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Oxidative stress and antioxidants play a role in age-related diseases and in the aging process. We here present data on protein
carbonyls, 3-nitrotyrosine, malondialdehyde, and cellular and plasma antioxidants (glutathione, cysteine, ascorbic acid, uric acid,
α-tocopherol, and lycopene) and their relation with age in the European multicenter study MARK-AGE. To avoid confounding,
only data from countries which recruited subjects from all three study groups (five of eight centers) and only participants aged
≥55 years were selected resulting in data from 1559 participants. These included subjects from (1) the general population, (2)
members from long-living families, and (3) their spouses. In addition, 683 middle-aged reference participants (35–54 years)
served as a control. After adjustment for age, BMI, smoking status, gender, and country, there were differences in protein
carbonyls, malondialdehyde, 3-nitrotyrosine, α-tocopherol, cysteine, and glutathione between the 3 study groups. Protein
carbonyls and 3-nitrotyrosine as well as cysteine, uric acid, and lycopene were identified as independent biomarkers with the
highest correlation with age. Interestingly, from all antioxidants measured, only lycopene was lower in all aged groups and from
the oxidative stress biomarkers, only 3-nitrotyrosine was increased in the descendants from long-living families compared to the
middle-aged control group. We conclude that both lifestyle and genetics may be important contributors to redox biomarkers in
an aging population.
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1. Introduction

Oxidative stress and antioxidants have been in the focus of
research for decades due to their association with numerous
age-related diseases [1–4]. In humans, elevated levels of
oxidative stress have been reported in several medical condi-
tions, including neurodegenerative diseases [2], obesity,
diabetes mellitus, and the aging process itself [3–5]. There
is some epidemiological evidence on the role of oxidative
stress in aging, age-related diseases, and mortality [6–10].
However, these studies focused mostly on single biomarkers
or on biomarkers which are not widely used, thus making it
difficult to compare result.

When attempting to assess redox biomarkers, it is
important to note that there is not one single biomarker
which is considered a “gold standard.” In fact, it is recom-
mended to measure a set of different biomarkers [11].
Thus, our attempt was to analyze markers of protein oxida-
tion, nitration, lipid peroxidation, and cellular and plasma
antioxidants and study their relation with age in participants
of the MARK-AGE project. The MARK-AGE project was a
European multicenter study, supported by the European
Commission, aiming to identify biomarkers of human aging
and to model a robust set of markers of biological age and
healthy aging [12].

For this purpose, women and men were recruited from
the general population from eight European countries as
age-stratified subgroups, as well as subjects belonging to a
family with long-living members together with their spouses.
In different biological matrices (whole blood, serum, plasma,
urine, buccal mucosa cells, and peripheral blood mononu-
clear cells), a large number of candidate biomarkers of aging,
including DNA-based markers, markers based on proteins
and their modifications, immunological markers, clinical
chemistry, hormones and markers of metabolism, oxidative
stress markers, and antioxidant micronutrients were
assessed. The project design including details of the study
population and standard operating procedures have been
published recently [12–15].

The objectives of the present work were to assess and to
compare levels of redox biomarkers within the three different
study groups of the MARK-AGE project. Our hypotheses
were (1) that oxidative stress is elevated in higher age groups
as it has been shown in different rather small population-
based studies in different biological matrices and (2) that
subjects from families with long-living members would be
genetically better equipped to handle oxidative stress than
the general population. The results of the spouses might
show whether (3) a shared lifestyle may be able to influence
biomarker concentrations.

2. Materials and Methods

This study was conducted in accordance with the Declaration
of Helsinki (1964) and with informed written consent of each
participant. Ethical clearance had been given by the ethics
committee of each of the recruiting centers. This study has
been registered retrospectively at the German Clinical Trials
Register (DRKS00007713).

2.1. Study Population and Sample Collection. For the whole
MARK-AGE project, 3158 participants were recruited in 8
recruiting centers and the details for the three study groups
will be described briefly below.

The first study group was recruited through various
public platforms such as radio and newspaper advertising.
These participants were included in the RASIG group
(recruited from the age-stratified general population). For
this group, the main inclusion criteria were the ability to give
informed consent and being in the age-range from 35 to 75
years (both genders).

The second study group consisted of 537 descendants
from long-living subjects (nonagenarians; persons who
reached the age of 90) who had been recruited as a follow-
up from the GEHA study (Genetics of Healthy Aging;
2004–2009, for details, see [16]); this group is abbreviated
as GO (GEHA offspring). The third study group consisted
of the spouses of the GEHA offspring (n = 311) and served
as a lifestyle control group, the so-called SGO (spouses of
GO). The GO and SGO participants were between the age
of 55 and 75 years [12] and were recruited in Belgium,
Finland, Greece, Italy, The Netherlands, and Poland.

Collection of anthropometric data, questionnaire data,
and data on cognitive function was carried out by trained
nurses or physicians between November 2008 and June
2012 at the following recruiting centers: Hall in Tirol/Inns-
bruck (Austria), Namur (Belgium), Esslingen (Germany),
Athens, and other nearby regions (Greece), Bologna (Italy),
Warsaw (Poland), Tampere (Finland), and Leiden (The
Netherlands). Furthermore, participants were asked to
complete questionnaires on lifestyle characteristic (nutrition,
smoking habits), family history, and living environment.

