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Objective: The aim of this study was to explore the clinical value of the static amplitude

of low-frequency fluctuation (sALFF) and dynamic amplitude of low-frequency fluctuation

(dALFF) in the identification of brain functional alterations in degenerative cervical

myelopathy (DCM) patients.

Methods: Voxel-wise sALFF and dALFF of 47 DCM patients and 44 healthy controls

were calculated using resting-state fMRI data, and an intergroup comparison was

performed. Themean of sALFF or dALFF data were extracted within the resultant clusters

and the correlation analysis of these data with the clinical measures was performed.

Furthermore, whole-brain-wise and region-wise multivariate pattern analyses (MVPAs)

were performed to classify DCM patients and healthy controls. sALFF and dALFF were

used to predict the prognosis of DCM patients.

Results: The findings showed that (1) DCM patients exhibited higher sALFF within the

left thalamus and putamen compared with that of the healthy controls. DCM patients

also exhibited lower dALFF within bilateral postcentral gyrus compared with the healthy

controls; (2) No significant correlations were observed between brain alterations and

clinical measures through univariate correlation analysis; (3) sALFF (91%) and dALFF

(95%) exhibited high accuracy in classifying the DCM patients and healthy controls;

(4) Region-wise MVPA further revealed brain regions in which functional patterns were

associated with prognosis in DCM patients. These regions were mainly located at the

frontal lobe and temporal lobe.

Conclusion: In summary, sALFF and dALFF can be used to accurately reveal brain

functional alterations in DCM patients. Furthermore, the multivariate approach is a more

sensitive method in exploring neuropathology and establishing a prognostic biomarker

for DCM compared with the conventional univariate method.

Keywords: functional magnetic resonance imaging, degenerative cervical myelopathy, dynamic amplitude of

low-frequency fluctuation, multivariate analysis, Support Vector Machine (SVM)
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INTRODUCTION

Degenerative cervical myelopathy (DCM) is characterized by
acquired stenosis in the cervical spine (1). The prevalence of
DCMhas been increasing over the years and is currently themost
commonly reported nontraumatic spinal cord dysfunction (2).
Timely diagnosis and surgical intervention are required to relieve
neurological symptoms of DCM (3, 4). Currently, the primary
treatment for DCM is decompression surgery. Themajor surgical
indications for DCM include a definite diagnosis of myelopathy
(diagnosis based on both clinical symptoms and MR findings)
and progressive myelopathy (5). Although these indications are
concise and easy to perform, it is challenging for surgeons to
decide whether surgical treatment is required for DCM patients
with chronic myelopathy lasting for years (to explore whether
surgery is no longer effective for these patients) (6). Therefore,
simple, accurate prognostic biomarkers for DCM are needed to
determine whether patients will be benefited from the surgery.

Researchers previously used images acquired from
conventional MRI of the cervical spine to predict neurological
recovery of the DCM patients (such as high signal intensity on
T2-weighted MR). However, its utility is controversial because
information obtained from the spinal cord area is limited (only
a small cross-sectional area is accessible) (7, 8). Resting-state
fMRI was recently used to establish a prognostic biomarker for
DCM patients (9–11). The functional connectivity (FC) between
the occipital lobe and the frontal lobe is highly associated with
neurological recovery in DCM patients (9). Moreover, the
amplitude of low-frequency fluctuation (ALFF) of the frontal
lobe has high potential application in predicting the prognosis of
DCM patients (10). These results provide preliminary evidence
that rs-fMRI can be used for prognostic prediction in DCM
patients. However, these studies have some limitations. First, (1)
previous studies used FC and ALFF as prognostic biomarkers for
DCM patients. These metrics statistically measured the cortical
function during the entire scan, and ignored the time-varying
characteristics of intrinsic brain activity over time in DCM
patients. On the contrary, dynamic ALFF (dALFF) can reflect
temporal variability of intrinsic brain activity (12) and shows
promise in identifying the pathology of diseases and potential
application in the development of prognostic biomarkers.
Second, (2) previous studies only performed univariate analyses
(such as voxel-wise or region-wise correlation analyses between
rs-fMRI metrics and prognosis of DCM patients). Association
between brain metrics and clinical variables can be revealed
and easily interpreted through univariate analysis. However, the
univariate analysis only considers linear relation between the
amplitude of a given voxel or connection and clinical measures.
The pattern information which is constituted by the clustered
voxels or numerous connections among a given network, are
therefore ignored in univariate analysis (13–15).

