERP data analysis.  The P1, N1, N2 and P3 ERP-components in Go and Nogo trials are shown 
in Fig. 1. For a figure of ERP-components by group, please refer to the Supplementary Material (Supplementary 
Fig. 1). In any of the analyses described below, the factors handedness and depressive symptoms did not change 
the pattern of results (all F < 0.67; p > 0.510).

For the P1 ERP amplitude, the repeated-measures ANOVA revealed a significant main effect of condition 
(F(1, 238) = 10.73; p = 0.001; η²p = 0.04). The P1 ERP amplitudes were larger in Go trials (19.45 µV/m² ± 0.74) 
than in Nogo trials (18.67 µV/m² ± 0.75). The significant main effect of electrodes (F(1, 239) = 13.46; p < 0.001; 
η²p = 0.05) suggested that the P1 amplitude was larger at electrode PO10 (21.66 µV/m² ± 1.14) as compared to 
electrode PO9 (16.47 µV/m² ± 0.88). Additionally, there was a significant interaction effect of condition x elec-
trodes (F(1, 238) = 9.22; p = 0.003; η²p = 0.04). As shown by a post-hoc t-test (t(239) = −3.04; p = 0.003), the P1 
amplitude difference between Go and Nogo trials was stronger for electrode PO10 (1.63 µV/m² ± 0.36) than for 
PO9 (−0.06 µV/m² ± 0.38). All other effects including the main effect of group were not significant (all F < 0.67; 
p > 0.420).

Figure 1.  Event-related potential (ERP) components on Go and Nogo stimuli presentations. Plots are given 
for electrodes PO9/PO10 depicting P1 and N1 ERP, electrode Cz for N2, electrode FC1 for Nogo-P3 as well as 
electrode P1 for Go-P3. ERPs on Go stimuli are shown in blue, ERPs on Nogo stimuli are shown in red. The 
scalp topography plots reveal the distribution of voltages at the time point of the peak maximum of each ERP 
component. Time point zero denotes the time point of stimulus delivery. For N2 and P3 ERP, the results of 
sLORETA source estimation are shown.
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For the N1 amplitudes, a significant main effect of condition (F(1, 238) = 21.43; p < 0.001; η² = 0.08) showed 
that the N1 amplitude was more negative in Nogo trials (−12.62 µV/m² ± 0.95) than in Go trials (−10.82 µV/
m² ± 1.00). The significant main effect of electrodes (F(1, 238) = 86.65; p < 0.001; η²p = 0.27) indicated that N1 
amplitudes were more negative at PO9 (−18.15 µV/m² ± 1.20) than at PO10 (−5.29 µV/m² ± 1.16). The interac-
tion effect of condition x electrodes was significant (F(1, 238) = 18.20; p < 0.001; η²p = 0.07). Subsequent t-test 
(t(239) = −4.27; p < 0.001) showed that the N1 amplitude difference of Go and Nogo trials was larger for elec-
trode PO9 (3.50 ± 0.61) than for electrode PO10 (1.00 ± 0.50). Additionally, there was a significant interaction 
effect of condition x group (F(1, 238) = 7.27; p = 0.008; η²p = 0.03). As shown by a significant post-hoc t-test 
(t(210,36) = −2.70; p = 0.008), the N1 amplitude difference between Go and Nogo trials was larger in the high 
performance group (5.70 ± 1.28) than in the low performance group (1.50 ± 0.88). The main effect of group as 
well as all other interaction effects were not significant (all F < 1.34; p > 0.249).

For the N2 amplitudes, the ANOVA showed a significant main effect of condition (F(1, 238) = 147.76; 
p < 0.001; η²p = 0.38), indicating that the N2 was more negative in Nogo trials (−16.22 µV/m² ± 0.98) than in 
Go trials (−7.91 ± 0.80). The sLORETA analysis showed that these condition differences in Nogo-N2 amplitudes 
were associated with activation modulations in the medial frontal cortex and the superior frontal gyrus (BA8) in 
particular. The main effect of group as well as the interaction effect were not significant (all F < 1.97; p > 0.162).

For the P3 amplitudes at frontal-central electrode FC1 (i.e. the Nogo-P3), a significant main effect of condi-
tion (F(1, 238) = 749.51; p < 0.001; η²p = 0.76) was found. This indicated that the frontal-central P3 amplitude 
was larger in Nogo trials (23.11 µV/m² ± 1.04), as compared to Go trials (3.27 µV/m² ± 0.73). The sLORETA 
analysis showed that these condition differences in P3 amplitudes were associated with modulation of activ-
ity in the medial frontal cortex including the medial frontal gyrus (BA6) and the anterior cingulate cortex 
(ACC, BA24). As indicated by a significant main effect of group (F(1, 238) = 10.59; p = 0.001; η²p = 0.04), the 
frontal-central P3 amplitudes were larger in the high performance group (15.86 ± 1.16) than in the low per-
formance group (10.51 ± 1.16). Additionally, there was a significant interaction effect condition x group (F(1, 
238) = 10.62; p = 0.001; η²p = 0.04). To further analyze this interaction effect, the difference of frontal-central P3 
amplitudes of Nogo and Go was calculated. A significant post-hoc t-test (t(238) = 3.26; p = 0.002) showed that the 
frontal-central P3 amplitude difference was larger in the high performance group (22.20 ± 0.94) than in the low 
performance group (17.47 ± 1.10). For the P3 amplitudes at posterior electrode P1 (i.e. the Go-P3), the ANOVA 
revealed a significant main effect of condition (F(1, 238) = 197.76; p < 0.001; η²p = 0.45). This indicated that pos-
terior P3 amplitudes were larger in Go trials (17.47 ± 0.68) in comparison to Nogo trials (10.47 ± 0.70). There 
was also a main effect of group (F(1, 238) = 5.88; p = 0.016; η²p = 0.02). Posterior P3 amplitudes were larger in 
the high performance group (15.52 ± 0.91) than in the low performance group (12.42 ± 0.91). Again, there was a 
significant interaction effect condition x group (F(1, 238) = 5.34; p = 0.02; η²p = 0.02). For further analysis of this 
interaction effect the difference of Nogo and Go P3 amplitudes trials was computed. A significant post-hoc t-test 
(t(238) = −2.31; p = 0.044) showed that the difference of posterior P3 amplitudes between Nogo and Go trials 
was larger for the high performance group (−8.15 ± 0.75) than for the low performance group (−5.85 ± 0.65).