To avoid possible confounding, we used only data from
those countries which recruited subjects from all three study
groups (RASIG, GO, and SGO). This was the case in five of
the eight centers (Belgium, Greece, Italy, Poland, and
Finland). Germany and Austria did not provide GO or
SGO data while The Netherlands did not recruit RASIG
participants; therefore, data from these three countries were
excluded in the present analyses.

Since the age ranges of participants in the GO and SGO
groups were different to the RASIG group in general (55–
75 versus 35–75 years, resp.), only participants who were
≥55 years of age were selected. This resulted in a total of
1559 participants in all three study groups to be included in
the present work. Additionally, to compare these study
groups to a younger (middle-aged) reference group, we
selected all RASIG participants aged 35–54 (“middle aged”)
from Belgium, Greece, Italy, Poland, and Finland, which
resulted in a total of 683 reference participants.

2.2. Determination of Total Glutathione and Total Free
Cysteine in Whole Blood. Total glutathione and total free
cysteine in whole blood were measured as previously
described by Chen et al. [17] by using Ellman’s reagent
(5,5′-dithiobis-[2-nitrobenzoic acid]) after the reduction
of any disulfides present. The modifications regarding
the reduction agent DTT (1,4-dithiothreitol), the adaption
for whole blood samples, and HPLC conditions were as
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follows: Whole blood (100μL) was vortex-mixed with
DTT (12.5mM, 100μL) and incubated for 3min; cold tri-
chloroacetic acid solution (10% w/v, 200μL) was added;
and samples were thoroughly mixed and centrifuged at
19,500×g for 5min at 4°C. The clear supernatant (200μL)
was then added to Ellman’s reagent (30mM, 50μL) together
with di-potassium hydrogen phosphate buffer (2M, 100μL),
and vortex-mixed. Twenty μL was analyzed on a Shimadzu
Prominence HPLC (LC-20A) equipped with an UV-Vis
detector (SPD-20AV set at 326nm). The separation of cyste-
ine and glutathione was achieved by using a Reprosil-Pur 120
C18 AQ column (5μm, 250mm× 4.6mm; Dr. Maisch,
Germany) set to 40°C and a mobile phase consisting of meth-
anol (15% v/v) and acetate buffer (0.05M, pH 5) at a flow rate
of 1mL/min. Standards diluted to physiological concentra-
tions (62.5–250μM for cysteine and 500–2000μM for gluta-
thione) and treated as a sample were used for quantification.

2.3. Determination of Ascorbic Acid and Uric Acid in Plasma.
Plasma ascorbic acid and uric acid were analyzed by
RP-HPLC and UV detection after reduction with tris-
(2-carboxyethyl)-phosphine [18]. Briefly, plasma (100μL)
was mixed with tris-(2-carboxyethyl)-phosphine (20% w/w,
25μL) and incubated for 5min on ice; then, freshly prepared
metaphosphoric acid solution (10% w/w, 75μL) was added
and vortex-mixed; and samples were centrifuged at 19,500×g
and 4°C for 10min. Twenty μL of clear supernatant was
analyzed on a Shimadzu Prominence HPLC and using a
5μm analytical column (Reprosil-Pur 120 C18 AQ,
250mm× 4.6mm; Dr. Maisch, Germany) set to 40°C, a
mobile phase consisting of 0.05M sodium phosphate buffer
(pH 2.5) at a flow rate of 1mL/min and UV-Vis detector
(SPD-20AV) set to 245 nm. Pure standards diluted to
physiological concentrations (2.5–20mg/L for ascorbic acid
and 20–100mg/L for uric acid) and treated as a sample were
used for quantification.

2.4. Malondialdehyde. Plasma malondialdehyde was deter-
mined by RP-HPLC coupled with fluorescence detection
after derivatization with thiobarbituric acid as described by
Wong et al. [19] with modifications [20].

2.5. Analysis of Protein Carbonyls and 3-Nitrotyrosine.
The analyses of protein carbonyls [21] and 3-nitrotyrosine
in plasma by in-house ELISA have been described
elsewhere [20].

2.6. Analysis of α-Tocopherol and Lycopene. Plasma lycopene
and α-tocopherol were analyzed by RP-HPLC coupled
with UV-vis and fluorescence detection as previously
described [22].

2.7. Statistical Analysis. Demographic characteristics are
described by using means± standard deviation (SD) for
continuous variables (age, weight, and BMI) and frequencies
(%) for categorical variables (gender, smoking status, age
groups, and country). Differences in characteristics between
age groups and study groups were compared by one-way
ANOVA (continuous variables) with Tukey’s post hoc test
and Pearson’s chi-squared test (prevalence; for categorical

variables). Data of plasma biomarkers were transformed
appropriately to achieve normal distribution using square
root (SR) or logarithmic (LN) transformation and are
described by geometric means with 95% confidence intervals
(CI). Correlations among biomarkers and between bio-
markers and age are shown as Pearson product-moment
correlation for transformed data. Mean values of plasma bio-
markers between study groups were compared using one-
way ANOVA and general linear models with Fisher’s least
significant difference test. The models were adjusted for
age, BMI, gender, smoking status (covariates), and country
(factor). In addition, a multiple linear regression analysis
with all biomarkers in the initial model and a forward step-
wise approach was applied to identify independent plasma
biomarkers with the highest correlation with age. Differences
of concentrations in biomarkers between RASIG, GO, SGO,
and age groups (5-year intervals) are presented as box plots.
All statistical analyses were carried out using SPSS software
(SPSS Inc., Chicago, IL; Version 19); statistical significance
for all tests was considered at P < 0 05.