To bridge these gaps, the clinical value of dALFF in the
diagnosis of DCM and as a potential prognostic biomarker was
explored through MVPA in DCM patients. ALFF and dynamic
ALFF were calculated in this study. Mass univariate analysis
and multivariate pattern analysis (SVM classification) were
performed to explore the differences between DCM patients and

TABLE 1 | Demographic data.

DCM HC P

Age 51.3 ± 2.8 51.7 ± 3.6 0.81

Gender (Female) 22 (22) 20 (18) 0.94

Education years 12 ± 2.4 11.7 ± 3.6 0.74

JOA score 11.3 ± 3.2

JOA recovery rate 70% ± 15.6%

Disease duration (Month) 30.5 ± 17.4

DCM, Degenerative Cervical Myelopathy; HC, Healthy Controls; JOA, Japanese

Orthopedic Association.

healthy controls. Moreover, univariate correlation analysis and
MVPA (through support vector regression, SVR) were performed
to predict the prognosis of DCM patients following spinal cord
decompression surgery. The aim of this study was to explore
whether dALFF provides additional information in determining
DCM-related pathology, and can serve as an effective prognostic
biomarker for DCM patients compared with ALFF.

MATERIALS AND METHODS

Subjects
The local Institutional Review Board approved this cross-
sectional study. All the participants provided written informed
consent before each procedure. A total of 47 DCM patients and
44 healthy participants matched for age/gender were included
in this study (Table 1). Inclusion criteria of DCM patients in
the present study were as follows: (1) clear signs and symptoms
of spinal cord myelopathy (such as sensorimotor deficits, bowel
or bladder dysfunction); (2) MR findings corresponding with
the clinical signs and symptoms; (3) patients with no other
complications such as heart disease, hepatic disease, and renal
disease; (4) Patients with no history of alcohol and drug abuse;
(5) patients with no psychological or neurological diseases; (6)
patients willing to undergo decompression surgery; (7) patients
able to complete the fMRI scan. Furthermore, healthy subjects
were recruited to the study through advertisements. Healthy
participants with no evidence of spinal cord compression, no
other complications, no psychological or neurological diseases,
no history of alcohol and drug abuse and ability to complete an
fMRI scan were included in this study.

Clinical Evaluation
All DCM patients were first evaluated by a senior orthopedic
surgeon based on the Japanese Orthopedic Association (JOA)
score (16) for assessing preoperative severity of sensorimotor
symptoms (denoted as preoperative JOA score) immediately
before fMRI scan. Further, the JOA score was used by the same
surgeon postoperatively for evaluating patients 6 months after
decompression surgery to obtain the postoperative JOA score for
each patient. The JOA recovery rate was calculated to reveal the
recovery for DCM patients following surgery. The JOA recovery
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rate (17) as shown below:

JOA recovery rate =

(Postoperative JOA scores− Preoperative JOA scores)

(17− Preoperative JOA scores)

Moreover, several patient characteristics related to the prognosis
of the DCM patients were evaluated in this study including age,
smoking status, preoperative neurological function (defined as
preoperative JOA score), and gait disturbance.

fMRI Data Acquisition and Preprocessing
Functional MRI data were obtained using a 3.0 T MR scanner
(Discovery MR750, General Electric) with a 20-channel phased-
array head coil. All participants were instructed to keep their
mind clear and focused on the cross displayed on the screen.
Further, participants were required to avoid specific and strong
ideological activities during the entire scan period. Sponge pads
were packed around the heads of participants to minimize
unconscious head movement. Earplugs were placed inside the
participants’ ears to minimize noise. fMRI data were collected
using a gradient Echo-Planar pulsed Imaging (EPI) sequence
with the following parameters: 180 time points; repetition time
= 2,000ms; echo time = 30ms; flip angle = 80◦; the field-of-
view = 240 × 240mm; matrix = 64 × 64; the number of slices
= 48 slices; and slice thickness = 3.0mm. T1 structure images
were obtained using three-dimensional T1-weighted image (3D
T1WI) for coregistration and normalization of functional images
with the following parameters: voxel size= 1.0× 1.0× 1.2 mm3;
flip angle= 13◦; echo time (TE)= 3.0ms; repetition time (TR)=
7.8ms; 180 sagittal slices; within plane field-of-view= 256× 256
mm2 and slice thickness= 1.0 mm.