Taken together, the analysis of standard ERP-components revealed the usual pattern of results and that the 
topography of the Nogo-N2 and Nogo-P3 was centered around fronto-central electrodes2.

Time frequency analysis.  As can be seen in Supplemental Fig. 2 for Nogo trials (right), a power increase 
is evident in the theta frequency band about 200 to 350 ms post stimulus with a fronto-central topography. To 
analyze whether this power increase differed between conditions as well as between groups, a repeated measures 
ANOVA (condition x groups) was calculated. Therefore, the mean theta oscillatory power was determined in the 
frequency range of 5 to 6 Hz, in the time window of 240 to 320 ms post stimulus for pooled electrodes FCz and Cz. 
There was a significant main effect of condition (F1,238) = 192.51; p < 0.001; η²p = 0.45). Theta power was larger 
for Nogo trials (87.35 ± 4.70) than for Go trials (33.00 ± 1.55). All other effects were not significant (all F < 2.84, 
p > 0.093).

Correlation analyses.  Linear regression analyses were performed for the above-mentioned ERP compo-
nents to examine correlations between ERP data and the behavioral data. This was done for each group separately 
and also including the factor “group” in the regression model (inclusion method). There were no linear correla-
tions between any ERP parameter and the behavioral data (all r < 0.2; p > 0.3; all F < 0.62; p > 0.4).

Machine learning analysis.  As outlined in the methods section we used the k-fold method (k = 10) to 
evaluate the predictability of behavioral performance (as assessed via membership in either the ‘good performer’ 
or ‘bad performer’ group) using ERP and TF-decomposed data. This means that for each extracted feature, there 
were 10 varying estimations of the predictability of behavioral performance. Using the data from the k = 10 esti-
mations we calculated the 99% confidence bounds for each feature. A significant difference is indicated by no 
overlap between the calculated 99% confidence bounds. The results of the analysis using ERP data are shown in 
Fig. 2, where the error bars represent the 99% confidence bounds. Table 1 provides a detailed summary of the ERP 
features selected by the feature extraction approach. In this context, it must however be understood that while the 
selected features are confined to a single data/time point, electrode (and frequency in case of the TF-decomposed 
data), this does not necessarily mean that all other features are not predictive at all. Given that the EEG records 
a continuous physiological signal showing autocorrelations, it is indeed quite likely that data points, that are 
neighboring a predictive feature in terms of temporal, topographic, or frequency properties, are also predictive 
to a certain, albeit lesser extent.

The first ERP-feature (322 ms after Nogo stimulus presentation at electrode C3) led to a prediction accuracy 
of ~68%, which is significantly different from chance level as indicated by the 99% confidence bounds. Adding 
more features led to a numerical increase in prediction accuracy (refer Fig. 2 and Table 1), but this increase was 
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not statistically significant, since the 99% confidence bounds largely overlapped with the prediction accuracy 
obtained after adding the second feature. The sLORETA analysis shows that activation at the time point of this 
most predictive feature was located in the left motor cortex (M1) (precentral gyrus, BA4) (refer Fig. 2).

A described in the Materials and Methods section, we conducted an add-on analysis with separate training 
and validations sets in order to evaluate the generalization ability of the selected features. Table 2 provides infor-
mation on the ERP features selected by the second analysis. Given that the accuracy of selected feature in the 

Figure 2.  Results from the classification analysis using the time domain ERP data. The mean predictability 
is given depending on the number of features. The black curve in the figure shows the cumulative mean 
predictability. The error bars represent the 99% confidence level bounds. As can be seen the confidence bounds 
were overlapping for the first and the second feature. The ERP-curve of the first feature is also shown. The 
dashed vertical line in the plot shows the time point (feature) at electrode C3. The scalp topography plot reveals 
the distribution of voltages for this feature. The sLORETA plots (corrected for multiple comparisons using 
SnPM) show the source of the signal at the time point of the feature.

Feature 
number Electrode

Time point 
(ms)

Mean 
predictability p-value

1 C3 322 68% 0.008

2 Cz 1102 70% 0.006

3 CP2 35 71% 0.014

4 CP3 66 73% 0.015

5 TP7 457 74% 0.013

6 CP2 320 74% 0.008

7 C1 1117 75% 0.01

8 CP3 55 75% 0.01

9 CP5 887 76% 0.006

10 CP2 914 76% 0.006

11 C1 301 77% 0.006

12 Cz 1105 78% 0.004

13 C2 74 79% 0.003

14 CP5 406 79% 0.003

15 CP1 320 79% 0.003

16 FC2 270 79% 0.003

17 FC4 367 79% 0.003

18 FC2 1262 79% 0.003

19 F7 98 79% 0.003

20 C2 70 79% 0.003

Table 1.  Summary of the extracted features showing feature number, electrode site, time point in ms of the 
extracted feature after stimulus presentation, the mean predictability and the significance as provided from the 
t-tests used as a filter method in the feature selection step.