3. Results

Characteristics of the study groups are shown in Table 1. The
mean age of participants was 64.3± 5.4 (55–75) years with no
significant difference between the matched study groups.
Men represented 47.7% of participants. The mean BMI was
27.3± 4.5 kg/m2 with no statistical significant difference
among the study groups. Only 14.8% of participants were
current smokers. The prevalence of smoking was different
among the three study groups being 9.9% in SGO, 12.6% in
GO, and 17.9% in RASIG. The number of participants from
each study center was significantly different as shown in
Table 1.

A total of 1559 participants were distributed into the
groups as follows: RASIG (n = 794), GO (n = 493), and
SGO (n = 272).

Biomarker concentrations differed significantly between
study groups (Table 2 and Figures 1, 2, and 3). It is notewor-
thy that GO and SGO differed only in uric acid with signifi-
cantly higher concentrations in the SGO group. Cysteine
was highest in GO, glutathione in SGO, α-tocopherol was
highest in both GO and SGO while lycopene was lower in
GO and SGO than in the RASIG group. Interestingly, GO
differed in all biomarkers from the RASIG group except in
uric acid and total glutathione (Table 2). In detail, GO had
significantly higher concentrations of ascorbic acid, total free
cysteine, α-tocopherol, and 3-nitrotyrosine and lower con-
centrations of lycopene, protein carbonyls, and malondialde-
hyde. Furthermore, SGO were different from RASIG in all
biomarkers except for uric acid, 3-nitrotyrosine, and malon-
dialdehyde with higher concentrations of ascorbic acid, total
free cysteine, total glutathione, and α-tocopherol and lower
concentrations of protein carbonyls and lycopene.

We performed a univariate general linear model adjusted
for age, BMI, gender, smoking status, and country to assess
whether these differences were still present after adjustment.
This was true for glutathione and α-tocopherol, as well as for
all three oxidative stress biomarkers (protein carbonyls, 3-
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nitrotyrosine, and malondialdehyde), although lycopene
(P < 0 069) and cysteine (P < 0 072) also reached the
borderline of significance.

The comparison of biomarker concentrations of our
study groups with a middle-aged control group is shown in
Table 3. In general, the older groups revealed significantly

Table 2: Biomarker concentrations in the three study populations1.

All (n = 1559) RASIG (n = 794) GO (n = 493) SGO (n = 272) P

Antioxidants

Ascorbic acid (mg/L) 4.41 (4.26; 4.58) 4.13 (3.91; 4.36) 4.73 (4.44; 5.02)‡ 4.70 (4.33; 5.08)‡ 0.002

Adjusted GLM2 4.32 (4.13; 4.52) 4.17 (3.87; 4.49) 3.85 (3.32; 4.41) 0.258

Uric acid (mg/L) 45.9 (45.3; 46.5) 45.7 (44.9; 46.5) 45.3 (44.2; 46.3) 47.4 (46.0; 48.8)◊ 0.047

Adjusted GLM2 45.4 (44.6; 46.1) 46.0 (44.7; 47.2) 47.0 (44.7; 49.3) 0.341

Total cysteine (μmol/L) 148.2 (146.6; 149.8) 144.8 (142.5; 147.1) 150.8 (147.9; 153.6)‡ 153.3 (149.3; 157.3)‡ <0.001
Adjusted GLM2 144.2 (141.8; 146.6) 149.6 (145.7; 153.4)‡ 145.5 (138.4; 152.6) 0.072

Total glutathione (μmol/L) 1100 (1091; 1110) 1088 (1074; 1102) 1110 (1093; 1127) 1120 (1099; 1141)‡ 0.024

Adjusted GLM2 1092 (1077; 1106) 1112 (1089; 1135) 1149 (1106; 1193)‡ 0.025

Lycopene (μmol/L) 0.574 (0.556; 0.592) 0.631 (0.604; 0.659) 0.525 (0.497; 0.554)‡ 0.503 (0.464; 0.543)‡ <0.001
Adjusted GLM2 0.608 (0.583; 0.635) 0.566 (0.526; 0.606) 0.539 (0.470; 0.613) 0.069

α-Tocopherol (μmol/L) 28.8 (28.4; 29.2) 27.8 (27.3; 28.3) 30.1 (29.4; 30.8)‡ 29.6 (28.6; 30.5)‡ <0.001
Adjusted GLM2 27.9 (27.4; 28.5) 29.3 (28.4; 30.3)‡ 29.9 (28.2; 31.7)‡ 0.005

Oxidative stress biomarkers

Protein Carbonyls (nmol/mg) 0.577 (0.573; 0.582) 0.595 (0.590; 0.601) 0.558 (0.551; 0.566)‡ 0.561 (0.552; 0.571)‡ <0.001
Adjusted GLM2 0.591 (0.585; 0.597) 0.566 (0.557; 0.575)‡ 0.564 (0.547; 0.581)‡ <0.001
3-Nitrotyrosine (pmol/mg) 4.11 (3.97; 4.25) 3.94 (3.75; 4.13) 4.40 (4.14; 4.67)‡ 4.10 (3.77; 4.44) 0.018