FunctionalMRI data were preprocessed usingData Processing
Assistant for resting-state fMRI (DPARSF; http://www.restfmri.
net/forum/DPARSF) based on Statistical Parametric Mapping 12
(SPM 12) platform. The first 10 volumes from each functional
scan were removed to ensure acclimatization to the scanning
environment andmagnetization stabilization. The remaining 170
images were then motion corrected to remove timing differences
between slices and head movement. Subsequently, fMRI data
with motion displacement of more than 1.5mm (in any of
the x, y, or z directions) or 1.5◦ rotation of angular motion
were excluded from further analysis (3 DCM patients were
excluded). The mean rs-fMRI images were then coregistered
to the structural image, spatially normalized to the Montreal
Neurological Institute (MNI) standard space, and resampled into
3 × 3 × 3mm cubic voxel. Nuisance covariates, including 24
head motion parameters and signals of white matter and CSF,
were regressed to minimize non-neural signals. In this step, the
global signal was not regressed out due to that the regression of
the global signal is still controversial because it can introduce
artifactual negative correlations (18–21). Therefore, the global
signal was not regressed in our current study. In addition, a
scrubbing step for high-motion timepoints was performed. The
threshold for scrubbing was set at 0.5 as calculated by the
FD Jenkinson method. Images exceeding this threshold were
scrubbed using the cubic spine method (scrubbing timepoints

before bad timepoints: 2; scrubbing time-points after bad
timepoint). Notably, 3 patients and 2 healthy controls had one
timepoint that exceeded the threshold and 2 patients and 2
healthy controls had two timepoints that exceeded the threshold.
Finally, rs-fMRI images were filtered within 0.01–0.08Hz and
spatially smoothed with a Gaussian kernel of 6× 6× 6 mm3 full
width at half maximum (FWHM).

Amplitude of Low-Frequency Fluctuation
and dALFF Variance Calculation
Amplitude of low-frequency fluctuation was calculated using the
DPARSFA MATLAB toolbox. Detailed calculation procedures
were as follows: (1) fast Fournier transformation was performed
for the time series of each voxel to change the time domain to
frequency domain; (2) the voxel-wise square root of the power
spectrum was computed and averaged across 0.01–0.08Hz; (3)
the resultant averaged square root represented the ALFF of each
voxel; (4) the ALFF was then Z-scored.

Dynamic ALFF was calculated using the Dynamic BC toolbox.
A sliding-window approach was utilized to reflect the temporal
variability of intrinsic brain activity. The window length was
considered as an important parameter that determined the
robustness of the results. Previous studies report that an
appropriate window length ranges from 40 to 100 s (12, 22, 23).
Therefore, in this study, 22 TR (44 s) was chosen as the window
size, and 1 TR as the window step (23). Furthermore, the 50 TR
(100 s) and 36 TR (72 s; the average of 22 TR and 50 TR) were also
chosen as the window size to further validate our results obtained
from 22TR. ALFF was then calculated using as described earlier.
The ALFF map for each sliding window was then obtained, as
well as the dALFF variance which indicates the temporal stability
of intrinsic neural fluctuations.

Univariate Analysis
Standard rs-fMRI analysis was performed using mass univariate
analysis to explore the functional differences (such as ALFF and
dALFF) between DCM patients and healthy controls. Voxel-wise
two-sample t-test was performed within the gray matter using
age, gender, and education years as covariates. The significance
threshold was set at P ≤ 0.001 and was corrected for multiple
comparisons with family-wise error (FWE) correction at the
cluster level using SPM12 (http://www.fil.ion.ucl.ac.uk/spm).
The corresponding corrected P-value was ≤ 0.05,

The resultant clusters, which exhibited significant between-
group differences, were identified. Mean zALFF within these
clusters were extracted and the relationship with clinical
measures (including preoperative JOA scores and JOA recovery
rate) was explored through correlation analysis.

Multivariate Pattern Analysis
Multivariate pattern analysis (MVPA) uses a pattern classifier to
identify pattern differences for neural activities between different
conditions or between patients and healthy participants. Only the
amplitude of a single-voxel or a single the region of interest (ROI)
was considered at a time in univariate analysis. Notably, neural
activity information is represented by the amplitude of the neural
signal and exists in a pattern composed of multiple voxels. On the
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contrary, MVPA considered the spatial pattern of neural signals
across the whole brain or across voxels within a predefined area.

In this study, MVPA analysis was performed using the
MVPANI toolbox (24) (http://funi.tmu.edu.cn) and LibSVM’s
implementation of linear Support Vector Machine (SVM) using
default parameters. The linear kernel was used and the penalty
coefficient (c) was set to 1. Other parameters were not adjustable
therefore the default parameters were used.