www.nature.com/scientificreports/

6SCieNTiFiC REPortS |         (2018) 8:16235  | DOI:10.1038/s41598-018-34727-7

validation set ranges from 64% up to 69% (see third column in Table 2), we can assume that only the first feature 
is suitable for prediction. The best predictive feature that was selected in our ERP training set was at 340 ms at 
electrode C1. Importantly, the best predictive ERP features were extremely similar in both analysis, as they were 
detected (almost) in the same location (C3 and C1, which are directly neighboring electrodes) and time range 
(322 ms and 340 ms). Besides that, the accuracy for the best feature in the validation set for ERP data was 64% (i.e. 
it is above chance level and similar to what we observed without a separate validation set). Without this feature, 
the prediction accuracy drops to chance level (i.e. 50%), which further indicates the importance of this feature for 
the classification process. Finally, in 99% of our permutation tests, the feature’s the prediction accuracy of the real 
performance group (64%) was higher than the accuracy for randomly assign labels. This means that this feature 
was not selected by chance. As none of the classical ERP component peaks (such as N2 and P3) were selected by 
the algorithms, we additionally set out to assess whether and how much selected features are better in predict-
ing inter-individual performance variation/group membership than the classical ERP components. We therefore 
compared the predictive value of these classical ERP components (as quantified for the classical ERP analysis) to 
that of the selected feature. To this end, the mean amplitudes of N2 and P3 (quantified in the time window from 
250 ms to 280 ms at electrode Cz and from 370 ms to 410 ms at electrodes FC1 and P1) were entered into SVM 
in order to predict group membership. Of note, the prediction accuracy for these features was 46% and hence at 
chance level. This clearly demonstrates that conventional ERP components are not always the best features, or 
even useful for the prediction of behavioral performance. The reason why 46% is at chance level is a follows: There 
are N = 240 subjects available for the SVM analysis. We used the k-fold method to validate classifier performance. 
Since n = 10 this means that there are N = 24 subjects per cross-validation step. Consequently, the resolution for 
accuracy is 4.17% (1/24). Therefore, 46% is within the chance level range. To further evaluate whether this results 
is biased by the choice of the behavioral performance index, we performed another analysis in which classical 
ERP components were used as potential features for classifying good and bad performance on the basis of RT data 
and percentage of correct inhibition in the Nogo condition. Classification accuracy RT was 51% and 55% for the 
percentage of correct inhibitions in Nogo trials. This did not differ from chance level.

While the results on the basis of ERPs already show that behavioral performance can be predicted with an 
accuracy of up to ~68% with the help of our automatically selected feature, the results of the analysis using the 
TF-decomposed data show that prediction accuracy increased to ~78%. The results of the analysis using TF 
data in comparison to the ERP data are shown in Fig. 3. In Fig. 3 the error bars represent the 99% confidence 
bounds. Table 3 provides a detailed summary of the TF-features selected by the feature extraction approach. There 
were two TF-features which significantly increased predictability of behavioral performance. The first TF-feature 
(324 ms after Nogo stimulus presentation at electrode C3) revealed a predictability of behavioral performance 
of ~72% (refer Fig. 3 and Table 3) and was found in the theta frequency band (i.e. at 4 Hz). The 99% confidence 
bounds did not overlap between the first ERP-feature and the first TF-feature indicating that predictability of 
behavioral performance was significantly better using TF than ERP data, even though both were found almost at 
the same time point and at the same electrode. The same was the case when adding the second TF-feature (207 ms 
after Nogo stimulus presentation at electrode T7). The second TF-feature increased predictability to ~78% and 

Number 
of features

Accuracy in 
training set

Accuracy in 
validation set

% in which the prediction 
is better than randomly 
assigned labels

Accuracy 
without selected 
features

1 72% 64% 99.9% 50%

2 76% 65% 99.8% 50%

3 79% 65% 99.7% 50%

4 79% 67% 99.9% 50%

5 80% 67% 100% 50%

6 81% 69% 100% 50%

7 82% 69% 99.9% 50%

8 83% 69% 100% 50%

9 83% 69% 100% 50%

10 83% 68% 100% 50%

11 83% 65% 99.9% 50%

12 83% 67% 99.9% 50%

13 83% 65% 99.8% 50%

14 83% 68% 99.9% 50%

15 83% 69% 99.8% 50%

16 83% 69% 100% 50%

17 83% 69% 100% 50%

18 84% 69% 100% 50%

19 83% 68% 99.9% 50%

20 84% 68% 100% 50%

Table 2.  Summary of the extracted features for the second analysis with training and validation sets for ERP 
data. All accuracy values are cumulative.
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was found in the alpha frequency bands (i.e. at 9 Hz). As can be seen in Fig. 3, the addition of further features 
numerically increased predictability, but this was not significant given the overlap of the 99% confidence bounds 
for each of the added features. Importantly, the predictability of the identified features was a little higher for the 
high performance group (72.45% for the ERP feature alone and 81.67% for the combination of ERP features and 
the two TF features) than for the low performance group (64.15% for the ERP feature alone and 73.30% for the 

Figure 3.  Results from the classification analysis using the TF-decomposed data (grey line). The mean 
predictability is given depending on the number of features. The grey curve in the figure shows the cumulative 
mean predictability. The error bars represent the 99% confidence level bounds. The black curve showing the 
cumulative predictability using ERP data is given for comparison. As can be seen the confidence bounds were 
not overlapping for the first and the second feature (grey curve). The TF plots of the first and the second feature 
are also shown. The dashed vertical lines in these plots show the time point/frequency (feature) at the respective 
electrode site (C3 for the first feature and T7 for the second feature). The scalp topography plots reveal the 
distribution of voltages for these features.