Adjusted GLM2 3.90 (3.70; 4.11) 4.38 (4.03; 4.74)‡ 3.76 (3.18; 4.38) 0.048

Malondialdehyde (μmol/L) 0.316 (0.306; 0.326) 0.336 (0.322; 0.350) 0.284 (0.266; 0.302)‡ 0.317 (0.290; 0.346) <0.001
Adjusted GLM2 0.334 (0.319; 0.348) 0.288 (0.267; 0.311)‡ 0.314 (0.274; 0.357) 0.004
1Geometric mean (95% CI). 2Adjusted general linear model (GLM): univariate general linear model adjusted for age, BMI, smoking status, gender, and country
(center). ‡Statistically significant difference to RASIG. ◊Statistically significant difference to GO. P values: statistically significant differences were determined by
one-way ANOVA with Tukey’s post hoc test and by Fisher’s least significant difference post hoc test in the GLM.

Table 1: Characteristics of the three study groups.

All (n = 1559) RASIG (n = 794) GO (n = 493) SGO (n = 272) P

Age (years) 64.3± 5.4 64.5± 5.8 64.3± 4.9 63.9± 4.7 0.230

55–59 years (n, (%)) 345 (22.1) 193 (24.3) 94 (19.1) 58 (21.3)

<0.00160–64 years (n, (%)) 448 (28.7) 210 (26.4) 149 (30.2) 89 (32.7)

65–69 years (n, (%)) 465 (29.8) 204 (25.7) 166 (33.7) 95 (34.9)

70–75 years (n, (%)) 301 (19.3) 187 (23.6) 84 (17.0) 30 (11.0)

Gender, male (n, (%)) 743 (47.7) 386 (48.6) 213 (43.2) 144 (52.9) 0.027

Smoker, current (n, (%)) 231 (14.8) 142 (17.9) 63 (12.6) 27 (9.9) 0.001

BMI (kg/m2) 27.3± 4.5 27.6± 4.7 26.6± 4.4 27.3± 4.2 0.692

<25 (n, (%)) 516 (33.1) 249 (31.4) 188 (38.1) 79 (29.0)

0.03625 to <30 (n, (%)) 673 (43.2) 343 (43.3) 199 (40.4) 131 (48.2)

≥30 (n, (%)) 369 (23.7) 201 (25.3) 106 (21.5) 62 (22.8)

Country

Belgium (n, (%)) 472 (30.3) 155 (19.5) 190 (38.5) 127 (46.7)

<0.001
Finland (n, (%)) 253 (16.2) 69 (8.7) 132 (26.8) 52 (19.1)

Greece (n, (%)) 209 (13.4) 187 (23.6) 18 (3.7) 4 (1.5)

Italy (n, (%)) 323 (20.7) 187 (23.6) 87 (17.6) 49 (18.0)

Poland (n, (%)) 302 (19.4) 196 (24.7) 66 (13.4) 40 (14.7)

Values are means ± SD; P value: one-way ANOVA (continuous variables) and Pearson’s chi-squared test (prevalence).
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different antioxidant concentrations compared to the refer-
ence group. The RASIG, GO, and SGO groups had signifi-
cantly higher mean uric acid, cysteine, and α-tocopherol and
lower lycopene compared to the reference group. There were
no differences in terms of oxidative stress biomarkers between
the reference group and RASIG aged 55–75 years. Interest-
ingly, while the GO and SGO groups had significantly lower
protein carbonyl concentrations compared to the reference
group, only the GO group had higher 3-nitrotyrosine
compared to the reference group.

Table 4 shows the correlation coefficients among the
assessed biomarkers in all participants aged ≥55 years.
The highest correlation coefficients were found between
malondialdehyde and protein carbonyls (r = 0 322), malon-
dialdehyde and ascorbic acid (r = −0 240), followed by
protein carbonyls and α-tocopherol (r = −0 193). A positive

correlation was observed between the antioxidants ascorbic
acid and α-tocopherol (r = 0 164). When these correlations
were performed only in the RASIG group, the direction and
strength of correlations were similar (results not shown).

The correlations of the individual biomarkers with age are
shown in Table 5. Significant positive correlation coefficients
were observed for uric acid, cysteine, and 3-nitrotyrosine
while a significant inverse association was only seen for
lycopene. A weak significant positive correlation between
protein carbonyls and age was only observed in the RASIG
group (r = 0 098; P < 0 01, data not shown).

In a final multiple regression model with a forward
approach, we aimed to identify independent biomarkers
with the highest correlation with age (Table 6). Therefore,
all biomarkers were assessed as covariates. Confirming the
correlations from Table 5, uric acid, cysteine, 3-nitrotyrosine,
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Figure 1: Classical biomarkers of oxidative stress: protein carbonyls (a), 3-nitrotyrosine (b), and malondialdehyde (c). Biomarker
concentrations are displayed according to study groups (A) and age groups (B), respectively. RASIG (n = 794); GO (n = 493);
SGO (n = 272). Outliers and extreme values are included in the analyses but not shown in the figure. Statistically significant differences are
indicated by asterisks: ∗P < 0 05 and ∗∗∗P < 0 001.
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and lycopene were significantly associated with age, and
also, protein carbonyls remained in the model with a
positive association.