Multivariate Pattern Analyses: DCM
Patients vs. Healthy Controls
ROI-Wise MVPA
Due to the relatively small sample size in our study, a whole
brain gray matter mask inevitably led to the overfitting of
the model. Therefore, a sensorimotor mask was acquired from
Shirer et al. (25) (the spatial distribution of the mask was
shown in Supplementary Figure 1). MVPA was then applied
within the sensorimotor cortices given that previous literature
reports of cortical alterations of DCM were mainly located at the
sensorimotor network (9, 26–29).

A leave-one-out-cross-validation (LOOCV) procedure was
conducted to validate our classification model owing to the
relatively small sample size in this study. Detailed procedures
for performing LOOCV in this study were as follows: (1) one
sample (ALFF or dALFF map) from the dataset was held out as
the testing data, and the rest of the dataset were used for training
the classification model; (2) the trained model was then tested
using the held-out sample (held-out sample from step 1); (3) a
binary classification accuracy was obtained for this data point
(100% for right classification, 0% for the wrong classification);
(4) subsequently, step 1 to step 3 were repeated until all the
samples were held-out once as the testing data; (5) averages of the
classification accuracies of all folds were obtained (the number of
correct classifies divided by the number of samples).

Sensitivity maps for each fold were generated. In these maps,
the value of each voxel represented its weight in the SVM
model. A high weight for a given voxel indicated that the voxel
had a strong contribution to the classifier model in predicting
whether the participant is a DCM patient. The sign of the model
weight denoted the preference for DCM-related neural activities
or healthy conditions being compared in classification. This
implies that when performing the classification “DCM patients
vs. healthy controls”, a positive sign indicated that this voxel
exhibited a higher ALFF (or dALFF) in DCM patients, whereas
a negative weight implied that this voxel exhibited a higher ALFF
(or dALFF) in healthy participants. In this study, voxels whose
signs were consistent across all folds were explored further. This
indicates that voxels consistently showing positive (or negative)
weight across all folds were presented in this study.

Null distributions of the classification accuracies were
obtained using a permutation test to explore whether
the classification accuracy was above the chance level
(50%). Samples were randomly labeled and thus no
information on the grouping of the DCM patients
and healthy controls was provided when training the
classifiers. The procedures were repeated 1,000 times for

each classification and a nonparametric P-value was then
obtained for each classification (the proportion of the
null distribution that is equal to or higher than the actual
classification accuracy).

Region-Wise MVPA
In region-wise MVPA, LOOCV procedures similar to those used
for whole-brain-wise MVPA were performed for each brain
region defined by both AAL atlas and Brainetome atlas (30).
A brief description of the region-wise MVPA analysis is as
follows: First, the classification accuracies of each brain region
were obtained by the LOOCV approach. The null distribution
of the classification accuracy for each brain region was then
obtained by permutation analysis (repeated for 1,000 times).
The maximum classification accuracy across all brain regions
was obtained for each permutation step. Subsequently, a null
distribution comprising all maximum classification accuracies
across brain regions was obtained (in a total of 1,000 accuracies).
P-values for all classification accuracies were calculated using null
distribution (comprising all maximum classification accuracies
across brain regions). P-values were automatically corrected
by the FEW method for multiple comparison analysis (31).
The significance level was set to P < 0.05 after FWE
correction for multiple comparisons. ALFF and dALFF were
used as features for region-wise MVPA. The rationale for
this analysis was to give a more detailed spatial distribution
(complement for the sensitivity map) for brain regions associated
with DCM.

Multivariate Pattern Analyses: Prognosis
Prediction for DCM Patients
ROI-Wise MVPA
In this analysis, we also restrict our analysis within
sensorimotor cortices using the previously illustrated templates
(Supplementary Figure 1). LOOCV was also performed for
validation of our prediction model.

The detailed LOOCV procedures were as follows: (1) one
data point (such as 1 fold) within the dataset was held-out
as the testing data; (2) SVR model was then trained using
the other portion of the dataset; (3) the trained model was
then tested based on the held-out data (testing data); (4) a
prediction value was then acquired along with the error between
the predicted label and the true label; (5) step 1–step 4 were
repeated until all data points were held-out once as the testing
data; (6) finally, correlation coefficient and the root mean square
error (RMSE) between the predicted labels and the true labels
were obtained.