Feature 
number Electrode Hz

time point 
(ms)

mean 
predictability p-value

1 C3 4 324 72% 0.002

2 T7 9 207 78% 0.007

3 F1 7 109 80% 0.006

4 CP1 14 1078 81% 0.003

5 FC1 3 90 83% 0.006

6 CP1 15 1074 83% 0.006

7 C3 12 1023 85% 0.006

8 F4 6 90 85% 0.006

9 Fz 7 20 85% 0.005

10 F4 8 277 85% 0.004

11 FC3 13 684 85% 0.004

12 F4 6 94 85% 0.003

13 POz 14 63 85% 0.005

14 T8 8 121 84% 0.003

15 TP9 10 813 85% 0.004

16 CP3 13 996 85% 0.007

17 T8 7 125 85% 0.001

18 CPz 4 996 85% 0.005

19 C3 11 1023 85% 0.009

20 FC4 7 195 84% 0.001

Table 3.  Summary of the extracted features showing feature number, electrode site, frequency, time point in 
ms of the extracted feature after stimulus presentation, the mean predictability and the significance as provided 
from the t-tests used as a filter method in the feature selection step.
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combination of ERP features and the two TF features). Finally, it is essential to directly compare the classification 
results obtained using the ERP features and the TF features. Please refer to Tables 1 and 3. For the ERP data it is 
shown that the best accuracy than we can achieve is about 79% percent with 13 features. However, for TF analysis 
the highest accuracy is 85% and is achieved with 7 features. However, it needs to be stressed that including more 
than the best predictive ERP feature, and more than the first two (best predictive) TF-feature did not lead to a sta-
tistically significant increase in the classification accuracy. There, above-mentioned maximal prediction accuracy 
have to be treated with caution. If we just focus on the best feature for each analysis, the TF feature has a better 
classification accuracy (i.e. 72%) than the ERP-feature (i.e. 68%) (as indicated by non-overlapping confidence 
bounds).

A described in Materials and Methods section, we conducted an add-on analysis with separate training and 
validations sets in order to evaluate the generalization ability of the selected features. Table 4 provides information 
on the TF features selected by the second analysis. For TF data as described in the Table 4, the accuracy in the 
validation set ranges from 67% to 70%. We therefore only focused on the first feature. The best predictive feature 
occurred at 340 ms at electrode C3 in 4 Hz. Notably, the best features for TF data are very similar in both analyses 
(i.e. 324 ms and 340 ms at electrode C3 in 4 Hz). Moreover, prediction accuracy drops to 50% without this feature 
and in 98% of the permutation tests, the feature’s prediction accuracy was higher for the real performance groups 
than for randomly assigned labels.

Discussion
In the current study, we used a Go/Nogo task and a machine learning approach to predict inter-individual behav-
ioral performance differences in response inhibition on the basis of neurophysiological data. We used a purely 
data-driven strategy to extract neurophysiological features that predict response inhibition performance, as 
assessed by performance group membership. In this context, it should be noted that even though our group 
formation criterion was relative (rather than absolute or categorial) it is the most appropriate criterion for our 
research question, i.e. the mechanisms underlying inter-individual performance variations. This focus was set 
to provide a rigorous test about the relevance of different neurophysiological features and associated functional 
neuroanatomical structures that are currently considered to best reflect inter-individual variation in inhibitory 
control. Importantly, we used both time-domain (ERP) and time-frequency decomposed ERP data from a sample 
of N = 240 subjects in an SVM approach as not all frequencies might be equally important for response inhibition. 
Additionally, such a data-driven procedure may allow to generate new testable hypotheses40 about the neurophys-
iological and functional neuroanatomical processes driving response inhibition processes.

An analysis of the standard ERP-components revealed the usual pattern of results2. The results from the SVM 
analysis showed that both time-domain data (ERPs) and time-frequency (TF) decomposed data collected in Nogo 
trials allowed to predict behavioral performance above chance level. Yet, predictability was significantly higher 
using TF-decomposed data (~78%) than when using ERP data (~68%). We had anticipated this effect as ERPs are 
a mixture of various oscillations, not all of which are (equally) important for the investigated cognitive process 
(Hoffmann et al.21).