4. Discussion

In general, the older groups revealed higher antioxidant (uric
acid, cysteine, and α-tocopherol) and lower lycopene concen-
trations compared to the reference group. Lycopene, total
cysteine, uric acid, protein carbonyls, and 3-nitrotyrosine

were significantly and independently associated with age in
the multiple linear regression model among participants aged
55–75 years. Higher cysteine and α-tocopherol, but lower
lycopene in both GO and SGO compared to RASIG seem
to be associated with a “beneficial” lifestyle, while the signif-
icantly lower malondialdehyde and higher 3-nitrotyrosine
only in the GO compared to the RASIG group may indicate
that families with long-living members are genetically better
equipped to handle oxidative stress, yet the cause and impact
of the higher 3-nitrotyrosine levels remain unclear.

We assume that (1) if there are differences between
RASIG and the other two groups but no differences between
GO and SGO, the reason may be lifestyle-related and (2) dif-
ferences between GO and SGO (irrespective of the RASIG
results) indicate genetic reasons.

Applying these criteria to the biomarkers assessed in the
present study leads to the conclusion that after adjustment
for age, BMI, smoking status, gender, and country, the differ-
ences in protein carbonyls, malondialdehyde, 3-nitrotyro-
sine, α-tocopherol, cysteine, and glutathione between study
groups seem to be lifestyle-related whereas genetics seem to
play a minor role. For the case where both GO and SGO
differ to the control group (protein carbonyls, lycopene,
and α-tocopherol), this might indicate the influence of life-
style. Thus, our results show that lifestyle is an important
contributor to redox biomarkers.

One might hypothesize that when GO differ to the other
two groups and the reference group, this difference may be
attributed to genetics. This was the case for 3-nitrotyrosine,
cysteine (both higher than the other groups), and malondial-
dehyde (lower than the other groups). In our study, there
was no significant difference between GO and SGO groups
for these three biomarkers, yet a clear tendency exists
according to the data in Tables 2 and 3. Concentrations of
malondialdehyde, 3-nitrotyrosine, and total cysteine were
still different between the GO and the RASIG groups after
the GLM adjustment, which may be an indication of a genetic
contribution in age-associated handling of oxidative stress.

Direct comparison of the study groups revealed that the
GO group had significantly lower concentrations of protein
carbonyls and malondialdehyde accompanied by higher
concentrations of cysteine, ascorbic acid, and α-tocopherol
compared to RASIG. Contrarily, GO had lower lycopene
and higher 3-nitrotyrosine than the RASIG group. These dif-
ferences may be due to better metabolic profiles or due to a
generally healthier nutrient intake, despite less processed
tomato products which are especially rich in lycopene.

It is widely accepted that there is a relationship
between the aging process and oxidative stress; however,
most studies leading to this theory have been carried out
in model systems and only few studies have analyzed dif-
ferent biomarkers of oxidative stress in healthy humans of
various age groups [3, 6].

Protein carbonyls are considered to be relatively stable
[23] and early markers [24] of oxidative stress. Measuring
carbonylation of plasma proteins enables evaluating the
global oxidation status in plasma. Protein carbonyls have
been analyzed in a multitude of studies ranging from cell cul-
ture, animal, to human studies and are related to the aging
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Figure 2: Cysteine concentration by study groups (a) and age
groups (b). RASIG (n = 794); GO (n = 493); SGO (n = 272).
Outliers and extreme values are included in the analyses but not
shown in the figure. Statistically significant differences are
indicated by asterisks: ∗∗P < 0 01 and ∗∗∗P < 0 001.
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process. They have been shown to be a predictor of mortality
in moderately to severely disabled older women [10].
Komosinska-Vassev et al. showed a positive correlation
of protein carbonyls with age in a study of 56 men and
women aged ≥55 years (r = 0 52) [25]. Other authors also

found a strong positive correlation of protein carbonyls with
age (r = 0 786) in 80 participants between the age of 18 and
85 [6], whereas in the present study, the correlation for the
age range of 55–75 was very weak (r = 0 098) but still
statistically significant. Cakatay et al. demonstrated that
plasma protein carbonyl levels of elderly participants were
significantly higher in comparison to those of middle-aged
and young participants [26]. In the present study, pro-
tein carbonyls only correlated with age in the RASIG
group (r = 0 098, P < 0 01; data not shown) but not when
all three study groups were combined. Most interestingly,
the RASIG group had statistically significantly higher protein
carbonyl concentrations than the GO as well as the SGO
while there was no difference between the GO and SGO.
After adjusting for covariates (including smoking status), this
difference remained.

For 3-nitrotyrosine, we observed a weak, positive
association with age. In contrast to protein carbonyls, 3-
nitrotyrosine was significantly higher in GO compared to
RASIG. 3-Nitrotyrosine has been described to be a stable
marker of oxidative/nitrative stress in some inflammatory
diseases [27]. It arises from nitration involving reactive

Table 4: Correlations between biomarkers in all three study groups in participants aged ≥55 years1.