Region-Wise MVPA
Leave-one-out-cross-validation procedures similar to those
used for ROI-wise MVPA were performed in region-wise
MVPA for each brain region defined by both AAL atlas
and Brainetome atlas. The region-wise MVPA analysis was
conducted as follows: first, correlation coefficients of each
brain region were obtained by the LOOCV approach. The
null distribution of the correlation coefficient for each brain
region was then obtained by permutation analysis. The
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FIGURE 1 | The univariate differences in dALFF and sALFF between DCM patients and healthy controls. DCM, Degenerative Cervical Myelopathy; HC, Healthy

Controls; sALFF, static amplitude of low-frequency fluctuation; dALFF, dynamic amplitude of low-frequency fluctuation. (A) The dALFF differences between DCM and

HC. (B) The sALFF differences between DCM and HC.

maximum correlation coefficient across all brain regions was
obtained for each permutation step. Subsequently, a null
distribution comprising all maximum correlation coefficients
across brain regions was obtained. P-values for all correlation
coefficients were calculated using the null distribution approach
(comprising all maximum correlation coefficients across
brain regions). The P-values were automatically corrected
by the FEW method for multiple comparison correction
(31). The significance level was set to P < 0.05 after FWE
correction. ALFF and dALFF were used as features for
region-wise MVPA. The aim of this analysis was to give more
detailed spatial distributions (complement the sensitivity
map) for brain regions associated with the prognosis of
DCM patients.

RESULTS

Degenerative Cervical Myelopathy Patients
Exhibited Lower dALFF and Higher sALFF
Compared With Healthy Controls
Degenerative cervical myelopathy exhibited significantly
lower dALFF within bilateral postcentral gyrus (S1), and
exhibited significantly higher sALFF within left putamen
and left thalamus relative to those of healthy participants
(Figure 1). Details of each cluster are presented in
Table 2. Our results from different window sizes were
also consistent with our main result. The details of each
cluster can be found in Supplementary Figure 2 and
Supplementary Table 1.

TABLE 2 | The dALFF and sALFF differences between DCM patients and

healthy controls.

Brain region MNI coordinates T value Voxel size

dALFF

lS1 −51 −6 27 −5.7 97

rS1 54 −3 24 −5.4 55

sALFF

lPutamen, lTHA 9 0 9 8.1 196

dALFF, dynamic amplitude of low-frequency fluctuation; sALFF, static amplitude of low-

frequency fluctuation; DCM, degenerative cervical myelopathy; lS1, left postcentral gyrus;

rS1, right postcentral gyrus; lTHA, left thalamus.

Brain Variables Were Not Correlated With
Clinical Characteristics as Exhibited by
Univariate Analysis
In this study, brain variables were not significantly correlated
with clinical measures within brain regions as shown by
univariate analysis (Table 3, all p > 0.05). Furthermore, the
dALFF acquired from different window sizes were also not
correlated with clinical measures.

Multivariate Pattern Analysis Shows
Differences in dALFF and sALFF in DCM
Compared With Healthy Controls
FurtherMVPA analysis revealed differences in dALFF and sALFF
between the two groups which were not exhibited by univariate
analysis. MVPA analysis was performed to explore whether the
sensorimotor network functional pattern of dALFF or sALFF can

Frontiers in Neurology | www.frontiersin.org 5 April 2022 | Volume 13 | Article 829714

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Fan et al. Dynamic ALFF in DCM

be used to distinguish DCM patients from the healthy controls.
The results showed that DCM patients could be successfully
identified from healthy controls using both sALFF and dALFF
as features with a significantly high-classification accuracy (71%
for sALFF, 79% for dALFF) (Figure 2).

TABLE 3 | The correlation coefficients between altered brain function and clinical

measures.

dALFF

lS1 rS1

JOA score −0.02 0.02

JOA recovery rate −0.19 −0.17

sALFF

lTha

JOA score 0.10

JOA recovery rate 0.26

The correlation coefficients between dALFF/sALFF and clinical measures. JOA, Japanese

Orthopedic Association. All p > 0.05.

Sensitivity maps for classifications (DCM vs. HC) are
presented in Figure 3. Voxels exhibited high weights
(consistently positive across all folds). These voxels were
mainly located at the sensorimotor cortices (bilateral SMA, M1,
S1, posterior cerebellum). These results were also validated by
our results from dALFF analysis using different window sizes
(Supplementary Figure 4).