Number 
of features

Accuracy in 
training set

Accuracy in 
validation set

% in which the prediction 
is better than randomly 
assigned labels

Accuracy 
without selected 
features

1 75% 67% 98.3% 50%

2 81% 70% 99.9% 50%

3 83% 70% 97.7% 50%

4 84% 70% 95.2% 50%

5 86% 70% 95.7% 50%

6 86% 70% 99.7% 50%

7 88% 69% 98.8% 50%

8 89% 69% 98.7% 50%

9 90% 69% 99.9% 50%

10 90% 69% 99.7% 50%

11 90% 69% 98.8% 50%

12 90% 70% 96.2% 50%

13 90% 69% 98.3% 50%

14 90% 70% 99.8 5 50%

15 90% 70% 100% 50%

16 90% 70% 99.9% 50%

17 90% 70% 99.7% 50%

18 90% 70% 100% 50%

19 90% 70% 100% 50%

20 90% 70% 100% 50%

Table 4.  Summary of the extracted features for second analysis with training and validation sets for time 
frequency data showing feature number, accuracy in training set, accuracy in validation set, corresponding 
p-value for permutation test and accuracy without selected features. All accuracy values are cumulative.
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For the ERP data, a single feature was shown to predict behavioral performance (i.e. group membership) with 
up to ~68%. While the Nogo-N2 and Nogo-P3 peaks usually constitute the neurophysiological processes that 
are usually focused on in inhibition research (for review2), the predictive feature was identified in-between these 
two ERPs, i.e. in the transition between these two processes. Moreover, the neuroanatomical source of the feature 
differed from that of the two ERPs: At the time point of the predictive feature, the sLORETA analysis suggested 
that left hemisphere motor areas (precentral gyrus, BA4) were most strongly activated (refer Fig. 2). In line with 
previous work2,43–46, the sLORETA analysis however revealed medial frontal areas including the superior frontal 
gyrus (BA6) and regions in the anterior cingulate cortex (ACC, BA24) to be most strongly activated at the time 
point of the Nogo-N2 and P3 (refer Fig. 1). Interestingly, the frontal-midline Nogo-N2 component has been 
suggested to reflect pre-motor processes like conflict monitoring or updating of the response program. In this 
context, the finding that the predictive feature occurred after the Nogo-N2 and was associated with an activation 
of the motor cortex (precentral gyrus) seems reasonable and allows for the interpretation that the predictive ERP 
feature reflects mechanisms where pre-motor processes are transferred to motor programs in order to inhibit the 
response. This interpretation is corroborated by the finding that responses had to be executed with the right hand 
/ left motor cortex and that the time point of the predictive feature (~322 ms) was before the mean RT (~350 ms). 
fMRI studies have suggested that the pre-supplementary motor area and the motor cortex are involved in inhib-
itory control27,47. Furthermore, both of these structures show functional interconnectivity via the basal ganglia 
circuitry that mediates response inhibition. As mentioned, the predictive feature occurred before the Nogo-P3 
peak (~405 ms), which has been suggested to reflect evaluative processing of the successful outcome of the inhi-
bition2,15–17,48,49 and is thus thought to reflect the cognitive process of assessing whether (not) responding was 
correct2,50,51. This interpretation was mainly based on the assumption that the Nogo-P3 peaks too late (i.e. after 
the mean RT) to reflect motor inhibition processes52,53 and has been criticized in the past18. The fact that the pre-
dictive feature was found well before the Nogo-P3 and seems to be related to the motor process however supports 
the interpretation of evaluative processes being reflected in the Nogo-P3. Even though the Nogo-N2 and Nogo-P3 
reflect sub-processes involved in response inhibition2, machine learning analysis using ERP data that they are 
not necessarily important to consider when trying to predict the behavioral outcome of response inhibition, as 
only the time window in between both ERPs could predict performance. This was furthermore underpinned by 
the finding that neither the N2, nor the P3 amplitudes could predict performance (i.e. classify group member-
ship) above chance level. While this does not necessarily refute the theory that the Nogo-N2-P3 complex reflects 
sub-processes of inhibitory control, the results suggest that processes which take part in the transition between 
both ERPs, should receive much more attention.

Interestingly, the machine learning results obtained for the time-frequency decomposed data revealed a fea-
ture at the same electrode (C3) and almost at the same time point (i.e. 324 ms) within the theta frequency band. 
The convergence of results (i.e. time point and electrode) between ERP and TF-decomposed data further under-
lines the reliability of the obtained data. In this context, it however needs to be noted that while our predictors 
are single time points, they are not necessarily isolated events which solely predict group membership. Instead, 
they are an integral part of cognitive processes, which should be interpreted as a whole for a better understand-
ing of the mechanisms driving response inhibition. Several lines of evidence have already shown that response 
inhibition processes reflected by the Nogo-N2-P3 complex are associated with oscillations in the theta frequency 
band2,15,29–32. It is therefore plausible that a feature in the theta frequency band was predictive of behavioral per-
formance. This finding is also well in line with literature suggesting that oscillations in the theta frequency band 
are particularly important for cognitive control and executive functions22–26. But while the results showed that 
the theta frequency feature was most predictive, predictability significantly increased from ~72% to ~78% when 
additionally considering a second feature in the alpha frequency band ~207 ms after Nogo stimulus presentation. 
The alpha frequency band has been suggested to be important for inhibitory control33,36,37, as oscillations in this 
frequency band coordinate top-down control processes34,38. Specifically, alpha oscillations have been suggested 
to reflect inhibitory mechanisms that control access to task-relevant information;36 i.e. updating processes of 
internal task sets being used for other cognitive processes35. Since the predictive alpha band feature was detected 
at ~207 ms, it was evident in the time window of the P2 ERP component. The P2 has been suggested to reflect 
resource allocation processes54–56. Such processes are closely related to mechanisms which are necessary to update 
internal task sets and hence processes that are considered to be reflected by alpha oscillations. There were no lin-
ear correlations between electrophysiological parameters and behavioral performance, which may be due to the 
fact that regression approaches and correlations can only model linear interdependencies. This, however, is not 
the case using SVM approaches.

As the results from the machine learning (SVM) approach were obtained using a data-driven procedure, 
they call for a change in how we currently conceptualize and investigate response inhibition sub-processes: 
While theta oscillations and related processes reflected by the Nogo-N2-P3 complex may represent mechanisms 
operating during the process of inhibitory control2, neither the Nogo-N2 nor the Nogo-P3 peak are central to 
predicting behavioral performance. Rather, it seems that motor cortex-driven processes which take part in the 
transition between the two ERP peaks are most important for inter-individual differences in response inhibition 
performance. Currently, most studies have only considered the relevance of either theta or alpha oscillations for 
inhibitory control processes. The current results however show that the combination of frequencies best predicts 
inhibitory control performance and further suggest that the updating of internal task sets should probably receive 
more attention. Given that the Nogo-N2-P3 complex is found in a wide variety of inhibitory tasks, we would 
deem it likely that the obtained results are not only valid for Go/Nogo paradigms, but also for other paradigms 
(e.g. stop-signal tasks). In Go/Nogo paradigms, participants are required to inhibit a prepotent response ten-
dency, whereas participants are asked to stop an requested a motor response in the SST. The latter increases the 
probability of an initial activation of the (Go) motor response process49. Even though both paradigms differ in 
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the exact nature of the inhibitory processes e.g57., it is generally assumed that both paradigms rely on a similar 
inhibitory control network58,59 and are associated with similar electrophysiological correlates49.