Ascorbic
acid

Uric acid
Total

cysteine
Total

glutathione
Lycopene α-Tocopherol

Protein
carbonyls

3-Nitro-
tyrosine

Malondialdehyde

Ascorbic acid −0.083∗∗∗ 0.140∗∗∗ 0.030 −0.103∗∗∗ 0.164∗∗∗ −0.157∗∗∗ −0.027 −0.240∗∗∗

Uric acid 0.067∗∗ −0.021 −0.099∗∗∗ 0.059∗ −0.020 −0.054∗ 0.019

Total cysteine 0.047 −0.053∗ 0.103∗∗∗ 0.062∗ 0.043 −0.034
Total glutathione 0.032 −0.033 −0.007 −0.015 0.030

Lycopene 0.073∗∗ 0.088∗∗∗ −0.092∗∗∗ 0.159∗∗∗

α-Tocopherol −0.193∗∗∗ 0.062∗ −0.132∗∗∗

Protein
carbonyls

0.001 0.322∗∗∗

3-Nitrotyrosine 0.019

Malondialdehyde
1Pearson correlation coefficient r. Statistically significant correlations are marked by ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001. (n = 1559).

Table 3: Comparison of study groups with a reference group.

Reference Group
(RASIG; 35–54 years)

(n = 683)

RASIG
(55–75 years)
(n = 794)

GO
(55–75 years)
(n = 493)

SGO
(55–75 years)
(n = 272)

Antioxidants

Ascorbic acid (mg/L) 4.37 (4.12; 4.63) 4.13 (3.91; 4.36) 4.73 (4.44; 5.02) 4.70 (4.33; 5.08)

Uric acid (mg/L) 42.4 (41.6; 43.3) 45.7 (44.9; 46.5)∗∗∗ 45.3 (44.2; 46.3)∗∗∗ 47.4 (46.0; 48.8)∗∗∗

Total cysteine (μmol/L) 130.3 (128.1; 132.5) 143.0 (140.7; 145.3)∗∗∗ 149.0 (146.1; 151.9)∗∗∗ 151.4 (147.4; 155.5)∗∗∗

Total glutathione (μmol/L) 1107 (1092; 1121) 1088 (1074; 1101) 1110 (1093; 1127) 1120 (1099; 1142)

Lycopene (μmol/L) 0.83 (0.80; 0.86) 0.63 (0.60; 0.66)∗∗∗ 0.53 (0.50; 0.55)∗∗∗ 0.50 (0.46; 0.54)∗∗∗

α-Tocopherol (μmol/L) 25.7 (10.4; 10.6) 27.8 (10.9; 11.2)∗∗∗ 30.1 (11.4; 11.7)∗∗∗ 29.6 (11.2; 11.7)∗∗∗

Oxidative stress biomarkers

Protein carbonyls (nmol/mg) 0.603 (0.598; 0.609) 0.595 (0.590; 0.601) 0.558 (0.551; 0.566)∗∗∗ 0.561 (0.552; 0.571)∗∗∗

3-Nitrotyrosine (pmol/mg) 3.8 (3.6; 4.0) 3.9 (3.8; 4.1) 4.4 (4.1; 4.7)∗∗ 4.1 (3.8; 4.4)

Malondialdehyde (μmol/L) 0.31 (0.30; 0.32) 0.34 (0.32; 0.35) 0.28 (0.27; 0.30) 0.32 (0.29; 0.35)
∗∗∗P < 0 001 and ∗∗P < 0 01 by one-way ANOVA with Tukey’s post hoc test.

Table 5: Correlations between biomarkers and age among all
participants (aged ≥55 years)1.

r P

Ascorbic acid 0.026 0.297

Uric acid 0.092 <0.001
Total cysteine 0.152 <0.001
Total glutathione −0.035 0.167

Lycopene −0.224 <0.001
α-Tocopherol −0.005 0.847

Protein carbonyls 0.036 0.158

3-Nitrotyrosine 0.066 0.009

Malondialdehyde −0.037 0.146
1Pearson correlation coefficient r (n = 1559).
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nitrogen species (RNS) and peroxidase-mediated nitrite
oxidation. Today, myeloperoxidase is considered to be
involved in this pathway. Thus, 3-nitrotyrosine may play a
role in inflammation rather than the aging process itself
[28]. Frijhoff et al. question whether 3-nitrotyrosine is clini-
cally useful, in comparison to the already established markers
of inflammatory processes such as C-reactive protein [29].
Plasma 3-nitrotyrosine levels in patients treated with anti-
inflammatory drugs have been shown to decrease [30, 31].
This is one more hint why 3-nitrotyrosine may be a better
marker for inflammation than for the aging process in gen-
eral. Although the nitration of tyrosine residues on proteins
can result in a loss of function [32], some authors have
reported a gain of function [33]. Perhaps site-specific nitra-
tion may have a protective function or a role in longevity.
In our study population, there might have been no dramatic
difference of 3-nitrotyrosine in the different age groups
because the participants were generally healthy. Only 4.0%
of our participants had CRP concentrations≥ 10mg/L.
Nevertheless, we checked the correlation between CRP and
3-nitrotyrosine but there was no correlation, neither in all
participants nor in those with a high CRP level. Thus, the
usefulness of 3-nitrotyrosine as a biomarker to evaluate
oxidative stress remains to be elucidated.