Region-wise MVPA further revealed that brain regions
exhibited higher classification. Notably, sALFF of the brain
regions that exhibited significant accuracies were mainly
located at the bilateral frontal cortices and bilateral temporal
gyri (Figure 4) (consistent between two different atlases;
brain regions highlighted in Supplementary Figure 2).
The brain regions that exhibited significant accuracies for
dALFF were also located at the bilateral frontal cortices,
bilateral inferior temporal gyrus, bilateral inferior occipital
gyrus, and left posterior cerebellum (Figure 5) (consistent
between two different atlas, brain regions highlighted
in Supplementary Figure 3). Our results using different
window sizes for dALFF were consistent with our main
results that the brain regions exhibited higher accuracies

FIGURE 2 | The null distributions of the classifications and receiver operator characteristic curve (ROC curve) for DCM vs. HC using sALFF and dALFF. DCM,

Degenerative Cervical Myelopathy; HC, Healthy Controls; sALFF, static amplitude of low-frequency fluctuation; dALFF, dynamic amplitude of low-frequency fluctuation;

AUC, area under the curve.
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FIGURE 3 | Voxels showed higher weight for classification for “DCM vs. HC”

across all folds. DCM, Degenerative Cervical Myelopathy; HC, Healthy

Controls.

were located at the frontal cortices and sensorimotor
cortices (details can be found in brain regions highlighted
in Supplementary Figures 4, 5).

Multivariate Pattern Analysis: Prognosis
Prediction for DCM Patients
Findings from region-wise MVPA prediction for JOA recovery
showed that the brain regions that successful prediction was
mainly located at the frontal cortices for sALFF (Figure 6)
(consistent between two different atlas, brain regions highlighted
in Supplementary Figure 6). In addition, brain regions that
exhibited significant correlations between predicted labels and
actual labels for dALFF were mainly located at the frontal
cortices, left insular and posterior lobe of the cerebellum
(consistent between two different atlas, brain regions highlighted
in Supplementary Figure 7). (Figure 7) Our results using
different window sizes for dALFF were consistent with our main
results that the brain regions that exhibited successful prediction
was located at the frontal cortices, left insular and posterior
lobe of the cerebellum (details can be found in brain regions
highlighted in Supplementary Figures 8, 9).

DISCUSSION

The main findings for this study were as follows: (1) the
results from the univariate analysis revealed brain functional
alterations in the DCM patients. However, these alterations were
not correlated with clinical symptoms. (2) MVPA successfully
classified DCM patients and distinguished them from healthy

FIGURE 4 | Brain regions with significant classification accuracy for “DCM vs.

HC” using the static amplitude of low-frequency fluctuation (sALFF) (p < 0.05,

FWE for multiple comparison correction). DCM, Degenerative Cervical

Myelopathy; HC, Healthy Controls; AAL, Anatomical Automatic Labeling; BN,

Brainnetome.

adults using sALFF and dALFF as features. (3) MVPA
showed potential application in predicting the prognosis of
DCM patients.

Degenerative Cervical Myelopathy Patients
Exhibited Increased sALFF Within Putamen
and Thalamus, and Decreased dALFF
Within the Bilateral S1
Thalamus is the first region for transmitting sensory information
from the spinal cord, and plays an important role in the
neuropathology of DCM (32, 33). Zhou et al. reported
that DCM patients exhibited increased FC between the
thalamus and superior frontal gyrus, between thalamus and
precentral gyrus (M1) in slow-4 frequency band (0.027–0.073Hz)
relative to that of healthy adults. A study conducted full-
band (0.01–0.08Hz) FC analysis and reported increased FC
between the thalamus and bilateral lingual gyrus/cuneus (33).
Moreover, DCM patients manifested decreased FC between the
right thalamus and bilateral paracentral lobe/precentral gyrus
following decompression surgery but exhibited significantly
increased FC between right thalamus and pons/superior
temporal gyrus compared with that of healthy controls (32).
These results represent compensatory changes following long-
term compression of the spinal cord. The functional changes
indicate that sensorimotor cortices (such as M1) recruit the
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FIGURE 5 | Brain regions with significant classification accuracy for “DCM vs.

HC” using the dynamic amplitude of low-frequency fluctuation (dALFF) (p <

0.05, FWE for multiple comparison correction). DCM, Degenerative Cervical

Myelopathy; HC, Healthy Controls; AAL, Anatomical Automatic Labeling; BN,

Brainnetome.