Regarding the generalizability of the current findings, it however needs to be noted that there are many 
other machine learning algorithms that can be used for feature extraction and prediction. It is hence possible 
that results might change when other algorithms/models are used. But in the words of George Box, it can be 
stated that „Essentially, all models are wrong, but some are useful“. Against this background, the usefulness of 
our results remains to be evaluated in future studies. That is, the functional relevance of the identified processes 
and functional neuroanatomical structures should be investigated in more detail in the future. However, it needs 
to be noted that there is (i) accumulating evidence reporting an important role of the motor cortex, but not 
medial prefrontal areas for response inhibition (see above) and (ii) the entire pattern of results using ERP and 
TF-decomposed data is conclusive. It may seem arbitrary that subjects were classified by splitting the group into 
“good” vs. “bad” performers, but this is a necessary step to be able to apply the SVM approach. Yet, it does not 
necessarily describe the range of individual differences in task performance. Thus, the data may more strongly 
support the idea that these alternative approaches may extract features that are better predictive of relative task 
performance. The detection of novel neurophysiological features are possible important to consider in future 
studies, rather than specifically addressing variability in inter-individual differences.

In summary, our results suggest that when investigating response inhibition, we should not only focus on 
control-associated ERPs/oscillations and associated prefrontal cortical structures commonly considered to the 
reflect an important response inhibition network27. Instead, we should extend our focus to the motor cortex, 
theta and alpha frequency oscillations, and the transition between the classical Nogo-N2 and Nogo-P3 correlates 
of inhibitory control. Using brain stimulation techniques (e.g. TMS or tACS), it would be possible to directly test 
the importance of the neurophysiological processes identified in the current study.

Materials and Methods
Participants.  A sample of N = 251 healthy subjects between 20 and 30 years of age (mean age 23.4 SD = 2.94; 
99 females) was recruited for the study. None of the participants reported a history of neurological or mental 
illness. N = 11 participants were excluded from analysis due to poor performance (as defined by a mean subject’s 
Go RT > mean group Go RT + 3 SD, false alarms and/or misses ≥ 50%) or noisy EEG signal (visual inspection: 
when blinking or other artifacts could not be sufficiently removed with the help of an ICA). The data analysis 
was performed with N = 240 subjects. Of note, the participants/datasets included in this study have also been 
included in a previous publication60. Yet, we used a different behavioral measure for classification that circum-
vents the speed-accuracy issues we had in our previous publication, applied stricter exclusion criteria based on 
the EEG quality and used a vastly different methodological approach which did not limit the number of features 
to a rather small, theory-driven pre-defined set of ERPs60, but instead used the full range of available data. The 
study and all experimental procedures were approved by the ethics committee of the Ruhr Universität Bochum 
and TU Dresden. The methods were carried out in accordance with these regulations. Written informed consent 
was obtained from all participants.

Task and behavioral parameter for group formation.  We used a standard Go/Nogo task16,31, in which 
two stimuli were presented. Upon presentation of the German word “DRÜCK” (English “press”), the subjects 
were asked to respond as fast as possible. Upon presentation of the German word “STOPP” (English “stop”), the 
participants were asked to refrain from responding. The stimuli were presented in the middle of a 17inch CRT 
screen (100 Hz vertical refresh rate). The ratio of Go and Nogo trials was 70:30. This ratio ensures that there is a 
strong tendency to respond on Nogo trials making it difficult to refrain from responding upon the presentation 
of a Nogo stimulus. Subjects were asked to respond within 600 ms. If this response deadline was missed, the word 
“SCHNELLER” (English “faster”) was presented. This further augments the tendency to respond on Nogo trials. 
Each trial began with the presentation of a fixation cross in the middle of the screen and was terminated by the 
participant’s first response (correct responses in Go trials or false alarms in Nogo trials). In case of missed Go 
responses or a correct inhibition of responses in Nogo trials, the trial automatically terminated after 2200 ms had 
elapsed. The inter-trial interval (ITI) was jittered between 1000 and 1300 ms. On Go trials, responses exceeding 
this deadline were regarded as “missed” trials. In total, 450 trials were presented. As a performance measure in 
Go/Nogo tasks, the false alarm rate (i.e. responses upon the presentation of Nogo stimuli) is considered to be 
most important. However, the likelihood to commit a false alarm also depends on the speed of responding, with 
a higher response speed leading to higher false alarms rates39. To account for this, we calculated an index of false 
alarms in Nogo trials and the mean reaction time (RT) in Go trials; i.e. the percentage of correct inhibition in 
the Nogo condition (i.e. 100% minus false alarm rate) divided by mean hit RTs in the Go condition. Importantly, 
better performance may be reflected by better accuracy (i.e. larger accuracy values) and/or faster responses (i.e. 
smaller response time values). Based on this ratio, we used a median-split to form two equally large groups. 
Participants yielding relatively small ratio values were labeled “bad performers” while participants yielding rel-
atively large values were labeled “good performers”. This performance index was used in further analyses using 
machine learning approaches; i.e. it was examined in how far performance group membership was predictable on 
the basis of neurophysiological features extracted from the neurophysiological data.