Few large epidemiological studies have analyzed malon-
dialdehyde. Block et al. suggest plasma malondialdehyde
should be considered for most epidemiologic research on
redox biomarkers [34] since they observed in a validation
study that this biomarker had a good day-to-day stability.
They propose malondialdehyde to be an effective marker of
oxidative stress and state that the use of a single measure of
malondialdehyde resulted in little attenuation [34]. In
another study, the same authors found that malondialdehyde
was not associated with age in 298 participants aged 18–78
years [35]. These results are supported by our finding that
malondialdehyde was not associated with age in any of the
three study groups. However, the GO group had significantly
lower plasma malondialdehyde concentrations than RASIG.
This difference remained even after adjusting for age, BMI,
smoking status, gender, and country.

To counteract oxidative stress, there exist a network of
antioxidant defense mechanisms. One of these antioxi-
dants is the tripeptide glutathione (γ-glutamylcysteinylgly-
cine). A decline of glutathione with age has previously
been suggested in humans [36], and it has been

demonstrated that the correlation of thiol groups in
plasma with age was inverse (r = −0 718) [6].

Concentrations of glutathione and cysteine were lower in
healthy old (mean age 70.3 years) than in middle-aged (mean
age 39.8 years) participants (n = 8 each) [37].

We did not observe any correlation between glutathione
and age. One explanation may be that we measured total
glutathione instead of GSH/GSSH which is considered a bet-
ter marker of the redox state. Giustarini et al. found an
inverse correlation of glutathione with age but no correlation
of cysteine with age in 41 participants [38]. Similarly, Jones
et al. used plasma of 122 healthy individuals aged 19–85 years
to analyze thiol-based redox changes [39]. They suggest that
the capacity of the glutathione antioxidant system is main-
tained until 45 years and then declines rapidly. For the
present analyses, participants were selected which were ≥55
years, yet we were unable to show a correlation between glu-
tathione and age. In contrast to previous findings, cysteine is
higher in the higher age groups in the RASIG and GO study
groups and correlates positively with age among all partici-
pants (r = 0 152, P < 0 001).

It is assumed that lower glutathione concentrations
occurring during aging and in different diseases may more
likely result from low cysteine concentrations rather than
due to oxidation since cysteine is the rate-limiting precursor
of glutathione. Free cysteine is one of the main nonprotein
thiols in plasma [40, 41] and considered a semiessential
amino acid, since it must be taken up or synthesized from
the essential amino acid methionine [42]. It is able to regulate
nutrient metabolism, oxidative stress, physiologic signaling
pathways, and associated diseases through the production
of glutathione, hydrogen sulfide, and taurine [43]. An oral
intervention with cysteine (as N-acetylcysteine) and glycine
for 14 days resulted in significantly increased glutathione
concentrations [37]. This was also true when only cysteine
was supplemented, resulting in an increase in hepatic
glutathione synthesis [43]. It is likely that the glutathione
concentrations in our cross-sectional study were similar in
the different age groups because cysteine may not have been
limited. Previous results also suggest that the participants in
our study had sufficient cysteine and thus glutathione levels
[38]. Nevertheless, the requirement of cysteine may be
elevated after oxidative events due to the consumption of glu-
tathione. Some future research should clarify the role of cys-
teine in aging and as a dietary precursor of glutathione.

Table 6: Associations of oxidative stress markers and antioxidants with age1.

Compound B 95% CI r r2 P

(Constant) 59.13 56.79, 61.48 <0.001
Lycopene (μmol/L) −2.783 −3.440, −2.126 −0.207 0.047 <0.001
Total cysteine (mol/L) 0.021 0.013, 0.029 0.133 0.020 <0.001
Uric acid (mg/L) 0.031 0.009, 0.054 0.071 0.004 0.005

Protein carbonyls (nmol/mg) 3.274 0.252, 6.296 0.054 0.003 0.034

3-Nitrotyrosine (pmol/mg) 0.094 0.004, 0.183 0.052 0.003 0.040
1Multiple linear regression analysis with a forward approach to identify independent blood biomarkers with highest correlation to age; all biomarkers
including ascorbic acid, glutathione, malondialdehyde, and α-tocopherol were assessed as covariates in the initial model; partial r and r2; R = 0 277,
R2 = 0 077 (n = 1545).
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Furthermore, it should be noted that some authors measured
glutathione/thiol groups in plasma [6]. Glutathione is known
as the most powerful cellular antioxidant, that is, present in
red blood cells, and consequently, we analyzed glutathione
in whole blood.

Concerning uric acid, our results show that there was no
difference between RASIG and GO but higher concentrations
in the SGO group than in the GO. However, adjusting for
age, BMI, gender, smoking status, and country, these differ-
ences did not remain. Uric acid is derived from the degrada-
tion of purine nucleotides which can be of dietary or
endogenous origin. Therefore, an increased intake of animal
products or legumes/pulses in the SGO group is possible.
There is a controversial discussion whether the positive
effects of uric acid as an antioxidant are outweighed by its
adverse effects concerning gout, coronary artery disease,
hypertension, and stroke (for review, see [44]).