adjacent cortex to compensate for the functional deficits of
myelopathy (34–36). In summary, the observed increased sALFF
within the thalamus in this study is attributed to response
to myelopathy, and cortical reorganization was initiated to
compensate for the functional deficits in the DCM patients.
The postcentral gyrus (S1) is a key region implicated in cortical
reorganization in DCM pathology. The recent studies report that
functional, structural, and metabolic alterations occur within S1
in the DCM patients (37–39). These alterations are considered
as the sensory-motor cortical plasticity, which is the dynamic
potential of the brain to reorganize following secondary injury
during the progression of chronic spinal cord injury. The findings
on sALFF and dALFF changes in this study were consistent
with results from previous studies, and thus, they are a result
of cortical reorganizations following long-term myelopathy.
Notably, no significant correlation between brain alterations and
clinical measures was observed in the DCM patients. There are
two possibilities for this phenomenon, first only used JOA score
was used for determining disease DCM severity which only
considered the patient’s signs and symptoms and ignored the
structural changes of the spinal cord. Therefore, the JOA score
may not be a comprehensive indicator for evaluating the severity
of DCM. Second, in this section, only univariate correlation
analysis was performed, and the nonlinear association between
brain alterations and clinical measures may have been ignored.

FIGURE 6 | Brain regions with significant correlation coefficients in the

prediction of JOA recovery rate using the static amplitude of low-frequency

fluctuation (sALFF) (p < 0.05, FWE for multiple comparison correction). DCM,

Degenerative Cervical Myelopathy; HC, Healthy Controls; AAL, Anatomical

Automatic Labeling; BN, Brainnetome.

Research Imaging Institute-Wise
Functional Pattern of Both sALFF and
dALFF Successfully Distinguished DCM
Patients From Healthy Controls
Cortical functional alterations of the brain have been identified
in the past decades. Widespread brain regions including
sensorimotor cortices (such as M1, S1, SMA) (37–39), occipital
cortices (such as primary visual cortices, secondary visual
cortices) (11, 40, 41), frontal cortices (such as superior and
middle parts) (10, 38, 42), default mode network (such as
medial frontal cortices, posterior cingulate cortices, angular gyri)
(29), temporal cortices (including inferior part and superior
part) (29), and cerebellum (including cerebellum crus, posterior
cerebellum) are implicated in DCM pathogenesis (40, 41).
However, these studies only conducted univariate analysis (such
as voxel-wise independent T-test) to explore group differences
between DCM patients and healthy controls. Although positive
results have been obtained, this approach only detects the
amplitude differences in brain alterations within a single voxel,
and ignores the pattern information attributed to multiple voxels
or brain regions. Therefore, the multivariate approach gives
a more comprehensive description of the functional alteration
pattern of the brain. It is important to test whether the
sensorimotor cortices pattern of these functional metrics (such
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as sALFF and dALFF) can successfully distinguish the DCM
patients from healthy controls before identification of DCM-
related brain regions. The findings of this study showed high-
classification accuracies (71% for sALFF and 79% for dALFF)
in classifying DCM patients and healthy controls. This result
indicated that the functional pattern of the sensorimotor cortices
function is a potential indicator for classifying DCM patients and
healthy controls. Initially, this did not appear to have clinical
significance, as the diagnosis of DCM currently only included
the clinical symptoms of myelopathy and corresponding MR
findings. However, for the DCM patients with light symptoms
and ambiguous compression on cervical MR, it is challenging for
clinicians to determine whether these patients have spinal cord
compression and whether these symptoms are progressive (1, 4,
6, 43, 44). The results of this study provide preliminary evidence
that DCM-related information is correlated to the functional
patterns of the brain and can be used for the diagnosis of DCM.
Further studies should explore the utility of sALFF or dALFF for
the diagnosis of patients with light symptoms and for predicting
the progression of DCM.

Several Brain Regions Played a Role in the
Classification of DCM Patients and Healthy
Controls
A multivariate approach was employed to classify DCM patients
and healthy controls based on sensorimotor cortices sALFF and
dALFF as classification features. The contribution of each voxel
to the classifications was determined (the voxels consistently
showed a response preference for DCM patients (i.e., voxels
with positive weights) in the two classifications). The DCM-
preferring voxels were located in the bilateral S1, M1, SMA,
and cerebellum vermis. Similar observations were obtained in
the regional classification, indicating that the brain regions
had significant classification accuracy. Evidence from the past
decades has demonstrated that these brain regions are associated
with DCM, and this has been confirmed by results from MVPA.
Frontal cortices are crucial in motor planning and motor control
in human (45–48). Recent studies have also shown that the
sALFF in the frontal lobe is a potential biomarker for predicting
the prognosis of DCM patients after undergoing decompression
surgery (10). However, the regions identified in this study are
slightly different from those reported previously. Nevertheless,
the present results point to the possibility that frontal cortices
may contribute to the pathomechanism of DCM. Moreover,
a higher number of brain regions showed good classification
accuracy in the region-wise classification for dALFF than for
sALFF. To our knowledge, no study has reported whether dALFF
can reveal changes in brain regions in the DCM patients. In
this study, results showed that dALFF may be a more sensitive
metric for revealing functional alterations in the DCM patients.
Therefore, dALFF alone or combined with sALFF may more
accurately reveal the neural mechanism of DCM and predict
the prognosis of DCM patients after undergoing conservative
or surgical intervention. We, however, note that the aim of
classifying DCM patients and healthy controls was not to
distinguish DCM patients from healthy controls. Instead, our