EEG recording and analysis.  The EEG was recorded from 64 Ag/AgCl electrodes using the extended 10/20 
system against a reference electrode placed at electrode FCz (QuickAmp, Brain Products Inc.). The signal was 
automatically re-referenced to a common average reference by the amplifier. The sampling rate was 1 kHz. 
Electrode impedances were kept below 5 kΩ. After recording, the data were down-sampled to 256 Hz. The EEG 
was digitally filtered off-line using IIR band-width filters at 0.5 and 18 Hz (each with a slope of 48 dB/oct) using 
the BrainVision Analyzer 2 software package (BrainProducts, Inc.). Then, gross artifacts were manually removed 
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from the EEG. Following this step, horizontal and vertical eye-movements as well as pulse artifacts were detected 
using independent component analysis (ICA) (infomax algorithm), and components reflecting these artifacts 
were removed. After reconstructing the EEG from the remaining components, electrode FCz was interpolated 
using a spherical spline interpolation. Then, the EEG was segmented into Go and Nogo trials. Only correct Go 
and Nogo trials were included in the data analysis. Only Go trials where the correct response was carried out 
within 1200 ms after stimulus onset were considered as correct. Nogo trials were included when no response was 
given in an interval of 2200 ms after stimulus presentation. The segments were 4000 ms long, starting 2000 ms 
before the locking time point (time point zero) and ended 2000 ms after this locking time point. Though this leads 
to an overlap between succeeding trials, this long epoch is needed for the time-frequency decomposition step to 
allow a reliable assessment of the power in low frequency bands61. On average, 287.7 (±8.8) Go trials and 106.9 
(±12.9) Nogo trials were included. This segmentation step was followed by an automated artifact rejection pro-
cedure to eliminate any artifacts that might have survived the prior data inspection. A maximal value difference 
above 200 μV in a 100 ms interval as well as an activity below 0.5 μV in a 200 ms period were used as rejection 
criteria. About 2.7% of the trials were rejected due to artifacts. Next, a current source density (CSD) transforma-
tion62 (order of splines m = 4, maximum degree of the Legendre polynomials n = 10, precision of 2.72−7) was 
applied to re-reference the data. Due to this, the resulting CSD values are given in μV/m2. Baseline correction was 
applied in the time range from −200 ms to 0 ms (i.e. prior to target onset) before the segments were separately 
averaged for Go and Nogo on a single subject level to derive the event-related potential (ERP). All ERP compo-
nents were quantified using local maximum peak detection on single subject level. For P1, a time range of 90 to 
110 ms at electrodes PO9 and PO10 was used. For N1, the time range was set to 170 to 190 ms at electrodes PO9 
and PO10. N2 ERP mean amplitudes were determined in the time range from 250 to 280 ms at electrode Cz. For 
the P3, the mean amplitudes were quantified from 370 to 410 ms at electrodes FC1 and P1. All electrodes were 
chosen based on scalp topography of each ERP component and condition. This procedure was validates as 
described by Mückschel et al.63 A time window of maximum activity was identified for each component. Using 
these time windows, the mean amplitude was extracted for every electrode. Each electrode was then compared 
against the average of all other electrodes using Bonferroni correction (p = 0.0007). Only electrodes with signifi-
cantly larger amplitudes than the remaining electrodes were selected. In addition to this time-domain analysis of 
the data, a time–frequency analysis was conducted by means of a continuous wavelet transformation (CWT) 
employing Morlet wavelets (w) in the time domain to different frequencies (ƒ):

σ π= −W t f A t i ft( , ) exp( / )exp(2 )t
2 2

where t = time, A = (σt π)−1/2, σt = wavelet duration, and = −i 1 . For analysis and TF-plots, a ratio of 
ƒ0/σƒ = 5.5 was used, where σƒ is the width of the Gaussian shape in the frequency domain and ƒ0 is the central 
frequency. The analysis was conducted in the frequency range from 1 to 18 Hz, and a central frequency at 1 Hz 
intervals was employed. For different ƒ0, time and frequency resolutions [or wavelet duration and spectral band-
width] can be calculated as 2σt and 2σƒ respectively. σt and σƒ are related by the equation σt = 1/(2πσƒ). For exam-
ple, for ƒ0 = 1 Hz, 2σt = 1770 ms and 2σƒ = 0.36 Hz; for ƒ0 = 3 Hz, 2σt = 580 ms and 2σƒ = 1.09 Hz; for ƒ0 = 5 Hz, 
2σt = 350 ms and 2σƒ = 1.82 Hz. The total power was calculated by performing TF decomposition on the single 
trial level before averaging.

Data-driven feature extraction procedure and support vector machine (SVM) analysis.  Based 
on a median split of the behavioral performance parameter (i.e. correct inhibition rate on Nogo trials, relative to 
the RT on Go trials), two groups of subjects were created: a “high performance group” and a “low performance 
group”. Thereafter, a machine learning approach was employed to predict group membership on the basis of the 
neurophysiological data from Nogo trials. Only neurophysiological data from correct Nogo trials, i.e. trials where 
no response was executed, was used.

For the time-domain features, all time points from zero (i.e. locking time point/time point of stimulus pres-
entation) to 1.5 seconds with the resolution of the sampling frequency (256 Hz) were extracted as possible fea-
tures. This was done for each of the 64 channels and for every subject. For the time-frequency decomposed 
data the same approach was applied for every frequency in the frequency range between 1 and 18 Hz using 1 Hz 
frequency steps. Moreover, before using feature selection and classification methods, and in order to eliminate 
the effect of different range of features on classification performance all features were normalized into a z-score. 
This was done for two reasons: First, it increases the convergence speed of feature detection algorithms64. Second, 
features may govern/bias the feature detection algorithm in case they have different value ranges. This problem 
is circumvented using z-transformation65, because z-transformation makes all features have a mean of zero and a 
standard deviation equal to one. After normalizing the features, the feature selection was applied. This is crucial 
for machine learning algorithms, since it eliminates surplus/irrelevant features and reduces the problem of having 
a ‘small’ data set relative to the size of the possible feature set. Both of these factors can otherwise reduce the clas-
sifier performance. In the feature selection stage, an optimal subset of features is selected from the original feature 
set. Feature selection algorithms roughly divide into two categories: “filter” and “wrapper” methods66. The filter 
methods select a subset of features according to general characteristics of the data, independently of chosen clas-
sifier. Wrapper methods require a predetermined classifier and evaluate features according to their performance 
to discriminate between classes66. Usually, wrapper methods lead to better results than filter methods, because the 
selected features are based on classifier performance67. However, they can be significantly slower than filter meth-
ods. One way to overcome this problem is to combine filter and wrapper methods: i.e. filter methods are applied 
first to select some features. Then, these selected features are used as input for wrapper methods. This was done 
in the current study using MATLAB 2017a (Mathworks Inc.). In particular, t-test and sequential floating forward 
selection (SFFS) methods are employed as a filter and wrapper methods, respectively67. For initial sorting of the 
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features, a t-test is calculated between the two groups created using the median split procedure for each time 
point (i.e. feature). If the p-value is below 0.01 this time point (feature) is selected (the precise p-values are given 
in Table 1 and Table 3 in the results section). Then these selected features are used as input for the SFFS algorithm. 
SFFS combines two separate algorithms;68,69 sequential forward selection (SFS) and sequential backward selection 
(SBS). SFS starts from an empty set of features and sequentially adds features that result in the highest classifier 
accuracy when being combined with the features that have already been selected. SBS works in the opposite direc-
tion. In SFFS, each feature selection step comprises SFS and SBF68,69 and were implemented in MATLAB 2017a 
(Mathworks Inc.). Following SFFS, selected features are fed to a support vector machine (SVM) employing a 
radial basis function (RBF) kernel with sigma equals to 5. This was done using MATLAB 2017a (Mathworks Inc.) 
and the LIBSVM toolbox70. SVMs are supervised learning algorithms that aim towards an optimal separation of 
distinct classes. In other words, the applied classifier projects input data into high-dimensional feature space to 
determine a hyper-plane which is able to separate the groups.