Besides endogenous antioxidants such as glutathione,
cysteine, and uric acid, exogenous antioxidants are also
required to counteract oxidative stress. Some of the most
powerful antioxidants are of dietary origin such as ascorbic
acid, α-tocopherol, lycopene, and other carotenoids. It is
known that a high intake of fruits and vegetables is associated
with a high plasma concentration of ascorbic acid [45].
Simultaneously, a diet rich in fruits and vegetables is associ-
ated with a reduced risk of some diseases such as CVD and
cancers [46]. α-Tocopherol and ascorbic acid act synergisti-
cally in counteracting free radicals. α-Tocopherol is able to
quench free radicals in a hydrophobic environment, for
example, to terminate lipid peroxidation and the resulting
tocopherol radical is then recycled by ascorbic acid [47].
We found an inverse correlation between α-tocopherol and
malondialdehyde, an inverse association between ascorbic
acid and malondialdehyde (all P < 0 001), and a positive
correlation between α-tocopherol and ascorbic acid. These
results are in accordance with the assumption that these
antioxidants act synergistically.

Since these are diet-derived antioxidants and we did not
adjust our models for dietary intake of fruit and vegetables,
we cannot exclude that the diet or the season had an effect
on the plasma concentration of these micronutrients. In a
recent study, we have shown over the whole age-range of
the MARK-AGE project from 35 to 75 (RASIG group) that
lycopene was lower in higher age groups and this effect was
independent of season [22]. It remains unclear if these differ-
ences observed in the older age groups result from a reduced
intake, reduced absorption, increased storage in adipose
tissue, or elevated degradation of lycopene.

The strengths of the present study include the large
sample size and that all biomarkers described here were
measured in one single laboratory in blinded form (samples
from study groups and countries were in mixed random
order by the biobank). For lipid-soluble micronutrient anal-
ysis, we have recently published the interbatch coefficients
of variation which were 7.6% for lycopene and 6.3% for α-
tocopherol in the MARK-AGE cohort [22]. Concerning the
validity of the methods used for 3-nitrotyrosine analysis, we
have previously reported good specificity, reproducibility,
and accuracy for this in-house ELISA [48]. The ELISA

method used here to analyze protein carbonyls has been val-
idated in a multicenter ring study [49]. It was shown that
carbonyl concentrations from three out of four laboratories
participating in the ring study fell within 95% confidence
intervals. Additionally, protein concentration was measured
before both ELISAs and plasma samples were diluted to the
same protein concentration. Standards for protein carbonyl
ELISA were prepared according to Buss et al. [21] and run
on every 96-well plate.

In terms of comparability to other studies, there is an
excellent review from Giustarini et al. [50]. As the authors
demonstrate, there exist numerous analytical methods to
analyze protein carbonyls, malondialdehyde, GSH, tocoph-
erols, and lycopene, among others. An overview is given for
different derivatization and detection methods, health condi-
tions, and units, demonstrating huge variety. For instance for
malondialdehyde, Giustarini et al. showed that authors using
methods comparable to ours (TBA derivatization and HPLC
separation) published concentrations between 0.44 and
6.8μmol/L for plasma samples [50]. One reason for this var-
iation may be that heparin plasma was used in some cases.
Especially for malondialdehyde, it is important to measure
this marker in EDTA plasma since lipid peroxidation can
continue in serum and heparin plasma, thus artificially con-
tributing to elevated malondialdehyde concentrations. EDTA
and citrate can complex iron thus preventing Fenton reaction
leading to lipid peroxidation.

For GSH and cysteine, the authors also report different
methods (e.g., enzymatic, HPLC coupled with UV or fluores-
cence detection) and mean concentrations in whole blood,
plasma, and erythrocytes for healthy and diseased individuals,
which span over one to two orders of magnitude within the
kind of used specimen; however, total GSH levels in the pres-
ent study are in the upper range of previously reported mean
whole blood values for healthy individualsmeasured byHPLC
or recycling spectrophotometry (using Ellman’s reagent).

This study has some limitations which must be men-
tioned. Since this study was observational, we cannot make
statements on the changes of these biomarkers with age;
therefore studies with repeated measurements and/or
follow-up are needed. Furthermore our results may be spe-
cific for European/Caucasian subjects and thus not transfer-
rable to other countries.

The inclusion of three different study groups with a large
sample size (n = 1559) is one feature that distinguishes this
study from others. Samples were collected and distributed
in a blinded form to guarantee unbiased measurement and
interpretation, and all analyses of biomarkers described here
were carried out in one single laboratory, which significantly
reduces interlaboratory variations. The assessment of differ-
ent specific cellular and plasma biomarkers, that is, markers
for oxidative damage together with antioxidants that are
not analyzed by commercial kits but by in-house methods
is certainly an important strength.

5. Conclusion

Here, we have provided an overview of the levels of the differ-
ent redox biomarkers in human plasma and whole blood in
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three different study groups of the MARK-AGE project and
their correlation with age. Interestingly, from all antioxidants
measured, only lycopene was lower in the three aged groups.
In addition, from the oxidative stress biomarkers, only 3-
nitrotyrosine was increased in the descendants from long-
living families compared to the control group, while the aged
general population did not exhibit any difference compared
to the middle-aged controls. Higher cysteine and α-tocoph-
erol, but lower lycopene in both GO and SGO, compared to
the RASIG seem to be associated with a “beneficial” lifestyle,
while the significantly lower malondialdehyde and higher
3-nitrotyrosine which were observed only in the GO com-
pared to the RASIG group may indicate that families with
long-living members are genetically better equipped to
handle oxidative stress. Thus, our present study suggests
that age, lifestyle, and genetics could contribute to an
individual’s oxidative stress status.
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