FIGURE 7 | Brain regions with significant correlation coefficients in the

prediction of JOA recovery rate using the dynamic amplitude of low-frequency

fluctuation (dALFF) (p < 0.05, FWE for multiple comparison correction). DCM,

Degenerative Cervical Myelopathy; HC, Healthy Controls; AAL, Anatomical

Automatic Labeling; BN, Brainnetome.

aim was to first determine whether rs-fMRI can describe disease-
related information through a multivariable model analysis.
The successful discrimination of DCM patients and healthy
controls provided evidence that the MVPA approach can detect
DCM-related information, hence, can be exploited to develop a
multivariate prediction model.

Static ALFF and dALFF Showed the
Potential to Predict the Prognosis of DCM
Patients After Undergoing Decompression
Surgery
Several clinical studies have investigated factors influencing
the prognosis of DCM patients after undergoing spinal cord
decompression surgery. Identification of such factors will help
surgeons to make surgical decisions, hence reducing unnecessary
suffering to patients and wastage of medical resources. Several
clinical factors including diseases duration, preoperative severity
of myelopathy, age, smoking, and the presence of a high signal
in cervical T2-weighted images (6, 49, 50) have been found
to be associated with the prognosis of DCM. However, they
cannot accurately predict the prognosis of DCM patients (1, 6).
Therefore, other approaches such as electromyography (8), blood
biomarkers (51), PET-CT (52), spinal cord DTI (53) have been
employed to identify more effective prognostic markers. It has
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been shown that these imaging biomarkers can accurately predict
the prognosis of DCM. Recent studies used rs-fMRI to identify
brain biomarkers that can predict DCMprognosis (9, 10). Results
showed that the amplitude of ALFF within the superior frontal
gyrus influenced the prognosis of DCM. However, these results
were obtained using massive univariate analysis (e.g., univariate
correlation analysis) and only considered the amplitude of a
given voxel or average signal amplitude within in a given
ROI, regardless of the pattern information contained in the
multivoxels. To our knowledge, our study is the first to use both
static and dynamic ALFF to establish a prognostic biomarker
for DCM. Our results demonstrate that static and dynamic
ALFF can be exploited to determine prognostic biomarkers for
DCM. Furthermore, we found that a higher number of brain
regions, which had significant correlation coefficients between
the predicted JOA recovery rate and actual JOA recovery rate,
were found in region-wise prediction analysis for dALFF than
for sALFF. These results indicate that dALFF may be more
sensitive than sALFF in identifying brain regions associated with
the prognosis of DCM. Overall, this study provides preliminary
evidence that resting-state fMRI indicators (e.g., sALFF, dALFF)
can be used to predict prognostic outcomes of patients with DCM
after undergoing decompression surgery.

LIMITATIONS

This study has several limitations. First, postoperative fMRI data
were collected because of the artifacts and heating problems
caused by surgical implants. Such data will be collected and
analyzed in our future studies. Second, all the patients included
underwent long-term conservative intervention before the study.
Therefore, future studies should enroll drug-naïve DCMpatients.
Third, we only analyzed dALFF/sALFF. In the future, other
resting-state fMRI metrics such as FC, regional homogeneity
(ReHo), and FC strength (FCS) should be analyzed to establish
a more accurate prognostic model. Fourth, this study enrolled
47 patients, which is a relatively small sample size. Future
large-scale studies are needed to validate these results. At last,

the multivariate approach employed in this study could detect
a nonlinear association between brain variables and clinical
outcomes, however, it could not provide a comprehensible
interpretation of these associations. Therefore, other multivariate
approaches should be adopted to interpret these associations in
future studies.

CONCLUSIONS

In summary, sALFF and dALFF can reveal the functional
alterations in brain regions of patients with DCM. Furthermore,
a multivariate approach is more sensitive than the conventional
method in revealing the neuropathological mechanisms and
establishing a prognostic biomarker for DCM.
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