Importantly, the result of the SVM method was cross-validated in this study. Since neuroimaging studies 
usually deal with a ‘small’ number of subjects, it is very important to use cross-validation methods. There are 
two popular methods that can be used: Leave One Out Cross Validation (LOOCV) and k-fold cross-validation71. 
However, the high variance of the classification accuracy and the computation time are two major problems of 
the LOOCV method72. The k-fold method randomly divides the data into k portions in which k-1 portion is 
considered as training data and other as testing data. By continuing this k-times all subjects in the data set are part 
of the testing and training set. The resulting classification accuracy is the average of the all k-folds71. Usually, the 
value of k is between 5 to 10 in machine learning. We used k = 10 in this study. This means that for each extracted 
feature there were 10 estimations of the predictability of behavioral performance. Using the data from the k = 10 
estimations we calculated the 99% confidence bounds for each feature. These confidence bounds were then used 
to examine (i) in how far the different features provided a significant increase predictability of behavioral perfor-
mance, and (ii) in how far there is a difference in the predictability of behavioral performance between ERP and 
TF-decomposed data. A significant difference is indicated by no overlap between the calculated 99% confidence 
bounds. Importantly, the applied machine learning approach also minimizes the risk of ending up with false 
positive features: While there is indeed still a small risk for false positive features to survive feature selection and 
enter the machine learning approach, the subsequent k-fold validation procedure, which is an integral part of 
the machine learning approach, minimized the risk of any false positive being ultimately selected as a predictive 
feature because it mixes and recombines the sample many times, which strongly decreases the likelihood of false 
positives having a strong and consistent effect.

Since the feature selection and evaluation steps were done in the same data set, it could be argued that the 
generalization ability (i.e. working well on other data sets) required further verification. In order to demonstrate 
the validity of the initially applied k-fold method and verify that the selected features do not have an overfitting 
problem (i.e. that they do not work well only on the training set), we ran an additional analysis, for which the 
data were divided into two separate data sets (training and validation). 70% of the subjects were used as the 
training set (168 subjects) and the remaining subjects (72) as the validation set. In the training dataset, we again 
employed the k- fold and feature selection methods (t-test and SFFS) in order to achieve maximal comparability. 
For validation of the results (i.e., the features that had been selected in the first data set), we used SVM in the 
validation set. In order to have a comprehensive assessment of selected features, we also used permutation tests 
for the features selected from the training set and applied it on the validation set. For those permutation tests, the 
data were randomly divided into two groups and SVM was used for the prediction of those random groups. This 
process was repeated 1000 times. In the end, we calculated the percentage of how many times (out of 1000) the 
selected feature from the training set predicted group membership better than a randomly assigned group label. 
To confirm that the selected features are practically important for classification accuracy (i.e. to demonstrate that 
the accuracy will drop to chance level without them) we investigated the impact of omitting these features on 
classification accuracy. To this end, we started to consecutively omit the best features and ran the SVM without 
them. In this context, it is worth mentioning that we trained the classifier on the training set and the results are 
just based on the validation set.

Source localization analysis.  For each of the time-domain (ERP) features which were shown to be pre-
dictive for behavioral performance in the SVM analysis step (see results section) a source localization analysis 
was conducted. For this analysis, sLORETA (standardized low resolution brain electromagnetic tomography;73 
was used, which provides a single solution to the inverse problem73,74. For sLORETA, the intracerebral volume 
is partitioned into 6239 voxels at 5 mm spatial resolution. Then, the standardized current density at each voxel is 
calculated in a realistic head based on the MNI152 template. It has been mathematically proven that sLORETA 
provides reliable results without a localization bias75. Moreover, there is evidence from EEG/fMRI and neuronav-
igated EEG/TMS studies underlining the validity of the sources estimated using sLORETA21,76. The voxel-based 
sLORETA images were compared against zero using the sLORETA-built-in one sample t-test. Importantly, 
voxel-wise randomization tests with 2000 permutations, based on statistical nonparametric mapping (SnPM) 
were applied to control the risk of false positive results. Significant voxels (p < 0.01, corrected for multiple com-
parisons) were located in the MNI-brain.

Statistics.  A standard analysis of the electrophysiological data was performed using repeated measures 
ANOVAs including the within-subject factors “condition” (Go vs. Nogo trials) and “electrode” as well as the 
between-subject factor group (low vs high performance) in the model. Greenhouse-Geisser correction was 
applied wherever appropriate and all post-hoc tests were Bonferroni corrected. As indicated by Shapiro-Wilks 
tests and confirmed by visual inspection, all analyzed variables were normally distributed (all W > 0.51; df = 239; 
p > 0.212). For the descriptive statistics, the mean and standard error of the mean are given.
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